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The present paper deals with the study of semilinear and non-homogeneoadiSghr equa-
tions on a manifold with conical singularity. We provide a suitable constant by Sobolev embed-
ding constant and fay € (2, 2*) with respect to non-homogeneous tejn) € LQ% (B), which

helps to find multiple solutions of our problem. More precisely, we prove the existence of two
solutions to the problem 1.1 with negative and positive energy in cone Sobolev?sléj@%t(@).
Finally, we considepp = 2 and we prove the existence and uniqueness of Fuchsian-Poisson
problem.
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elliptic equations; con Sobolev space.

1. INTRODUCTION

In this paper, we show the existence of at least two weak solutions for semilinear and non-homogeneous
Schibdinger equations on a manifold with conical degeneration as follows

{ —Agu+u = |ulP~2u + g(x) x € intB, (L.1)

u=0 x € 0B

where2 < p < 2L = 2* is the critical cone Sobolev exponents ayld) = g(|z|) € Lf(B),

where|z| = (22 + 22 + +...22)2, which is considered by the authors in [4]. Here the donfiais
[0,1) x X thatX is an(n — 1)-dimensional closed compact manifold, which is regarded as the local
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model near the conical points on manifolds with conical singularitiesp@neg: {0} x X. Moreover,
the operato\g in 1.1 is defined byz19,,)?+02,+...4+92 , which is an elliptic operator with totally
characteristic degeneracy on the boundary= 0, we also call it Fuchsian type Laplace operator, and
the corresponding gradient operator®y := (104, , O, ..., 0, ). We recall more details about the
manifolds with conical singularities in Section 2.

The problem 1.1 is related to the study of non-homogeneous and semilineddiBgler equation
independent of time for a quantum particle in mechanicg;(4) = 0, the problem 1.1 reduces to
problem (1.1) with potential functiol () = 1 in [1]. In the homogeneous case thagis) = 0, and
without potential termy in the problem 1.1 in the present manuscript one can reduce to the following
Dirichlet problem,

{ —Apu = |ulP~2u x € intB, (1.2)

u=20 x € 0B
which the authors in [2] obtained a nontrivial weak solution for it.

This paper motivated by the paper [7] that the authors proved the existence of two weak solutions
of the nonhomogeneous Sékinger-Maxwell system in the presence Laplace operAtam R"
instead of Fuchsian-Laplace operafog on conical manifold.

In this paper, we shall find multiple solutions for the problem 1.1 in cone Sobolev %pﬁﬁlﬁﬂeﬁa)
which will be given in the next section.

Corresponding to the problem 1.1, we define the energy functiona{;:()% (B) — R by

1 d
I(u) = 2/|V5u]2 xillda;'
B

1 d 1 d d
+/u2 M g’ — /|u]p g — /g(m)u g (1.3)
2 Ty p Ty 1

B B B

It is well known that/ € Cl(H;:O% (B),R). Furthermore, by definition of the energy functional
1.3, one can get

(I'(w),v) = /VBUVBU %dac'
B I

d d d
+/ wv S da! — / lulP~2uw AL g —/g(x)v L g (1.4)
B B B x1

X X1

Definition1.1 — We say that is a weak solution of problem 1.1 entB if it satisfies in problem
1.1 in the sense of distribution that is

_ 1,2
(Veu, Vev)2 + (u,v)2 = ([u[P~ u,v)s + (g(z),v)2 Vv € Hy 5 (B).
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Forp € (2,2%), we set

%= (361 Iz e - (1.9

Now, we are in a position which we can express our main results in this paper.

Theoreml.2— If p € (2,2*), andg(z) € C*(B)N L2% (B) is a nonnegative function satisfying
the following conditions:

(G1): g(z) = g(|z[) # 0,
(G2): (Vag(),g(x))s € LS (B),

©3):lgl, 3 g,

<Oy,
whereC; given by 1.5. Then the problem 1.1 has at least two nontrivial weak solutipasd u;

such that (ug) < 0 < I(uq).

In the last section we consider the case 2, so we deal with Poisson equation on the manifold
B. In this case, we present a unique weak solution of the problem 1.1.

Theoreml1.3— If p = 2 the problem 1.1 has exactly one solution.

In Section 2, we will introduce the manifolds with conical singularities, the stretched manifold
associated to the conic manifold, cone Sobolev spaces and the corresponding properties of them. In
Section 3, we use the Ekeland’s variational principle to obtain a weak solution with negative energy.
In Section 4, we show that the problem 1.1 admits a positive energy solution. To end this, we apply
mountain pass Theorem 4.1 and consider the appropriate conditions on the non-homogeneous term
of the problem 1.1. In the last section, we study the problem 1.1 inicas@. To compare with the
case2 < p < 2* we prove that the problem 1.1 has exactly one solution in gase.

2. CONE SOBOLEV SPACES

In this section, we recall some definitions and notations from Sobolev spaces on manifolds with
conical singularities. We refer enthusiastic reader to [ 2, 3, 5, 9, 10] and the references therein.

Let B be a manifold with conical singularities, ..., x . First, for simplicity let us consider the

_ |i+><X
- {0}xX

example of such am. In this case the conical singularity is represented®ly x X in the quotient

caseN = 1 and setr = z;. If X is C*° closed compact manifold, the coné? : is an

space. In general3 is locally nearz modelled on such a cone. More precisdby—~ {z} is smooth,
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and we have a singular chart

Y:G— X2

for some neighborhoo@' of = in M and a smooth manifold = X (x) wherex(z) is equal to the
vertex of X2, ¢ = Xlo—fzy 1 G — {2} — X" =Ry x X is a diffeomorphism [2]. More precisely,

a finite dimensional manifold with conical singularities, is a topological space with a finite subset
By = {z1,...,xn} C B of conical singularities, which has the following two properties:

(a) B — By is aC* manifold.

(b) any z € By has an open neighborhoda@ in B, such that there is a homeomorphism
x : G — X2 for some closed compact> manifold X = X (x) and restricts a diffeomorphism
¢ G—{x} — X"

For such a manifold, let > 2 andX C S"~! be a bounded open set in the unit sphe®’pfThe
setB:=Jz e R"—{0} ; ‘%l € X} u{0} is an infinite cone with the bas€ and the critical point

{0}. Using the polar coordinates, one can get a descriptiaB ef {0} in the formX" = R, x X,
which is called the open stretched cone with the bsand{0} x X is the boundary o ".

Now, we assume that the manifol§l is paracompact and of dimensian By this assumption
we can define the stretched manifold associated Ritlhet B be aC>® manifold with compactC*°

boundaryoB = () X (z) for which there exists a diffeomorphisB®\— By = B — 0B := intB, the
r€ By
restriction of which taz; — By = U; — 0B for an open neighborhoa@; C B near the points oBy

and a collar neighborhodd; ¢ BwithU; = |J {[0,1) x X (z)}. The typical differential operators
r€ By
on a manifold with conical singularities, called Fuchs type, are operators that are in a neighborhood

of 1 = 0 of the following form

m

A=a]™" Z ap(x1)(—x10,,)F
k=0

with (z1,z) € X" andag(z1) € C®(R,, Diff"*(X)) [9]. The differentialz;dz, in Fuchs type
operators provokes us to apply the Mellin transfarfn: C5°(Ry) — A(C), for u(z;) € C°(R4),
z € C, defined as

400 T
Mu(z) ::/O xfu(zl)ﬂ, (2.1)

r1

where A(C) denotes the space of entier functions.
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One can find further details on Fuchs type operators and all implications and definitions of the
cone Sobolev spaces in [2, 3, 9, 10]. We use the so-called weighted Meline transform

%—’y—&-iT dl‘ 1

+oo
Myu:= Muy, = / x3 u(xy)—,
2377 0 X1

wherel's := {2 € C ; Rez = 3}. The inverse weighted Meline transform is defined as
(M g)) = 5= [ a gz
v 2T Il 1
2

In order to define cone Sobolev spaces on the stretched manifolds, at the first we introduce the
weighted Sobolev spaces &% and then by using of partition unity, we introduce suitable weighted
cone Sobolev space on the stretched manifold

Definition2.1 — For(z1,2') € Ry x R"~! = R" we say thati(z1,2') € L,(R?, %1 da’) if

1
g 1
I p
llullz, = / / o |u(xy, ') [P —dx’ < 00.
Ry Rn—1 I

The weightedL,—spaces with weight data € R is denoted byL}(R", ‘%dm’). In fact, if
u(zy, ') € Ly(RY, 1ds’), thena] Tu(x1,2’) € Ly(RY, %dw’), and

x1

1
_ d:L’l P
= ([ [ sttt <o
Ry JR7-1 e

Now, we can define the weighted-Sobolev spaces fdr < p < oo.

Definition2.2 — Form € N, v € R and1 < p < oo, the spaces
m,7y (mn /! (Tom %77 aqfB n dry
Hy "(RY) = u e D(RY) 5 xf  (2104,)"0pu € Ly(RY, x—dm) , (2.2)
1
foranya € N, 3 € N*~! and|a| + || < m. In other words, ifu(z1,z) € Hp""(R%), then
(£10,,)*8°u € LY(R?, %1 dy).

z1

Hence H,"” (R" ) is a Banach space with norm
1
_ dxq P
gy = S ([ [ st @on)olute.a)par)
jal+]gl<m 7 /RY !

Let X be a closed compaet> manifold, andi/ = {Uj,...,Ux} an open covering off
by coordinate neighborhoods. If we fix a subordinate partition of ufiy, ..., ox} and charts
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x;j:Uj — R j=1,.. N. Then we say that € H,"”(X") if and only ifu € D’(X") with the
norm

N
_ p
Huuﬁgmm:{;Huxxj) il | <o
J:

wherel x x7 : C5° (R4 x R"1) — C§° (R4 x Uj;) is the pull-back function with respect tox ; :
Ry x U; — Ry x R""1. Denote the,';” (X ") as subspace ¢f;,"” (X") which is defined as the
closure ofC§°(X ") with respect to the norrTh.HH;n,w(XA). Now, we have the following definition

Definition2.3 — LetB = [0,1) x X be the stretched manifold of the manifalwith conical
singularity. Then the cone Sobolev spa¢g’” (B), for m € N,y € Randp € (1, c0), is defined by

H,""(B) = {u € W/ch’p(intIB) : wu € H;n’W(XA)},

for any cut-off functionw supported by a collar neighborhood[6f1) x 9B. Moreover, the subspace
H,o (B) of Hp"" (B) is defined by

Hyo (B) := (w)Hy o (X") + (1 — w)Wg"" (intB),

whereW " (intB) denotes the closure 615°(intB) in Sobolev spac& ™?(X) whenX is closed
compactC*>manifold of dimensiom containingB as a submanifold with boundary.

Definition2.4 — LetB = [0,1) x X. We say that(z) € L)(B) with1 < p < oo,y € R, if

dey )dz' < oo.

) = / ey () PP

B

x1

Fory = 2 andy = 2 such tha% + % = 1, we have the following Hlders inequality

[romorttas s ([ (fuortinr). s

In the sequel, for convenience we denote

= u:zvxﬁx and |lu = [ |u(z)]?
(U’U)Z_B/()()“d a lul 5 B/|<>|

d
ﬂdm’.

x1

Proposition2.5 — (Poincag inequality) [2]. LetB = [0,1) x X be a bounded subspaceli}
with X ¢ R*! v e Randp € (1,0). If u € H,," (B) then

[u(@)ll2;) < clVeu@)lLye) (2.4)
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whereVgu = (2104, , Ox,, ..., 0z, ) and the constant ¢ depending only®n

" . n 0% .
Proposition2.6 [3] — For2 < p < 2* the embeddlngq(;o2 (B) — H,§ (B) is compact.
3. A WEAK SOLUTION WITH NEGATIVE ENERGY

In this section, we use the Ekeland’s variational principle to show the existence a weak solution
up Which the energy functional is negative in this point. To express our main result, we need the
following lemma.

Lemma3.1 — Letp € (2,2%) anngHL%(B) < C; with C given by 1.5. Then for the energy
functionall defined by 1.3, there exist > Ogandp > 0 such that

I(u) > p>0

for an n =
Vil ) =0

PrROOF: By cone Sobolev embedding Theorem, we have

1 CcP
I(u “ull?, » — P, . — n u n
W) 2 gl g = Wy o =3 g el
1 CcP p—1 )
= Jlu n —|u n  — —|lu n  — n . 3.1
I8 (31t )~ 5 Sy o =l 3 CE

Seth(t) = %t — %Ptp—l for t > 0. By calculations, we see that

mpx h(t) = h(a) = Cp,

1

wherea = (m)ﬁ. Therefore, it follows from 3.1 that if|g||L2g( < C;, there exists

B)
p=alh(a) — ||g||L%(B)) < C, such that
2
I(u) >p>0,

1,2 .
for an "2 (B) with n = q. O
oranyu & Hyg (B) with [l g o =

Theorem3.2— Suppose € (2,2%),0 < g(z) = g(|z|) € LQ% (B) — {0} and||g||L%(B) < Cy.
2

Then there exists, € Hég (B), such that

I(up) = inf{[(u) Ju € H;:O% (B) and HUH'HI’%(B) = a} <0, (3.2)

2,0

whereq is given by Lemma 3.1. Moreovay is a solution of problem 1.1
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PROOF: Since0 < g(z) = g(|z|) € L?(IB%) — {0} andg(z) # 0, we can choose a function
NS H;g (B) such thatf; g(x)v(z) dx—zlldx’ > (. Then fort > 0 small enough, we have

t2 d t2 d
I(tv) = /|VBU|2xldx'+/v2x1dx’ (3.3)
2 I 2 X1
B B
P d d
— /|v|pm1dx'—t/g(x)vx1d$’ < 0. (3.4)
p 2 1 B 1

This shows that
co = inf{[(u) D uE Ba} <0,
where B, = {u € H;ZO%(IB%) : ||UH'HL% < a}. By Ekeland’s variational principle, there exists
B 2,0

{un} C B, such that:

(i) co < I(un) < o+,

(i) I(w) > I(uy) — Llw - un||H1,% forallw € B,.

2,0
From a standard procedure, see for example [11], we can provéuthatis a bounded (PS)-
n 0,2 n

sequence off. Therefore by compactness of embeddiﬁéjg (B) — H,o(B) = Ly (B) for
2 < p < 2% there existauy € H;g (B) such thatu,, — ug strongly inH;’g (B) whenn — oo.
Hencel (ug) = ¢o < 0 andl’(ug) = 0.

4. AWEAK SOLUTION WITH POSITIVE ENERGY

This section deals with the existence of weak solution to problem 1.1 with positive energy. To ap-
proach this, we will apply the result from the functional analysis. Furthermore, we usstheequence
property to get our aim.

Theorem4.1[8] — Let (X, |.||) be a Banach space, C R an interval and{1,,},c, a family
of C'*-functionals onX of the form

Lu(u) = A(u) — pB(u), VpeJ,

whereB(u) > 0, Yu € X andB(u) — +o0o or A(u) — 400 as||u|| — oo.

Assume that there are two pointg v, € X such that

c(p) = ;glfﬂt?[g’}l(} I,(y(t)) > max{l,(v1), I, (v2)}, for peJ,
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where
I = {y € C([0,1],X) : 7(0) = v1,5(1) = vz}
Then, for almost every € J, there is a sequenci,,} C X such that
(i) {vn} is bounded,
(iD) 1y (vn) — c(p),
(iii) I, (vy) — 0in the dual ofX.

In order to applying Theorem 4.1 to get a solution to our problem 1.1, we introduce the following

approximation problem

{ —Agu+u = pluP2u+g(z) € intB, @1

u =0 x € 0B,

wherey € [4,1], p € (2,2%) andg(a) = g(|z]) € L] (B) - {0}.

Let X = H;g (B) andJ = [3, 1], and definel,, : X — R by

1(u) = A(u) — pB(u),

=

with A(u) = % [ |V |2d’”1dx + 5 fudeldx [ g(z) dxld:c andB(u f|u\pdx—?dac/.
B B B

Then{I,} e is a family of C'-functionals onX, B(u) > 0, Vu € X and
1 2 —
Aw) 2 Sl g = ol

2,0

(7 n — 400 as||u n — 00.
A ”Hiom l /¢ (B)

Lemmad4.2 — Suppose € (2,2*),0 < g(z) = g(|z|) € L (B) — {0} andllgHL%(B) < Gy,
2
then

(i) there exista, b > 0 ande € My % (B) with lell .4 g, > bsuch that
2,0

I(u) > a > Owith [lul| .5 =bandl,(e ) < 0forall y € [3,1],

20

(ii) for any . € [3, 1], we have

¢p = Inf max Lu(v(t)) > max{1,(0), Iu(e)},

where

r— {7 e C([0,1), HEE (B)) : 7(0) = 0,4(1) = }
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ProOF: (i) Sincel,(u) > I;(u) forall u € Héog (B) andp € [3,1], by Lemma 3.1 there exist
a,b > 0, which are independent of € [1, 1], such that/; (u) > a > 0 with HuHHL% = b. Take

2
2,0
0<we Hég (B), V¢ > 0 settinguw;(z) = t*w(tz) wheres € (0, c0). Since2 + 2 < p < 2*, there
existsty > 0 large enough such that for alle [3, 1],

t35+2 2 dxl tgs 2 dl'l
IH(’UJtO) S 9 /|VBUJ‘ l.ldl',+2/w ?ldxl

B B

the d
- 0/|w|P”“dx’ <0, (4.2)
p 5 x1

which is independent gf € [%, 1]. Takee = wy,, hence (i) is valid.
(ii) By the definition ofc,,, we have for all € [3, 1],
¢y =>c1>a>0.
Sincel,,(0) = 0 and,(e) < 0 for all u € [, 1], we see that (ii) is valid. O
By Theorem 4.1 and Lemma 4.2, there exjs}sc [3, 1] such that
(i) pj — 1asj — o0,
(i) I,; has a boundeﬁ’S—sequenceﬂZ at the levek,,; .

n 0,2 2 .
Since the embeddin@{;ﬁ B) — H,5(B) = Ly (B) for 2 < p < 2%, is compact, for each
J € N, there exists;; € H;g (B) such that:, — u; strongly inH;f (B) asn — oo. u; is a solution
of problem 4.1 withy = 1;. Moreover, we have

0<a<lI(uj)=cy < c1 and ILj(uj) =0, forall j € N. (4.3)

Lemma4.3 — Under the condition of Theorem X 2;} is a bounded (PS)-sequence of functional

PROOF: Let I(u;) — ¢, [[I'(uj) — 0, wherel’(.) is the FEchet differentiation, and

HH;,é"%)

Hié’_% (B) the dual space df(éog (B), and

oy @20

H _1’_77,
Moo 2(B)  pecse(B) ||90HH1,%
2,0

17" (u) :
¢ ®)

First we show thafu;} is bounded mH;(? (B). In fact, if we assume th&tu; } is non-bounded

in H;g (B), by Poincaé inequality, the norm 01-{;05 (B) is equivalent to the norrﬂVBujHL?(B),
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thus we have

HvBujHL?(B) — 400 as 7 — +oo.

Letv; = W then,||VijHL%(B) = 1, which means); being bounded még (B),i.e.,
L3 ®) 2

n

there exist € H;Of (B), and a subsequeneg, , such that

n

. 1,5
vy, — v in Hy's (B).

Here, for simplicity, we still denote;, , by v;, then fromHI’(u])H g 0 we know that
2 ,0
foranyy € C5°(B),

/VBujVBgocfldx/ + /u]godmldx —/|uj|p_2u]g0d$1dx
B 1 B

dxrq
= [o@p s+ ol g (.4
B 20 (B)
and then
/vBUjVBS@dxldl“’ + /vj¢dmdx'/|u3'|p_2vj¢cmdx’
B X1 B 1 5 I
dx /
- Jog@ettda’ +o(D)lell 5 o .
Vel t e
i.e.,
dzry dry d
/Vavjvscpdx +/B ]cp—dm _/uj‘p 2%90 961d "= o(1). (4.6)
FromI(u;) — cwe know
d od d d
/'VBWIQ ol / e ’—/l wl e ’—/ (@) P! +0(1) +
1
that means
1 del Qd.’El 1 9 del
2/|VBUJ| P +2/ i ,_p/’ujp |vj] - ——da’ = o(1). 4.7)
B B B

Takey = v; in (4.6), then we have

d d d
/|VBUJ-|2:Ulda:'+/v]2~xld:c'—/|uj|p_2]vj2wldaz'zo(l). (4.8)
I I I
B B

B
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From(4.7) and(4.8) obtain thatp = 2, which contradicts with the assumptipr> 2. Therefore
{u;} is bounded inH;’ﬂ(IB%) Thus there exist;; € Héog (B) and a subsequence, which still denotes
by u;, such thatu; — wuy in H2 ( ). We want to prove thati; — wu; in H;Og (B). According to
definition of the norm spacH2 2 (B) we have

luj —wll, 1.3
Hy ' (B)

~ ||VBU]' — vBulHLQ%(B)'

Then, by 1.4 we can obtain

~ L 2 Tor N T/ A
i = o~ Vo= ol < (F(0) = I'). g = )
2 dxl
+ \u]\p wj — [ur]P"%ur) (uy —ul)m—ld:ﬂ (4.9)
B

Sinceu; — u; in H;o% (B), "I,(“j)‘|u2‘;"%(a) — 0, andC3°(B) is dense ier;’(? (B), we can

deduce thatl’(u;)—I'(u1),uj—u1) — 0asj — +o0. So from Proposition 2.6, we havg — u; in
n(p—1)

Lg (B), thatis,|u;|P2u; — |us[P2usin L, * (B). Therefore, one can imply bydtder inequality

_ _ dx
[t = a2y ) e
B
_ _ dx
< [l = Pl — ] S
B
< i P2y — [P w]] ween  [Juj —w
L e s

n

Henceu; — uy in L} (B), implies that

U — U n =~ ||Vgu; — Veuill = —0 as j — +oc0.0
([ 1”71;02(5) |Veu; — Vg 1||L22(B) J

PROOF OFTHEOREM 1.2 : From Lemma 4.3, we proved th@i;} is a (P.S)—sequence of the
functional I,. Moreover, it implies from compactness of the embedding mapping (see Proposition
2.6)

n

Hyi(B)— Li(B)  2<p<?2,

)

that there exists a solutian for which I(u1) > 0. Finally, one can obtain the statement of Theorem
1.2 in combining of Theorem 4.1.
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5. A UNIQUE SOLUTION FOR FUCHSIAN-POISSONEQUATION

In this section, we aim to prove that problem 1.1 admits exactly one solutigno2. In this case,
problem 1.1 reduces to the Fuchsian-Poisson equation as follows:

(5.1)

—Agu = g(x) x € intB,
u=0 x € OB

In order to prove the existence and uniqueness of weak solution problem 5.1 we apply some
fundamental results about functional calculus in [6].

PROOF OFTHEOREM 1.3 : Consider the functionaIH;:O% (B) — R defined as

1 d d
I(u) = 2/\V5u|2;1da:’—/g(x)uzld:r
B

x1
B
We know that! is differentiable orH;:O% (B) such that

(I'(u) /VBuVBvddm —/g(x)vdxldac’.
B

r1
. 1,2 .
For arbitraryu, v € H, 5 (B) thatu # v, we can obtian

(I'(u) = I'(v))(u—v) = /B(vBu — Vgv)(Vau — va)@d '

d.Tl
— \V4 — )P0 dy = lu— n > 0. 5.2
[ 19a =) 5 = = ol 52)

Therefore,l is strictly convex by Proposition (1.5.7) in [6]. By Poinéaaind Hblder inequality,

we get

1 2d$1

> —_— n n

1) = 5 [ Vel Sda’ = gl g gl 3

B
1 2

> = n — .

> g o = ConCillull, (5.9

2,0

whereCe,;, is the embedding constant a6l is given by 1.5. According to 5.3, one can get

I —oo as full g = oo
that is, the functional is coercive. By Theorems (1.5.6) and (1.5.8) in [Bhdmits a unique global

minimum. Hence, the proof is complete.
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