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The limit g-Bernstein operataB, comes out naturally as the limit for the sequence-8ernstein
operators in the case< ¢ < 1. Alternatively, it can be viewed as a modification of theaSz-
Mirakyan operator related to the Euler distribution. In this paper, a necessary and sufficient
condition for a functiory to be an image of an entire function undey is presented.
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1. INTRODUCTION

The limit g-Bernstein operator emerges as a limit for the sequence gf Bernstein operators in the
casel) < ¢ < 1, see [2] and [9]. Later, Wang showed in [11] that the same operator is the limit for
the sequence af-Meyer-Konig and Zeller operators. The approximation properties of this operator
as well as its connections with other disciplines have been studied. See, for example, [3, 5, 7, 8, 10].

To begin with, let us recall some notions related togkmalculus (see, e.g., [1], Ch. 10). We use
the following standard notations:

k—1 00
(@@o:=1, (@qk:=][[(01-0ag’), (a9 :=][(1—ag’), aeC, qe(0,1).
s=0 s=0
The function
Yg(2) = (21@)o0s 0< g <1, z€C (1.2)

is an entire function satisfying the Euler Identities below (cf. [1], Ch. 10, Cor. 10.2.2):

Yq(2) = Z

(_l)qu(kfl)/Z
=0 (4 D

2~ (1.2)
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—szfi G 2] < 1. (1.3)
be(2) = @Gk

Definition 1.1 — Giveng € (0, 1), the limit g-Bernstein operatoB, : C[0,1] — C[0,1] is
defined by:

o —q* .
V(@) - ko fg;;q)qk)xk, if x €10,1),

1.4
F(1), if 2 =1. (4

(Byf)(@) = {

For eachf € C]0, 1], the functionB, f admits an analytic continuation froffi, 1] to the open
unit disc{z : |z| < 1}. In general, it may not have an analytic continuation into a wider disc. The
possibility of such a continuation is discussed in [6] in detail, showing that (1.4) can be extended as an
entire function whenevef is infinitely differentiable al. If f itself admits an analytic continuation as
a transcendental entire function, then, by Theorem 4.2 of [6] its image uhderan entire function
whose growth is strictly slower than that ffwhile the image of a polynomial is a polynomial of the
same degree. In this article, some elaboration of these results will be presented.

2. PRELIMINARIES

Denote byE |0, 1] the set of (complex-valued) functions @n 1] which admit analytic continuations
from {1 — q’f}z‘;0 as entire functions. Whenevére E[0, 1], we denote its analytic continuation into
the complex plane by(z), z € C.

Further, it should be mentioned that formula (1.4), along with identity (1.2), leads to an alternative
representation oB, f in the form:

(Bef) (@) =Y _¢"FD2fl0;1 — g5 1= gFlab, 2] < 1, (2.1)
k=0
wheref|[zo, . . ., x| denotes thé-th order divided difference of with k+1 distinct nodescg, . . . , k.

Notice that the power series representation:

(Bef)(2) = d" V01— g5 1= ¢M2F, (2.2)
k=0

is valid in every disd(z : |z| < r} where(B, f)(z) has an analytic continuation. ffis an analytic
function, then the following equality is true:

1 f(¢)d¢
3Ly = — , 2.3
Flwo 2 & 2mi 7{; (C—x0)...(C—zk) (2:3)
where, is a contour encirclingy, . . ., xx and f is analytic on and inside of (cf., e.g. [4],5§2.7, p.

44).
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In the sequel, the following notation will be used: whenefer) is an entire function, we denote:
My(r) == max | f(2)].

|z|<r

It has been proved in [12] that, fgr,(z) and some&”;, Cy > 0,7 > 19, the next estimate holds:
In?r Inr

In?r Inr
CleXP{an(l/q)Jr2} < M(rithg) < CQeXp{mn(l/q) +2}

This implies immediately thap,(z) is an entire function of order 0. In the forthcoming section,

(2.4)

some properties of the imagde, f, wheref € E[0, 1] will be discussed. In this case, one may also
say thatB, f is animage of an entire function undés,.

3. IMAGES OFENTIRE FUNCTIONS UNDER By

It can be derived from (2.2) that jf € E[0, 1], thenB, f is an entire function. See also [6, Lemma
2.1 and Theorem 4.2]. On the other hand, the following simple statement shows that every entire
function can be viewed as an image of a continuous function uBger

Lemma3.1 — If g is an entire function, theq = B, f for somef € C[0, 1].

PrRooOF: The Euler Identity (1.3) implies that constant functions are fixed points3fgri.e.
Byc = cfor all ¢ € C. Therefore, without loss of generality one may assume ghiat = 0. Since
g(z) is entire angy(1) = 0, one can observe that

h(z) := 19(_Zl =: Zakzk
k=0

is also an entire function, whence

o) _ ) SN,
Vo(2)  Wglgqz) kzobk (3.1)

is analytic in{z : |z| < ¢~} by virtue of (1.3). Equality (3.1) implies that

9(2) = g(2) > bpa®, |2z] < g7t
k=0

Since{b,} — 0, it follows that there isf € C[0, 1] satisfyingf(1 — ¢*)/(¢;q)x = bx, k € No.
Theng(z) = (B, f)(z), as stated. 0

The next theorem provides a necessary and sufficient conditigntéobe an image of an entire
function.
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Theorem3.2— Letg(z), z € C be entire. Thery = B, f for an f € E[0,1] if and only if the
following condition holds:

Ve >0 3C =C. > 0: My(r) < Cipg(—er), r > ro. (3.2)

PrROOF: (i) Assume thay = B, f, f € E|0,1]. Theng(z) admits representation (2.2) for all
z € C. To estimate the coefficients in (2.2), notice that by virtue of (2.3), one has:

My(r)
(r—1)k

where, as beforef(z), z € C denotes an analytic continuation pf

f[O;l—q;...,l—qk] < for all r > 1,

Givene > 0, letus setr = 1 + 1/¢ and obtain:

My(r) < My(1+1/e) Y g" D2 (er)t
k=0

k
qk(kl)/2((;7;]))k =: Caby(—er),

NE

< My(1+1/g; f)

>
I

0
as stated.

(77) Whereagy is entire, Lemma 3.1 guarantees that there eXistsC'|0, 1] satisfyingg = B, f.
Suppose that for every > 0, condition (3.2) holds. As the Taylor series@fs given by (2.2), one
has by the Cauchy estimates:

TS qk(kfl)/Zf[O; 1—¢q;...,1— qk} < Mg(r) < Cq wq(—sr) = CgskL(_ET), r > 0.
rk rk (er)k

This implies that

(Ik<05f5 H1>161 tk <C€f k qq 2 :Cefz’;‘qu ZQJ(J 1)/2( :

whence

o < (qu _k k2/2zq ((i-k)2=3)/2 (3.3)

To estimate the sum of the series in the right-hand side, we write:

k

iq«jfk)%‘)/z S =R/ Z /2
§=0

7=0 j=k+1
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k oo 0
_ Zq(j2+j—k)/2 + Zq(jQ—j—k)ﬂ < 2q /2 Zq(j2—j)/2 =:20q /2.
=0

J J=1 J=0

As a result, one obtains:
a < Caequ(k—l)/Q

and, consequently, the following inequality holds:

)f[O;l—q;...,l—qk] < Ce*, ke N. (3.4)

Consider the Newton series:

S 01 =g 1=z — (1—q)... (= (1= ¢)). (3.5)
k=0

It can be derived with the help of (3.4) tHe{0; 1 — ¢;..., 1 — ¢F]z2(z = (1 —q)) ... (z — (1 — ¢"))|
< C[e(|z] + 1)]*, whence (3.5) converges féfz| < 1/ — 1}. Ase > 0 has been chosen arbitrarily,
it follows that (3.4) defines an entire function, i) satisfyingf(1 — ¢*) = f(1 — ¢*) and, hence,
f e E[0,1]. 0
Generally speaking, Theorem 3.2 supplies a necessary and sufficient condition for an entire func-
tion g to be an image of an entire functighin terms of the growth estimate fgr The following
result can be derived as immediate consequence of Theorem 3.2.

Corollary 3.3 — An entire functiory is an image of an entire function undgy, if and only if the
following estimate holds:

2
Va >0, My(r) - exp {—211111(1;(])} =0 (r %), r — +oo. (3.6)

PrROOF: It follows from (2.4) that

In?r Ine 1
— =M < — 1 .
bg(—er) = My, (er) < Cexp{mn(l/q) + (ln(l/q) + 2) nr}
Thereforeg is an image of an entire function if and only if

In? 1 1
Ve > 0,3C: > 0: Mg(r)-exp{ DT} SC’Eexp{<n€+2) lnr}.

~ 2In(1/g) In(1/q)
Now, let us have an arbitrary > 0. Settinge = ¢®+1/2 yields:

In?r

—— ' Lo f o> 0.0
21n(1/q)}_cr or some C, >0

M,(r) - exp {
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