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The limit q-Bernstein operatorBq comes out naturally as the limit for the sequence ofq-Bernstein

operators in the case0 < q < 1. Alternatively, it can be viewed as a modification of the Szász-

Mirakyan operator related to the Euler distribution. In this paper, a necessary and sufficient

condition for a functiong to be an image of an entire function underBq is presented.
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1. INTRODUCTION

The limit q-Bernstein operator emerges as a limit for the sequence of theq-Bernstein operators in the

case0 < q < 1, see [2] and [9]. Later, Wang showed in [11] that the same operator is the limit for

the sequence ofq-Meyer-König and Zeller operators. The approximation properties of this operator

as well as its connections with other disciplines have been studied. See, for example, [3, 5, 7, 8, 10].

To begin with, let us recall some notions related to theq-calculus (see, e.g., [1], Ch. 10). We use

the following standard notations:

(a; q)0 := 1, (a; q)k :=
k−1∏

s=0

(1− aqs), (a; q)∞ :=
∞∏

s=0

(1− aqs), a ∈ C, q ∈ (0, 1).

The function

ψq(z) := (z; q)∞, 0 < q < 1, z ∈ C (1.1)

is an entire function satisfying the Euler Identities below (cf. [1], Ch. 10, Cor. 10.2.2):

ψq(z) =
∞∑

k=0

(−1)kqk(k−1)/2

(q; q)k
zk, (1.2)
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1
ψq(z)

=
∞∑

k=0

zk

(q; q)k
, |z| < 1. (1.3)

Definition 1.1 — Givenq ∈ (0, 1), the limit q-Bernstein operatorBq : C[0, 1] → C[0, 1] is

defined by:

(Bqf)(x) :=

{
ψq(x) ·∑∞

k=0
f(1−qk)
(q;q)k

xk, if x ∈ [0, 1),

f(1), if x = 1.
(1.4)

For eachf ∈ C[0, 1], the functionBqf admits an analytic continuation from[0, 1] to the open

unit disc{z : |z| < 1}. In general, it may not have an analytic continuation into a wider disc. The

possibility of such a continuation is discussed in [6] in detail, showing that (1.4) can be extended as an

entire function wheneverf is infinitely differentiable at1. If f itself admits an analytic continuation as

a transcendental entire function, then, by Theorem 4.2 of [6] its image underBq is an entire function

whose growth is strictly slower than that off ; while the image of a polynomial is a polynomial of the

same degree. In this article, some elaboration of these results will be presented.

2. PRELIMINARIES

Denote byE[0, 1] the set of (complex-valued) functions on[0, 1] which admit analytic continuations

from {1− qk}∞k=0 as entire functions. Wheneverf ∈ E[0, 1], we denote its analytic continuation into

the complex plane byf(z), z ∈ C.

Further, it should be mentioned that formula (1.4), along with identity (1.2), leads to an alternative

representation ofBqf in the form:

(Bqf)(x) =
∞∑

k=0

qk(k−1)/2f [0; 1− q; . . . , 1− qk]xk, |x| < 1, (2.1)

wheref [x0, . . . , xk] denotes thek-th order divided difference off with k+1 distinct nodesx0, . . . , xk.

Notice that the power series representation:

(Bqf)(z) =
∞∑

k=0

qk(k−1)/2f [0; 1− q; . . . , 1− qk]zk, (2.2)

is valid in every disc{z : |z| < r} where(Bqf)(x) has an analytic continuation. Iff is an analytic

function, then the following equality is true:

f [x0; x1; . . . ; xk] =
1

2πi

∮

L

f(ζ) dζ

(ζ − x0) . . . (ζ − xk)
, (2.3)

whereL is a contour encirclingx0, . . . , xk andf is analytic on and inside ofL (cf., e.g. [4],§2.7, p.

44).
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In the sequel, the following notation will be used: wheneverf(z) is an entire function, we denote:

Mf (r) := max
|z|≤r

|f(z)|.

It has been proved in [12] that, forψq(z) and someC1, C2 > 0, r > r0, the next estimate holds:

C1 exp
{

ln2 r

2 ln(1/q)
+

ln r

2

}
≤ M(r; ψq) ≤ C2 exp

{
ln2 r

2 ln(1/q)
+

ln r

2

}
. (2.4)

This implies immediately thatψq(z) is an entire function of order 0. In the forthcoming section,

some properties of the imageBqf, wheref ∈ E[0, 1] will be discussed. In this case, one may also

say thatBqf is animage of an entire function underBq.

3. IMAGES OFENTIRE FUNCTIONS UNDER Bq

It can be derived from (2.2) that iff ∈ E[0, 1], thenBqf is an entire function. See also [6, Lemma

2.1 and Theorem 4.2]. On the other hand, the following simple statement shows that every entire

function can be viewed as an image of a continuous function underBq.

Lemma3.1 — If g is an entire function, theng = Bqf for somef ∈ C[0, 1].

PROOF : The Euler Identity (1.3) implies that constant functions are fixed points forBq, i.e.

Bqc = c for all c ∈ C. Therefore, without loss of generality one may assume thatg(1) = 0. Since

g(z) is entire andg(1) = 0, one can observe that

h(z) :=
g(z)
1− z

=:
∞∑

k=0

akz
k

is also an entire function, whence

g(z)
ψq(z)

=
h(z)

ψq(qz)
=:

∞∑

k=0

bkz
k (3.1)

is analytic in{z : |z| < q−1} by virtue of (1.3). Equality (3.1) implies that

g(z) = ψq(z)
∞∑

k=0

bkz
k, |z| < q−1.

Since{bk} → 0, it follows that there isf ∈ C[0, 1] satisfyingf(1 − qk)/(q; q)k = bk, k ∈ N0.

Theng(z) = (Bqf)(z), as stated. 2

The next theorem provides a necessary and sufficient condition forg to be an image of an entire

function.
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Theorem3.2 — Let g(z), z ∈ C be entire. Theng = Bqf for an f ∈ E[0, 1] if and only if the

following condition holds:

∀ε > 0 ∃C = Cε > 0 : Mg(r) ≤ Cψq(−εr), r > r0. (3.2)

PROOF : (i) Assume thatg = Bqf, f ∈ E[0, 1]. Theng(z) admits representation (2.2) for all

z ∈ C. To estimate the coefficients in (2.2), notice that by virtue of (2.3), one has:

∣∣∣f [0; 1− q; . . . , 1− qk]
∣∣∣ ≤ Mf (r)

(r − 1)k
for all r > 1,

where, as before,f(z), z ∈ C denotes an analytic continuation off .

Givenε > 0, let us setr = 1 + 1/ε and obtain:

Mg(r) ≤ Mf (1 + 1/ε)
∞∑

k=0

qk(k−1)/2(εr)k

≤ Mf (1 + 1/ε; f)
∞∑

k=0

qk(k−1)/2 (εr)k

(q; q)k
=: Cεψq(−εr),

as stated.

(ii) Whereasg is entire, Lemma 3.1 guarantees that there existsf ∈ C[0, 1] satisfyingg = Bqf.

Suppose that for everyε > 0, condition (3.2) holds. As the Taylor series ofg is given by (2.2), one

has by the Cauchy estimates:

ak := qk(k−1)/2f [0; 1− q; . . . , 1− qk] ≤ Mg(r)
rk

≤ Cε
ψq(−εr)

rk
= Cεε

k ψq(−εr)
(εr)k

, r > 0.

This implies that

ak ≤ Cε,f εk min
t>0

ψq(−t)
tk

≤ Cε,fεk ψq(−q−k)
q−k2 = Cε,fεkqk2

∞∑

j=0

qj(j−1)/2 q−kj

(q; q)j
,

whence

ak ≤
Cε,f

(q; q)∞
εkqk2/2

∞∑

j=0

q((j−k)2−j)/2. (3.3)

To estimate the sum of the series in the right-hand side, we write:

∞∑

j=0

q((j−k)2−j)/2 =
k∑

j=0

q((j−k)2−j)/2 +
∞∑

j=k+1

q((j−k)2−j)/2



IMAGES OF ENTIRE FUNCTIONS UNDER THE LIMITq-BERNSTEIN OPERATOR 209

=
k∑

j=0

q(j2+j−k)/2 +
∞∑

j=1

q(j2−j−k)/2 ≤ 2q−k/2
∞∑

j=0

q(j2−j)/2 =: 2Cq−k/2.

As a result, one obtains:

ak ≤ Cεε
kqk(k−1)/2

and, consequently, the following inequality holds:
∣∣∣f [0; 1− q; . . . , 1− qk]

∣∣∣ ≤ Cεk, k ∈ N0. (3.4)

Consider the Newton series:
∞∑

k=0

f [0; 1− q; . . . , 1− qk]z(z − (1− q)) . . . (z − (1− qk)). (3.5)

It can be derived with the help of (3.4) that
∣∣f [0; 1− q; . . . , 1− qk]z(z − (1− q)) . . . (z − (1− qk))

∣∣
≤ C[ε(|z|+ 1)]k, whence (3.5) converges for{|z| < 1/ε− 1}. As ε > 0 has been chosen arbitrarily,

it follows that (3.4) defines an entire function, sayf̃(z) satisfyingf̃(1− qk) = f(1− qk) and, hence,

f ∈ E[0, 1]. 2

Generally speaking, Theorem 3.2 supplies a necessary and sufficient condition for an entire func-

tion g to be an image of an entire functionf in terms of the growth estimate forg. The following

result can be derived as immediate consequence of Theorem 3.2.

Corollary 3.3 — An entire functiong is an image of an entire function underBq if and only if the

following estimate holds:

∀α > 0, Mg(r) · exp
{
− ln2 r

2 ln(1/q)

}
= O

(
r−α

)
, r → +∞. (3.6)

PROOF : It follows from (2.4) that

ψq(−εr) = Mψq(εr) ≤ C exp
{

ln2 r

2 ln(1/q)
+

(
ln ε

ln(1/q)
+

1
2

)
ln r

}
.

Therefore,g is an image of an entire function if and only if

∀ε > 0, ∃Cε > 0 : Mg(r) · exp
{
− ln2 r

2 ln(1/q)

}
≤ Cε exp

{(
ln ε

ln(1/q)
+

1
2

)
ln r

}
.

Now, let us have an arbitraryα > 0. Settingε = qα+1/2 yields:

Mg(r) · exp
{
− ln2 r

2 ln(1/q)

}
≤ Cαr−α for some Cα > 0.2
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