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The present paper deals with the study of semilinear and non-homogeneous Schrödinger equa-

tions on a manifold with conical singularity. We provide a suitable constant by Sobolev embed-

ding constant and forp ∈ (2, 2∗) with respect to non-homogeneous termg(x) ∈ L
n
2
2 (B), which

helps to find multiple solutions of our problem. More precisely, we prove the existence of two

solutions to the problem 1.1 with negative and positive energy in cone Sobolev spaceH1, n
2

2,0 (B).

Finally, we considerp = 2 and we prove the existence and uniqueness of Fuchsian-Poisson

problem.

Key words : Semilinear elliptic equation; non-homogeneous Schrödinger equation, degenerate

elliptic equations; con Sobolev space.

1. INTRODUCTION

In this paper, we show the existence of at least two weak solutions for semilinear and non-homogeneous

Schr̈odinger equations on a manifold with conical degeneration as follows
{
−∆Bu + u = |u|p−2u + g(x) x ∈ intB,

u = 0 x ∈ ∂B
(1.1)

where2 < p < 2n
n−2 = 2∗ is the critical cone Sobolev exponents andg(x) = g(|x|) ∈ L

n
2
2 (B),

where|x| = (x2
1 + x2

2 + +...x2
n)

1
2 , which is considered by the authors in [4]. Here the domainB is

[0, 1)×X thatX is an(n− 1)-dimensional closed compact manifold, which is regarded as the local
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model near the conical points on manifolds with conical singularities, and∂B = {0}×X. Moreover,

the operator∆B in 1.1 is defined by(x1∂x1)
2+∂2

x2
+...+∂2

xn
, which is an elliptic operator with totally

characteristic degeneracy on the boundaryx1 = 0, we also call it Fuchsian type Laplace operator, and

the corresponding gradient operator by∇B := (x1∂x1 , ∂x2 , ..., ∂xn). We recall more details about the

manifolds with conical singularities in Section 2.

The problem 1.1 is related to the study of non-homogeneous and semilinear Schrödinger equation

independent of time for a quantum particle in mechanics. Ifg(x) ≡ 0, the problem 1.1 reduces to

problem (1.1) with potential functionV (x) ≡ 1 in [1]. In the homogeneous case that isg(x) ≡ 0, and

without potential termu in the problem 1.1 in the present manuscript one can reduce to the following

Dirichlet problem, {
−∆Bu = |u|p−2u x ∈ intB,

u = 0 x ∈ ∂B
(1.2)

which the authors in [2] obtained a nontrivial weak solution for it.

This paper motivated by the paper [7] that the authors proved the existence of two weak solutions

of the nonhomogeneous Schrödinger-Maxwell system in the presence Laplace operator∆ on Rn

instead of Fuchsian-Laplace operator∆B on conical manifoldB.

In this paper, we shall find multiple solutions for the problem 1.1 in cone Sobolev spaceH1, n
2

2,0 (B)

which will be given in the next section.

Corresponding to the problem 1.1, we define the energy functionalI : H1, n
2

2,0 (B) −→ R by

I(u) =
1
2

∫

B

|∇Bu|2 dx1

x1
dx′

+
1
2

∫

B

u2 dx1

x1
dx′ − 1

p

∫

B

|u|p dx1

x1
dx′ −

∫

B

g(x)u
dx1

x1
dx′. (1.3)

It is well known thatI ∈ C1(H1, n
2

2,0 (B),R). Furthermore, by definition of the energy functional

1.3, one can get

〈I ′(u), v〉 =
∫

B
∇Bu∇Bv dx1

x1
dx′

+
∫

B
uv

dx1

x1
dx′ −

∫

B
|u|p−2uv

dx1

x1
dx′ −

∫

B
g(x)v

dx1

x1
dx′. (1.4)

Definition1.1 — We say thatu is a weak solution of problem 1.1 onintB if it satisfies in problem

1.1 in the sense of distribution that is

(∇Bu,∇Bv)2 + (u, v)2 = (|u|p−1u, v)2 + (g(x), v)2 ∀v ∈ H1, n
2

2,0 (B).
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Forp ∈ (2, 2∗), we set

C∗
p =

(
p− 2

2(p− 1)

)[
p

2(p− 1)CP

] 1
p−2

. (1.5)

Now, we are in a position which we can express our main results in this paper.

Theorem1.2— If p ∈ (2, 2∗), andg(x) ∈ C1(B)
⋂

L
n
2
2 (B) is a nonnegative function satisfying

the following conditions:

(G1): g(x) = g(|x|) 6= 0,

(G2): (∇Bg(x), g(x))2 ∈ L
n
2
2 (B),

(G3): ‖g‖
L

n
2
2 (B)

< C∗
p ,

whereC∗
p given by 1.5. Then the problem 1.1 has at least two nontrivial weak solutionsu0 andu1

such thatI(u0) < 0 < I(u1).

In the last section we consider the casep = 2, so we deal with Poisson equation on the manifold

B. In this case, we present a unique weak solution of the problem 1.1.

Theorem1.3— If p = 2 the problem 1.1 has exactly one solution.

In Section 2, we will introduce the manifolds with conical singularities, the stretched manifold

associated to the conic manifold, cone Sobolev spaces and the corresponding properties of them. In

Section 3, we use the Ekeland’s variational principle to obtain a weak solution with negative energy.

In Section 4, we show that the problem 1.1 admits a positive energy solution. To end this, we apply

mountain pass Theorem 4.1 and consider the appropriate conditions on the non-homogeneous term

of the problem 1.1. In the last section, we study the problem 1.1 in casep = 2. To compare with the

case2 < p < 2∗ we prove that the problem 1.1 has exactly one solution in casep = 2.

2. CONE SOBOLEV SPACES

In this section, we recall some definitions and notations from Sobolev spaces on manifolds with

conical singularities. We refer enthusiastic reader to [ 2, 3, 5, 9, 10] and the references therein.

Let B be a manifold with conical singularitiesx1, ..., xN . First, for simplicity let us consider the

caseN = 1 and setx = x1. If X is C∞ closed compact manifold, the coneX∆ := R̄+×X
{0}×X is an

example of such anB. In this case the conical singularity is represented by{0} ×X in the quotient

space. In general,B is locally nearx modelled on such a cone. More precisely,B − {x} is smooth,
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and we have a singular chart

χ : G → X∆

for some neighborhoodG of x in M and a smooth manifoldX = X(x) whereχ(x) is equal to the

vertex ofX∆, ϕ = χ|G−{x} : G− {x} → X∧ := R+ ×X is a diffeomorphism [2]. More precisely,

a finite dimensional manifoldB with conical singularities, is a topological space with a finite subset

B0 = {x1, ..., xN} ⊂ B of conical singularities, which has the following two properties:

(a) B −B0 is aC∞ manifold.

(b) any x ∈ B0 has an open neighborhoodG in B, such that there is a homeomorphism

χ : G → X∆ for some closed compactC∞ manifoldX = X(x) andϕ restricts a diffeomorphism

ϕ′ : G− {x} → X∧.

For such a manifold, letn ≥ 2 andX ⊂ Sn−1 be a bounded open set in the unit sphere ofRn
x. The

setB :=
{

x ∈ Rn−{0} ; x
|x| ∈ X

}
∪{0} is an infinite cone with the baseX and the critical point

{0}. Using the polar coordinates, one can get a description ofB − {0} in the formX∧ = R+ ×X,

which is called the open stretched cone with the baseX, and{0} ×X is the boundary ofX∧.

Now, we assume that the manifoldB is paracompact and of dimensionn. By this assumption

we can define the stretched manifold associated withB. LetB be aC∞ manifold with compactC∞

boundary∂B ∼= ⋃
x∈B0

X(x) for which there exists a diffeomorphismB −B0
∼= B− ∂B := intB, the

restriction of which toG1−B0
∼= U1− ∂B for an open neighborhoodG1 ⊂ B near the points ofB0

and a collar neighborhoodU1 ⊂ B with U1
∼= ⋃

x∈B0

{[0, 1)×X(x)}. The typical differential operators

on a manifold with conical singularities, called Fuchs type, are operators that are in a neighborhood

of x1 = 0 of the following form

A = x−m
1

m∑

k=0

ak(x1)(−x1∂x1)
k

with (x1, x) ∈ X∧ andak(x1) ∈ C∞(R̄+, Diffm−k(X)) [9]. The differentialx1∂x1 in Fuchs type

operators provokes us to apply the Mellin transformM : C∞
0 (R+) → A(C), for u(x1) ∈ C∞

0 (R+),

z ∈ C, defined as

Mu(z) :=
∫ +∞

0
xz

1u(x1)
dx1

x1
, (2.1)

whereA(C) denotes the space of entier functions.
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One can find further details on Fuchs type operators and all implications and definitions of the

cone Sobolev spaces in [2, 3, 9, 10]. We use the so-called weighted Meline transform

Mγu := Mu|Γ1
2−γ

=
∫ +∞

0
x

1
2
−γ+iτ

1 u(x1)
dx1

x1
,

whereΓβ := {z ∈ C ; Rez = β}. The inverse weighted Meline transform is defined as

(M−1
γ g)(x1) =

1
2iπ

∫

Γ 1
2

x−z
1 g(z)dz.

In order to define cone Sobolev spaces on the stretched manifolds, at the first we introduce the

weighted Sobolev spaces onRn and then by using of partition unity, we introduce suitable weighted

cone Sobolev space on the stretched manifoldB.

Definition2.1 — For(x1, x
′) ∈ R+ × Rn−1 = Rn

+ we say thatu(x1, x
′) ∈ Lp(Rn

+, dx1
x1

dx′) if

‖u‖Lp =
(∫

R+

∫

Rn−1

xn
1 |u(x1, x

′)|p dx1

x1
dx′

) 1
p

< ∞.

The weightedLp−spaces with weight dataγ ∈ R is denoted byLγ
p(Rn

+, dx1
x1

dx′). In fact, if

u(x1, x
′) ∈ Lγ

p(Rn
+, dx1

x1
dx′), thenx−γ

1 u(x1, x
′) ∈ Lp(Rn

+, dx1
x1

dx′), and

‖u‖γ
Lp =

(∫

R+

∫

Rn−1

xn
1 |x−γ

1 u(x1, x
′)|p dx1

x1
dx′

) 1
p

< ∞.

Now, we can define the weightedp−Sobolev spaces for1 ≤ p < ∞.

Definition2.2 — Form ∈ N, γ ∈ R and1 ≤ p < ∞, the spaces

Hm,γ
p (Rn

+) :=
{

u ∈ D′(Rn
+) ; x

n
p
−γ

1 (x1∂x1)
α∂β

x′u ∈ Lp(Rn
+,

dx1

x1
dx′)

}
, (2.2)

for any α ∈ N, β ∈ Nn−1 and |α| + |β| ≤ m. In other words, ifu(x1, x) ∈ Hm,γ
p (Rn

+), then

(x1∂x1)
α∂β

x′u ∈ Lγ
p(Rn

+, dx1
x1

dx′).

Hence,Hm,γ
p (Rn

+) is a Banach space with norm

‖u‖Hm,γ
p (Rn

+) =
∑

|α|+|β|≤m

(∫ ∫

Rn
+

xn
1 |x−γ

1 (x1∂x1)
α∂β

x′u(x1, x
′)|p dx1

x1
dx′

) 1
p

.

Let X be a closed compactC∞ manifold, andU = {U1, ..., UN} an open covering ofX

by coordinate neighborhoods. If we fix a subordinate partition of unity{ϕ1, ..., ϕN} and charts
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χj : Uj → Rn−1, j = 1, ..., N. Then we say thatu ∈ Hm,γ
p (X∧) if and only if u ∈ D′(X∧) with the

norm

‖u‖Hm,γ
p (X∧) =

{ N∑

j=1

‖(1× χ∗j )
−1ϕju‖p

Hm,γ
p (Rn

+)

} 1
p

< ∞,

where1×χ∗j : C∞
0 (R+×Rn−1) → C∞

0 (R+×Uj) is the pull-back function with respect to1×χj :

R+ × Uj → R+ × Rn−1. Denote theHm,γ
p,0 (X∧) as subspace ofHm,γ

p (X∧) which is defined as the

closure ofC∞
0 (X∧) with respect to the norm‖.‖Hm,γ

p (X∧). Now, we have the following definition

Definition2.3 — LetB = [0, 1) × X be the stretched manifold of the manifoldB with conical

singularity. Then the cone Sobolev spaceHm,γ
p (B), for m ∈ N, γ ∈ R andp ∈ (1,∞), is defined by

Hm,γ
p (B) = {u ∈ Wm,p

loc (intB) ; ωu ∈ Hm,γ
p (X∧)},

for any cut-off functionω supported by a collar neighborhood of[0, 1)×∂B. Moreover, the subspace

Hm,γ
p,0 (B) of Hm,γ

p (B) is defined by

Hm,γ
p,0 (B) := (ω)Hm,γ

p,0 (X∧) + (1− ω)Wm,p
0 (intB),

whereWm,p
0 (intB) denotes the closure ofC∞

0 (intB) in Sobolev spaceWm,p(X̃) whenX̃ is closed

compactC∞manifold of dimensionn containingB as a submanifold with boundary.

Definition2.4 — LetB = [0, 1)×X. We say thatu(x) ∈ Lγ
p(B) with 1 < p < ∞, γ ∈ R, if

‖u‖Lγ
p(B) =

∫

B

xn
1 |x−γ

1 u(x)|p(dx1

x1
)dx′ < ∞.

Forγ = n
p andγ = n

q such that1p + 1
q = 1, we have the following Ḧolders inequality

∫

B

|u(x)v(x)|dx1

x1
dx′ ≤

(∫

B

|u(x)|p dx1

x1
dx′

) 1
p
(∫

B

|v(x)|q dx1

x1
dx′

) 1
q

. (2.3)

In the sequel, for convenience we denote

(u, v)2 =
∫

B

u(x)v(x)
dx1

x1
dx′ and ‖u‖

L
n
p
p (B)

=
∫

B

|u(x)|p dx1

x1
dx′.

Proposition2.5 — (Poincaŕe inequality) [2]. LetB = [0, 1) × X be a bounded subspace inRn
+

with X ⊂ Rn−1, γ ∈ R andp ∈ (1,∞). If u ∈ H1,γ
p (B) then

‖u(x)‖Lγ
p(B) ≤ c‖∇Bu(x)‖Lγ

p(B) (2.4)
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where∇Bu = (x1∂x1 , ∂x2 , ..., ∂xn) and the constant c depending only onB.

Proposition2.6 [3] — For2 < p < 2∗ the embeddingH1, n
2

2,0 (B) ↪→ H0, n
p

p,0 (B) is compact.

3. A WEAK SOLUTION WITH NEGATIVE ENERGY

In this section, we use the Ekeland’s variational principle to show the existence a weak solution

u0 which the energy functional is negative in this point. To express our main result, we need the

following lemma.

Lemma3.1 — Letp ∈ (2, 2∗) and‖g‖
L

n
2
2 (B)

< C∗
p with C∗

p given by 1.5. Then for the energy

functionalI defined by 1.3, there existα > 0 andρ > 0 such that

I(u) ≥ ρ > 0

for any‖u‖H1, n
2

2,0 (B)
= α.

PROOF : By cone Sobolev embedding Theorem, we have

I(u) ≥ 1
2
‖u‖2

H1, n
2

2,0 (B)
− Cp

p
‖u‖p

H1, n
2

2,0 (B)
− ‖g‖

L
n
2
2 (B)

‖u‖H1, n
2

2,0 (B)

= ‖u‖H1, n
2

2,0 (B)

(
1
2
‖u‖H1, n

2
2,0 (B)

− Cp

p
‖u‖p−1

H1, n
2

2,0 (B)
− ‖g‖

L
n
2
2 (B)

)
. (3.1)

Seth(t) = 1
2 t− CP

p tp−1 for t ≥ 0. By calculations, we see that

max
t≥0

h(t) = h(α) = C∗
p ,

whereα = ( p
2Cp(p−1))

1
p−2 . Therefore, it follows from 3.1 that if‖g‖

L
n
2
2 (B)

< C∗
p , there exists

ρ = α(h(α)− ‖g‖
L

n
2
2 (B)

) < C∗
p such that

I(u) ≥ ρ > 0,

for anyu ∈ H1, n
2

2,0 (B) with ‖u‖H1, n
2

2,0 (B)
= α. 2

Theorem3.2— Supposep ∈ (2, 2∗), 0 ≤ g(x) = g(|x|) ∈ L
n
2
2 (B) − {0} and‖g‖

L
n
2
2 (B)

< C∗
p .

Then there existsu0 ∈ H1, n
2

2,0 (B), such that

I(u0) = inf
{

I(u) : u ∈ H1, n
2

2,0 (B) and ‖u‖H1, n
2

2,0 (B)
= α

}
< 0, (3.2)

whereα is given by Lemma 3.1. Moreover,u0 is a solution of problem 1.1.



140 MOHSEN ALIMOHAMMADY et al.

PROOF : Since0 ≤ g(x) = g(|x|) ∈ L
n
2
2 (B) − {0} andg(x) 6= 0, we can choose a function

v ∈ H1, n
2

2,0 (B) such that
∫
B g(x)v(x) dx1

x1
dx′ > 0. Then fort > 0 small enough, we have

I(tv) =
t2

2

∫

B

|∇Bv|2 dx1

x1
dx′ +

t2

2

∫

B

v2 dx1

x1
dx′ (3.3)

− tp

p

∫

B

|v|p dx1

x1
dx′ − t

∫

B

g(x)v
dx1

x1
dx′ < 0. (3.4)

This shows that

c0 = inf
{

I(u) : u ∈ B̄α

}
< 0,

whereB̄α = {u ∈ H1, n
2

2,0 (B) : ‖u‖H1, n
2

2,0

≤ α}. By Ekeland’s variational principle, there exists

{un} ⊂ B̄α such that:

(i) c0 ≤ I(un) ≤ c0 + 1
n ,

(ii) I(w) ≥ I(un)− 1
n‖w − un‖H1, n

2
2,0

for all w ∈ B̄α.

From a standard procedure, see for example [11], we can prove that{un} is a bounded (PS)-

sequence ofI. Therefore by compactness of embeddingH1, n
2

2,0 (B) ↪→ H0, n
p

p,0 (B) = L
n
p
p (B) for

2 < p < 2∗, there existsu0 ∈ H1, n
2

2,0 (B) such thatun → u0 strongly inH1, n
2

2,0 (B) whenn → ∞.

HenceI(u0) = c0 < 0 andI ′(u0) = 0.

4. A WEAK SOLUTION WITH POSITIVE ENERGY

This section deals with the existence of weak solution to problem 1.1 with positive energy. To ap-

proach this, we will apply the result from the functional analysis. Furthermore, we use thePS−sequence

property to get our aim.

Theorem4.1 [8] — Let (X, ‖.‖) be a Banach space,J ⊂ R+ an interval and{Iµ}µ∈J a family

of C1-functionals onX of the form

Iµ(u) = A(u)− µB(u), ∀µ ∈ J,

whereB(u) ≥ 0, ∀u ∈ X andB(u) → +∞ or A(u) → +∞ as‖u‖ → ∞.

Assume that there are two pointsv1, v2 ∈ X such that

c(µ) = inf
γ∈Γ

max
t∈[0,1]

Iµ(γ(t)) > max{Iµ(v1), Iµ(v2)}, for µ ∈ J,
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where

Γ = {γ ∈ C([0, 1], X) : γ(0) = v1, γ(1) = v2}.

Then, for almost everyµ ∈ J, there is a sequence{vn} ⊂ X such that

(i) {vn} is bounded,

(ii) Iµ(vn) → c(µ),

(iii) I ′µ(vn) → 0 in the dual ofX.

In order to applying Theorem 4.1 to get a solution to our problem 1.1, we introduce the following

approximation problem

{
−∆Bu + u = µ|u|p−2u + g(x) x ∈ intB,

u = 0 x ∈ ∂B,
(4.1)

whereµ ∈ [12 , 1], p ∈ (2, 2∗) andg(x) = g(|x|) ∈ L
n
2
2 (B)− {0}.

Let X = H1, n
2

2,0 (B) andJ = [12 , 1], and defineIµ : X −→ R by

Iµ(u) = A(u)− µB(u),

with A(u) = 1
2

∫
B
|∇Bu|2 dx1

x1
dx′ + 1

2

∫
B

u2 dx1
x1

dx′ − ∫
B

g(x)udx1
x1

dx′ andB(u) = 1
p

∫
B
|u|p dx1

x1
dx′.

Then{Iµ}µ∈J is a family ofC1-functionals onX, B(u) ≥ 0, ∀u ∈ X and

A(u) ≥ 1
2‖u‖2

H1, n
2

2,0 (B)
− ‖g‖

L
n
2
2 (B)

‖u‖H1, n
2

2,0 (B)
→ +∞ as‖u‖H1, n

2
2,0 (B)

→∞.

Lemma4.2 — Supposep ∈ (2, 2∗), 0 ≤ g(x) = g(|x|) ∈ L
n
2
2 (B) − {0} and‖g‖

L
n
2
2 (B)

< C∗
p ,

then

(i) there exista, b > 0 ande ∈ H1, n
2

2,0 (B) with ‖e‖H1, n
2

2,0 (B)
> b such that

Iµ(u) ≥ a > 0 with ‖u‖H1, n
2

2,0

= b andIµ(e) < 0 for all µ ∈ [12 , 1],

(ii) for any µ ∈ [12 , 1], we have

cµ = inf
γ∈Γ

max
t∈[0,1]

Iµ(γ(t)) > max{Iµ(0), Iµ(e)},

where

Γ =
{

γ ∈ C([0, 1],H1, n
2

2,0 (B)) : γ(0) = 0, γ(1) = e

}
.
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PROOF : (i) SinceIµ(u) ≥ I1(u) for all u ∈ H1, n
2

2,0 (B) andµ ∈ [12 , 1], by Lemma 3.1 there exist

a, b > 0, which are independent ofµ ∈ [12 , 1], such thatI1(u) ≥ a > 0 with ‖u‖H1, n
2

2,0

= b. Take

0 ≤ w ∈ H1, n
2

2,0 (B), ∀t > 0 settingwt(x) = tsw(tx) wheres ∈ (0,∞). Since2 + 2
s < p < 2∗, there

existst0 > 0 large enough such that for allµ ∈ [12 , 1],

Iµ(wt0) ≤ t2s+2
0

2

∫

B

|∇Bw|2 dx1

x1
dx′ +

t2s
0

2

∫

B

w2 dx1

x1
dx′

− tps
0

p

∫

B

|w|p dx1

x1
dx′ < 0, (4.2)

which is independent ofµ ∈ [12 , 1]. Takee = wt0 , hence (i) is valid.

(ii) By the definition ofcµ, we have for allµ ∈ [12 , 1],

cµ ≥ c1 ≥ a > 0.

SinceIµ(0) = 0 andIµ(e) < 0 for all µ ∈ [12 , 1], we see that (ii) is valid. 2

By Theorem 4.1 and Lemma 4.2, there existsµj ∈ [12 , 1] such that

(i) µj → 1 asj → +∞,

(ii) Iµj has a boundedPS−sequenceuj
n at the levelcµj .

Since the embeddingH1, n
2

2,0 (B) ↪→ H0, n
p

p,0 (B) = L
n
p
p (B) for 2 < p < 2∗, is compact, for each

j ∈ N, there existsuj ∈ H1, n
2

2,0 (B) such thatuj
n → uj strongly inH1, n

2
2,0 (B) asn →∞. uj is a solution

of problem 4.1 withµ = µj . Moreover, we have

0 < a ≤ Iµj (uj) = cµj ≤ c 1
2

and I ′µj
(uj) = 0, for all j ∈ N. (4.3)

Lemma4.3 — Under the condition of Theorem 1.2{uj} is a bounded (PS)-sequence of functional

I.

PROOF : Let I(uj) → c, ‖I ′(uj)‖H−1,−n
2

2,0 (B)
→ 0, whereI ′(.) is the Fŕechet differentiation, and

H−1,−n
2

2,0 (B) the dual space ofH1, n
2

2,0 (B), and

‖I ′(u)‖H−1,−n
2

2,0 (B)
= sup

ϕ∈C∞0 (B)

|〈I ′(u), ϕ〉|
‖ϕ‖H1, n

2
2,0 (B)

.

First we show that{uj} is bounded inH1, n
2

2,0 (B). In fact, if we assume that{uj} is non-bounded

in H1, n
2

2,0 (B), by Poincaŕe inequality, the norm ofH1, n
2

2,0 (B) is equivalent to the norm‖∇Buj‖
L

n
2
2 (B)

,
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thus we have

‖∇Buj‖
L

n
2
2 (B)

→ +∞ as j → +∞.

Let vj = uj

‖∇Buj‖
L

n
2
2 (B)

then,‖∇Bvj‖
L

n
2
2 (B)

= 1, which meansvj being bounded inH1, n
2

2,0 (B), i.e.,

there existv ∈ H1, n
2

2,0 (B), and a subsequencevjk
, such that

vjk
⇀ v in H1, n

2
2,0 (B).

Here, for simplicity, we still denotevjk
, by vj , then from‖I ′(uj)‖H−1,−n

2
2,0 (B)

→ 0 we know that

for anyϕ ∈ C∞
0 (B),

∫

B
∇Buj∇Bϕdx1

x1
dx′ +

∫

B
ujϕ

dx1

x1
dx′ −

∫

B
|uj |p−2ujϕ

dx1

x1
dx′

=
∫

B
g(x)ϕ

dx1

x1
dx′ + o(1)‖ϕ‖H1, n

2
2,0 (B)

, (4.4)

and then
∫

B
∇Bvj∇Bϕdx1

x1
dx′ +

∫

B
vjϕ

dx1

x1
dx′ −

∫

B
|uj |p−2vjϕ

dx1

x1
dx′

=

∫
B g(x)ϕdx1

x1
dx′ + o(1)‖ϕ‖H1, n

2
2,0 (B)

‖∇Buj‖
L

n
2
2 (B)

, (4.5)

i.e.,
∫

B
∇Bvj∇Bϕdx1

x1
dx′ +

∫

B
vjϕ

dx1

x1
dx′ −

∫

B
|uj |p−2vjϕ

dx1

x1
dx′ = o(1). (4.6)

FromI(uj) → c we know

1
2

∫

B

|∇Buj |2 dx1

x1
dx′ +

1
2

∫

B

u2
j

dx1

x1
dx′ − 1

p

∫

B

|uj |p dx1

x1
dx′ =

∫

B

g(x)uj
dx1

x1
dx′ + o(1) + c,

that means

1
2

∫

B

|∇Bvj |2 dx1

x1
dx′ +

1
2

∫

B

v2
j

dx1

x1
dx′ − 1

p

∫

B

|uj |p−2|vj |2 dx1

x1
dx′ = o(1). (4.7)

Takeϕ = vj in (4.6), then we have
∫

B

|∇Bvj |2 dx1

x1
dx′ +

∫

B

v2
j

dx1

x1
dx′ −

∫

B

|uj |p−2|vj |2 dx1

x1
dx′ = o(1). (4.8)
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From(4.7) and(4.8) obtain thatp = 2, which contradicts with the assumptionp > 2. Therefore

{uj} is bounded inH1, n
2

2,0 (B). Thus there existu1 ∈ H1, n
2

2,0 (B) and a subsequence, which still denotes

by uj , such thatuj ⇀ u1 in H1, n
2

2,0 (B). We want to prove thatuj → u1 in H1, n
2

2,0 (B). According to

definition of the norm spaceH1, n
2

2,0 (B) we have

‖uj − u1‖H1, n
2

2,0 (B)
≈ ‖∇Buj −∇Bu1‖

L
n
2
2 (B)

.

Then, by 1.4 we can obtain

‖uj − u1‖2

H1, n
2

2,0 (B)
≈ ‖∇Buj −∇Bu1‖2

L
n
2
2 (B)

≤ 〈I ′(uj)− I ′(u1), uj − u1〉

+
∫

B

(|uj |p−2uj − |u1|p−2u1)(uj − u1)
dx1

x1
dx′. (4.9)

Sinceuj ⇀ u1 in H1, n
2

2,0 (B), ‖I ′(uj)‖H−1,−n
2

2,0 (B)
→ 0, andC∞

0 (B) is dense inH1, n
2

2,0 (B), we can

deduce that〈I ′(uj)−I ′(u1), uj−u1〉 → 0 asj → +∞. So from Proposition 2.6, we haveuj → u1 in

L
n
p
p (B), that is,|uj |p−2uj → |u1|p−2u1 in L

n(p−1)
p

p (B). Therefore, one can imply by Ḧolder inequality

∫

B

(|uj |p−2uj − |u1|p−2u1)(uj − u1)
dx1

x1
dx′

≤
∫

B

||uj |p−2uj − |u1|p−2u1||uj − u1|dx1

x1
dx′

≤ ‖|uj |p−2uj − |u1|p−2u1‖
L

n(p−1)
p

p (B)

‖uj − u1‖
L

n
p
p (B)

.

Hence,uj → u1 in L
n
p
p (B), implies that

‖uj − u1‖H1, n
2

2,0 (B)
≈ ‖∇Buj −∇Bu1‖

L
n
2
2 (B)

→ 0 as j → +∞.2

PROOF OFTHEOREM 1.2 : From Lemma 4.3, we proved that{uj} is a (PS)−sequence of the

functionalIλ. Moreover, it implies from compactness of the embedding mapping (see Proposition

2.6)

H1, n
2

2,0 (B) ↪→ L
n
p
p (B) 2 < p < 2∗,

that there exists a solutionu1 for which I(u1) > 0. Finally, one can obtain the statement of Theorem

1.2 in combining of Theorem 4.1.
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5. A UNIQUE SOLUTION FOR FUCHSIAN-POISSONEQUATION

In this section, we aim to prove that problem 1.1 admits exactly one solution forp = 2. In this case,

problem 1.1 reduces to the Fuchsian-Poisson equation as follows:
{
−∆Bu = g(x) x ∈ intB,

u = 0 x ∈ ∂B
(5.1)

In order to prove the existence and uniqueness of weak solution problem 5.1 we apply some

fundamental results about functional calculus in [6].

PROOF OFTHEOREM 1.3 : Consider the functional: H1, n
2

2,0 (B) −→ R defined as

I(u) =
1
2

∫

B

|∇Bu|2 dx1

x1
dx′ −

∫

B

g(x)u
dx1

x1
dx′.

We know thatI is differentiable onH1, n
2

2,0 (B) such that

〈I ′(u), v〉 =
∫

B
∇Bu∇Bvdx1

x1
dx′ −

∫

B
g(x)v

dx1

x1
dx′.

For arbitraryu, v ∈ H1, n
2

2,0 (B) thatu 6= v, we can obtian

((I ′(u)− I ′(v))(u− v) =
∫

B
(∇Bu−∇Bv)(∇Bu−∇Bv)

dx1

x1
dx′

=
∫

B
|∇B(u− v)|2 dx1

x1
dx′ = ‖u− v‖H1, n

2
2,0 (B)

> 0. (5.2)

Therefore,I is strictly convex by Proposition (1.5.7) in [6]. By Poincaré and Ḧolder inequality,

we get

I(u) ≥ 1
2

∫

B

|∇Bu|2 dx1

x1
dx′ − ‖g‖

L
n
2
2 (B)

‖u‖
L

n
2
2 (B)

≥ 1
2
‖u‖2

H1, n
2

2,0 (B)
− CembC

∗
p‖u‖H1, n

2
2,0 (B)

(5.3)

whereCemb is the embedding constant andC∗
p is given by 1.5. According to 5.3, one can get

I(u) →∞ as ‖u‖H1, n
2

2,0 (B)
→∞,

that is, the functionalI is coercive. By Theorems (1.5.6) and (1.5.8) in [6],I admits a unique global

minimum. Hence, the proof is complete.
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