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Introduction

Many real life structural components such as
aerospace structural components, ship hull structures,
off shore structural components are subjected to
fatigue loading. These components contain internal
defects such as cracks, inclusions, voids which are
developed during manufacturing stage or at service
stage. The main function of a stiffener is to improve
the strength and stability of the structure and to slow
down or arrest the growth of cracks in the component.
Remaining life prediction of the cracked structural
components in these structures is necessary for their
in-service inspection & scheduling, planning, repair,
retrofitting, rehabilitation, requalification and health
monitoring. It is highly recommended to use the
damage tolerant design concepts for designing
structural components. Damage tolerant design is
based on the information about the effect of cracks

on the residual strength/remaining life of the
structure.Practically, for all the high strength materials
employed in the construction of above structures/
components, damage tolerant analysis can be
performed using linear elastic fracture mechanics
(LEFM) principles, in which case, SIF is the
influencing design parameter. In general, it is difficult
to quantify SIF for most of the practical applications.
For simple geometries, SIF can be calculated by using
handbooks (Rooke and Cartwright 1976; Murakami,
1988). There is a need to evolve efficient
methodologies for computation of SIF and to provide
an integrated approach that would include fatigue
crack growth models for remaining life prediction.
During the last four decades, a great deal of research
(Poe, 1971; Chu et al., 1982; Ghassem and Rich, 1933;
Wen et al., 2000, 2003; Saves et al., 2001; Dexter
and Pilarsk, 2002; Taheri et al., 2003; Mahmoud and
Dexter, 2005; Rama Chandra Murthy et al., 2007;
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Liu et al., 2012; Hosseini et al., 2013) has been
dedicated to the development of numerical/analytical
methods for computation of SIF for stiffened and
unstiffened plate panels subjected to uniaxial tensile
stresses.

The field of fracture mechanics is
interdisciplinary requiring information from non-
destructive techniques (NDT) to determine the size
of possible pre-existing cracks, mechanical testing to
determine fracture toughness of the material and stress
analysis to determine the relevant fracture parameters
required for the crack to grow (Zheng, 2001; Schijve,
2003). Work on NDT and the determination of fracture
toughness are primarily experimental in nature
whereas numerical techniques are the most preferred
for stress analysis. Output of the stress analysis of
cracked structures is essentially used in post-
processing stage to evaluate the well-known fracture
parameters (Vasudevan et al., 2001; Broek, 1982)
such as (i) SIFs, (ii) SERR and (iii) J-integral, in the
realm of LEFM.

Among the various numerical techniques used
for stress analysis, the finite element method (FEM)
has evolved over the past 25 years as the most
powerful numerical technique for the solution of solid
mechanics problems (Zienkiewicz and Taylor, 2000).
In recent years attention has been focused to study
the fatigue and fracture behavior of complex structural
components using FEM. Computation of SERR and
SIF is a post-processing approach to finite element
analysis (FEA). Advances in finite element (FE)
technology with high performance computing have
significantly improved the field of fracture mechanics.
Number of software have been developed for fatigue
and fracture analysis of structural components based
on FEM. Some of the popular public domain and
commercial software used for conducting fatigue and
fracture analysis are: ZENCRACK, pc-CRACK,
AFGROW and NASGRO.

Modelling of moving discontinuities (cracks) in
finite element framework is a difficult task because
of the need to update the mesh at each step as the
crack propagates. A very fine mesh is required near
the vicinity of the crack and mesh need to be
conforming to the sides of the crack. Also the
singularity at the crack tip must be accurately
represented (Tong et al. 1973) Another way of
handling discontinuities such as cracks is to model

the crack, which is independent of the mesh. XFEM
is one of the advanced numerical methods for fracture
analysis of structural components. XFEM can be used
to add discontinuous enrichment functions to the
original finite element approximation (Belytschko et
al., 1999; Moes et al., 1999; Dolbow et al., 2000)
through the partition of unity (Melenk and Babuska,
1996). Automatic crack propagation can be obtained
by properly implementing XFEM algorithms.

This paper presents an overview of the
advanced methodologies for fracture analysis and
damage tolerant evaluation of structural components.
The novel contributions presented in this paper include:

 NI-MVCCI technique for fracture analysis

 XFEM for stiffened panels

 Improved Wheeler residual stress model to
account for retardation effects due to overload

 Residual strength evaluation using remaining life
approach

Formulation of NI-MVCCI Technique (Palani et
al., 2004)

The derivation of element dependent MVCCI
expressions for computing SERR for mode I and II
cracks (GI and GII) for 4-noded element, 8-noded
element and 8-noded QPE involves evaluation of
constants used in the polynomial assumed to represent
displacement and stress variation and evaluation of
many integrals having polynomial terms. As mentioned
earlier, the derivation of MVCCI expressions becomes
a tedious exercise for higher order 2-D (such as 12-
noded singular) and 3-D (such as HEXA20 and
HEXA27) finite elements. One of the main objectives
of NI-MVCCI technique is to overcome this tedious
exercise by involving numerical techniques for
computation of the constants and to evaluate CCI for
GI and GII. NI-MVCCI is generalized technique and
is independent of the type of finite element employed.
Consider a typical FE mesh at the crack tip as shown
in Fig. 2. The procedure for evaluating MVCCI for
mode I and II cracks in 2-D problems using numerical
techniques is explained. For mode I crack, SERR (GI)
can be evaluated by multiplying the stress distribution
along OA (ahead of crack tip) with the corresponding
COD distribution along OB (behind crack tip) and
integrating this product over Da.
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For evaluation of SERR for mode I crack (GI)
the stress distribution on the crack extension line OA
is expressed in terms of the nodal forces Fy, j, Fy,(j+1),
etc. acting at the nodes j, (j+1), etc. respectively.
COD distribution along OB is expressed in terms of
the nodal values at j, (j–1), (j–1)’, etc. SERR for
mode I crack (GI) is derived by evaluating the energy
required to close the crack over a lengtha in terms
of these nodal forces and displacements. The shape
functions for elements 1 and 2 along OB can be
obtained by substituting  = –1, in the respective
element shape functions. Let these shape functions
be Ni. Let COD which is the difference between y
displacement between the top and bottom faces be
designated as Uy in the discussion in this section.
Similarly crack shearing displacement be designated
as Ux. COD distribution along OB can be expressed
in terms of nodal displacements {(Uy)i} as

Uy = [Ni] {(Uy)i}      i = 1, …. n (1)

where n is the number of nodes on the edge OA or
OB of the element. Consistent with the isoparametric
formulation, coordinate of any point X(x, y) is given
by

X = [Ni] {(X)i} i = 1, …. n (2)

where {(X)i} are the nodal coordinates. Eq. (2) thus
provides the transformation between the global and
natural coordinate system. Consistent with the
element shape functions, COD variation along OB
can be expressed as function of ’ as

( 1)
0 1 ( 1)( ') a a ..... a' ' n

y nU   
   (3)

where ( )yU    is a polynomial of order (n–1). The
constants a0, a1, …, a(n–1) can be evaluated by
matching the displacement conditions at the nodes j,
(j–1),….,(j–n+1) in element number 1. A set of
simultaneous equations of order n is formed, which
can be solved for obtaining the constants a0, a1,….,
a(n–1). Again referring to Fig. 5 and considering
element number 2, stress (y) distribution along OA
can be expressed as a function of 

y() = b0 + b1 +… b(n–1)
(n–1) (4)

where y() is a polynomial of order (n–1). The
constants b0, b1, …., b(n–1) can be computed by
matching the nodal forces with the derived consistent
load vector from FE analysis. The nodal forces Fy, j,
Fy,(j+1), …, Fy,(j+n–1) shown in Fig. 2 are the forces
exerted at nodes j,  (j+1), …, (j+n–1) by the structure
below OA on the structure above OA. In FEA, these
forces are obtained by adding the contributions of the
forces at nodes j, (j+1), …, (j+n–1) from the elements
on the edge above OA. These forces should be
consistent with the stress distribution given in eqn (4),
which can be expressed as

a

[ ] ( )T
i i yF N dx 



     i = 1,  .n (5)

where Ni are the shape functions of the respective
element obtained by substituting  = –1. By using the
transformation between the global and natural
coordinate system (eqn (2)), the basis can be shifted
from ‘dx’ to ‘d’. The integrals given in eqn (12) can
be evaluated by numerical integration technique with
suitable order. In the present study, Gauss integration
technique has been employed with different integration
rules. By substituting the expressions for COD and
y stress variations given by eqns (3) and (4)
respectively in CCI, GI can be expressed as

a 0
a

1

2 a
( ) ( )I y yG ULt dx  

 





 (6)

Similarly crack shearing displacement ( ')xU

and xy distributions can be developed and GII can be
expressed as

a 0
a

1

2 a
( ) ( )II xy xG ULt dx  

 





 (7)

Fig. 1: Structural integrity assessment diagram

Strength of
materials behaviour
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The integrals given in Eqs. (6) and (7) can be
performed by numerical integration technique. The
numerical integration has to be carried out in two
stages: One for evaluating the constants in y (or xy)
distributions in terms of the nodal forces Fy (or Fx) in
Eq. (5) and the second to evaluate the integral for GI
(or GII) in eqn (6) (or eqn (7). In the present study,
Gauss integration technique has been employed in eqn
(6) with the same integration rule that is used for
evaluating Eq. (5).

It can be observed from Eqs. (1) to (7), the
proposed NI-MVCCI is a generalized technique and
is independent of the type of element, except for
assuming the expressions for displacement and stress
variation (Eqs. (3) and (4)). The order of polynomials
for displacement and stress variation can be assumed
to be consistent with the element shape functions along
the edge  = –1. NI-MVCCI technique explained
above can be easily implemented in any finite element
code which has 4-noded, 8-noded (regular and quarter-
point), 9-noded (regular and quarter-point) and 12-
noded (regular & singular) quadrilateral isoparametric
elements. However, some basic discussion on the
polynomials to be selected will be required for
implementation of NI-MVCCI technique for these
elements. These basic aspects for each of these
elements corresponding to Eqs. (8)-(14) are now
presented.

8-noded and 9-noded (regular) Quadrilateral
Elements

Shape functions (Ni) in eqns (1) and (5) along the
edge OB as shown in Fig. 2 (for the edge OA replace
   by ) can be obtained by substituting  = –1 in 8-
noded or 9-noded element shape functions

' ' ' '  1/2(1 )i i iN      for nodes with

   = ± 1 (8a)

 1/2(1- )  for node with    = 0        (8b)

Using the shape functions given in Eq. (8a), the
transformation between global and natural coordinate
system as given in Eq. (5) can be expressed as

( a / 2)(1 )x      (8c)

By substituting n = 3 in Eq. (3), COD variation
along OB can be assumed as

2
0 1 2( ') a a ' a 'yU      (8d)

By substituting n = 3 in Eq. (4), the stress
variation along OA can be assumed as

2
0 1 2b b b( )yy     (8e)

Displacement and force conditions for
evaluating the constants a0, a1, a2 and b0, b1, b2 can be
expressed as

Uy = 0 at   = –1; Uy = (Uy,(j–1)–Uy,(j–1))

at   = 0; Uy = (Uy,(j–2)–Uy, (j–2)’) at   = 1;

(8f)

Fy = Fy,j at  = –1; Fy = Fy, (j+1) at  = 0;

Fy = Fy,(j+2) at  = 1; (8g)

Referring to Fig. 2, the relation between    in
element 1 and  in element 2 can be expressed as
   = –.

8-noded and 9-noded QPE

Shape functions (Ni) in Eqs. (1) and (5) along the
edge OB as shown in Fig. 2 (for the edge OA replace
   by ) can be obtained by substituting  = –1 in 8-
noded QPE shape functions

' ' ' '  1/2(1 )i i iN       for nodes with

   = ±1 (9a)

'2 1/2(1- )iN   for node with    = 0        (9b)

Using the shape functions given in Eq. (9a), the
transformation between global and natural coordinate
system as given in Eq. (2) can be expressed asFig. 2: Typical FE mesh of crack tip region
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x = (a/4)(1+ ' )2 (9c)

By substituting n = 3 in Eq. (3) and accounting
for the quarter-point position of the mid-side node,
COD variation along OB can be assumed as

     20 1 2' a a 1 ' a 1 'yU        (9d)

In order to account for the singular stress
conditions represented by QPE, the stress variation
along OA can be assumed as

     0 1 2b 1 b b 1yy        (9e)

Displacement and force conditions for
evaluating the constants a0, a1, a2 and b0, b1, b2 can be
expressed as

Uy = 0 at '  = –1; Uy = (Uy,(j–1) – Uy,(j–1)’)

at '  = 0; Uy = (Uy,(j–2) – Uy,(j–2)’)

at '  = 1; (9f)

Fy = Fy,j at  = –1; Fy = Fy,(j+1) at  = 0;

Fy = Fy,(j+2) at  = 1; (9g)

Referring to Fig. 2 and accounting for the
quarter-point position of the mid-side node, the relation
between    in element 1 and  in element 2 can be
expressed as

   2 2
1 1 4     (9h)

XFEM for Fracture Analysis and Remaining Life
Prediction

In XFEM, the following approximation is used to
compute the displacement for the point x located
within the domain (Belytschko et al., 1999)

( )h FE enr u x u u

1 1

( ) ( ) ( )
n m

i k
i k

N N 
 

  i kx u x x a (10)

where ui is the vector of regular nodal degrees of
freedom (DOF) in FEM, n is the total number of nodes
in FE model, Ni shape function associated with node

i, ak is the added set of DOF to the standard FE model,
m is the number of enriched nodes and (x) is the
discontinuous enrichment function defined for the set
of nodes that the discontinuity has in its influence
(support) domain. The enrichment function (x) can
be chosen by applying appropriate analytical solutions
according to the type of discontinuity. The first term
on the right hand side of Eq. (10) is the classical FE
approximation to determine the displacement field,
while the second term is the enrichment
approximation, which takes into account the existence
of any discontinuities. The second term utilises
additional degrees of freedom to facilitate modelling
the existence of any discontinuous field, such as a
crack, without modelling it explicitly in the finite
element mesh.

When XFEM is applied to fracture mechanics
problems, displacement field is taken as (Moes et al.
1999).

1

( ) ( ) ( ) ( )
n

h
i j

i j J

N N H
 

  i ju x x u x x a

1 2

4 4
1 2

1 1

( ) ( )k l k l
k K l k K l

N F N F
   

             1 2
kl klx b x b

(11)

where, H(x) is the heaviside enrichment function
defined such that it equals 1 for all x above the crack
and –1 for all x below the crack as shown in Fig. 3
and aj is the heaviside enriched node. J is the set of
nodes, enriched with heaviside enrichment function,
whose nodal shape function support contain crack
but not crack tip.

Fig. 3:  Heaviside enrichment function definition

CRACK

CRACK EXTENSION

H(x) = H(x, y) = –1

H(x) = H(x, y) = 1
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Here k1 and k2 are the set of nodes, associated
with crack tips 1 and 2, whose element contain crack

tips respectively; 1 2b ,bkl kl , are vectors of additional

nodal DOF for modelling crack faces and the two
crack tips.

Typical flow chart for fracture analysis and
remaining life prediction is given in Fig. 4.

Modelling of Stiffeners in XFEM Domain

As the stiffeners are placed concentric and the applied
loading is tensile in nature, one can model the stiffeners
using truss elements. It is assumed that stiffeners are
continuous and are connected to the plate along the
nodes of the plate element modelled as bilinear

element. For example consider a square plate of side
L modelled using four bilinear elements of side l and
an edge stiffener using two node truss element as
shown in Fig. 5 (Nanda Kumar et al. 2016).

Fig. 4:  Typical XFEM flow chart for fracture analysis and
remaining life prediction

(A) (B)

Assuming that the Young’s modulus of stiffener
and Young’s modulus of panel is same and denoted it
as E and area of cross section of each stiffener as A.
The length of truss element is same as side of bilinear
element. Thus element stiffness matrix of truss
element is given as

1 1AE

1 1l
k





 
  

(12)

The global stiffness matrix of panel modelled
using four node bilinear element be Kp. Size of Kp
depends upon the location and position of the crack in
the panel. The assembled stiffness matrix of stiffeners
modelled as truss elements can be obtained as

(13)

(14)

where Kt1 and Kt2 are the assembled global stiffness
matrices of stiffener 1 and stiffener 2 respectively
each of size equal to Kp. Note that the matrices shown

Fig. 5: (A) Finite element model of plate using four node
bilinear element and (B) Finite element model of
stiffeners using two node truss element
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in Eqs. (13) and (14) are only sub matrices and the
values in other locations of matrices Kt1 and Kt2 are
zero

Thus the final stiffness matrix of panel and
stiffener is

K = Kp + Kt1 + Kt2 (15)

Similar lines, the final stiffness matrix of panel
and stiffener for various mesh discretizations can be
formulated.

Damage Tolerant Evaluation

Damage tolerant evaluation involves the techniques
for arriving at the residual strength diagram and the
crack growth diagram. From the residual strength
diagram, it is possible to determine the maximum crack
length that can be sustained safely. This information
is used in the crack growth diagram to find number of
loading cycles that will be necessary for the crack to
grow to its critical length. So, obviously damage
tolerant design requires reliable estimation of fatigue
crack growth.

Crack Growth Models

The crack growth models address the crack growth
behaviour by using SIF at crack tip. The amount of
crack advancement, a = af–ai, during N number
of cycles is described by SIF range associated with
maximum and minimum stress of each cycle (Kmax –
Kmin). The rate of crack growth, da/dN, in terms of
the crack tip SIF range, DK can be expressed as

a
( )

d
f K

dN
  (16)

The function f(K) can be obtained as a result
of experimental data and can then be utilized to solve
crack growth problems in which the structural part
has undergone the same loading conditions.

Models for Fatigue Crack Growth under Constant
Amplitude Loading (CAL)

Paris formulated the earliest relationship describing
crack growth behaviour. When a cracked structural
joint or component is subjected to cyclic loading, the
crack propagation rate, da/dN is governed by SIF
rangeK as for a standard through thickness cracked
specimen under constant amplitude fatigue loading,

 a pm

p

d
C K

dN
  (17)

where N is the number of cycles, C and m are
constants dependent on material property and are
determined from experimental data. Paris equation
does not take into account the crack growth behaviour
in threshold and unstable fracture regions. The other
popularly used crack growth models implemented are
Walker, Erdogan and Ratwani, Klesnil and Lucas,
Forman and Forman New-de-Koning. The details of
these models are presented by Rama Chandra Murthy
et al. (2004b).

Crack Growth Models for Variable Amplitude
Loading (VAL)

The effect of tensile overload has been reported by
many investigators (Rama Chandra Murthy et al.,
2004a). Single tensile overload introduce significant
crack growth delay depending on the overload ratio
(OLR). A superimposed single overload during CAL
is the simplest case of VAL. The application of single
overload will cause significant decrease in the crack
growth rate for a large number of cycles subsequent
to the overload. This phenomenon is referred to as
crack retardation. Since analytical modeling of crack
closure is very difficult, models based on yield zone
concept are generally employed in the analytical
investigation. It is well known that the widely used
Wheeler and Generalised Willenborg residual stress
models are based on yield zone concept assuming
that crack growth retardation is caused by
compressive residual stresses acting at the crack tip.
In the present studies, Wheeler model has been
employed to consider the retardation effects due to
overload. Brief description about improved Wheeler
model is given below (Ramachandra Murthy et al.,
2004a).

Improved Wheeler Residual Stress Model

This model assumes that the crack growth retardation
is caused by compressive residual stresses acting at
the crack tip. Wheeler employs the residual stress
retardation model to account for crack growth
retardation due to tensile overload (Fig. 6). The
development of Wheeler model begins with the basic
crack growth equation
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a
( )

d
f K

dN
  (18)

Since the load is discontinuous variable, the
crack growth can be computed using cycle-by-cycle
approach

1

a a ( )
N

n o i
i

f K


   (19)

where, an = final crack length after N cycles, ao=
initial crack lengthKi = stress intensity factor range
for cycle iTo account for crack growth retardation,
Wheeler introduced a retardation parameter, Cpi, Eq.
(19) then reduces to

a a ( )n o pi iC f K   (20)

The retardation parameter is calculated as shown
below

 
1

a a

m

p
pi

p

r
C

 
  

 
for (a + rp) < ap

= 1.0 for (a + rp) > ap (21)

where, rp = extent of current plastic zone (ap – a) =
distance from crack tip to elastic-plastic interface
(refer to Fig. 6) m1 = shaping exponent, which is

generally obtained through experiments. The value
of m1 depends on applied overload, crack size and
width of the plate.

Expressions have been proposed for evaluation
of shaping exponent m1 for various geometries
considering overload, crack size and width of the
plate. Details can be found in Ramachandra Murthy
et al. (2004a).

It is observed that Cpi is minimum immediately
after the application of overload, when (ap – a) has
its maximum value. As ‘a’ approaches ap, Cpi
increases.

Remaining Life Prediction

Remaining life for flat sheets/stiffened plates or tubular
joints can be estimated using any of the crack growth
models. The models give an empirical formula for da/
dN where dN is the increment in crack length and
dN is the corresponding remaining life. To estimate
the remaining life the following steps are followed:

1. The value of remaining life (N) is initialized to
zero at first.

2. The value of K for each crack length ai starting
with the initial crack length is calculated. The
calculation uses the value of aavg (= (ai+ai+1)/2)
for each computation.

3. The value of SIF corresponding to each of the
crack length is computed using the analytical
expressions/interpolation method described
earlier.

avgK = f (a)σ πa (22)

4. The value ofK is calculated for crack growth
models other than Walker using appropriate
formula. In case of Walker model the value of
Kmax is calculated.

5. Apply the retardation model if needed.

6. The value of K or Kmax is passed to the
function that calculates the value of dN provided
K or Kmax is greater than the Kth of the
material. The function returns value of dN. This
value is added to the existing value of remaining
life (N).

Fig. 6: Wheeler residual stress model
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m

da
dN =

C(ΔK) (23)

7. The values of crack length, SIF and N are
written to a file for plotting graphs.

8. Steps 2 to 5 are repeated until the crack length
becomes critical.

Residual Strength Evaluation

Residual strength (remaining strength under the
presence of crack) can be computed by using

(i) plastic collapse condition or yield criterion

(ii) Fracture toughness criterion and

(iii) Remaining life approach.

First two approaches are well known. The third
approach is proposed by authors (Ramachandra
Murthy et al. 2009).

Brief description of residual strength evaluation
using remaining life approach is presented below:

Irwin proposed the following stress intensity
factor Ks to quantify the intensity of the stress field
surrounding the crack tip in a finite width plate with a
remote stress, :

sK a  (24)

where a = half-length of the crack,  = Geometry
factor

Hence such a plate with a half crack ax, will
fracture when the applied stress x satisfies the
equation

cK ax x  (25)

where Kc= critical SIF, which is a material property.
The rate at which the crack grows under constant
amplitude cyclic loading can be derived from the
following equation that was proposed by Paris and
Erdogan (1963).

a / ( )md dN C K  (26)

which can be written in the following integral form to
give the number of cycles Nf that are required for a

crack of initial length 2ai to propagate to a crack length
2ax:

2a

2a

a

( )
x

i
f m

d
N

C K


 (27)

where C and m are Crack growth constants andK
= range of SIF by the cyclic load .

From Eq. (24)

K a     (28)

and from Eq. (25)

2 2 2
xa /c xK    (29)

Substituting Eqs. (28) and (29) into (26) and
integrating gives the following residual strength curve,
where c is the residual strength after Nc cycles of
load:

2 (1 ( / 2))
1 1(1/ ) m

c cN D S    (30)

where

1 ( / 2) 2
1 (2 ) / ( ) 1

2

m
m m m

i

m
D a C           

(31)

and

1 ( / 2)2
2

1 2

2
/ ( ) 1

2

m m
m mcK m

S C  
 


              

(32)

where for a fixed initial crack size ai the  parameters
D1 and S1 are constant.

The residual strength of a plate/panel is the least
value obtained by using the above three criterions.

In general, the construction of a residual strength
diagram involves three major steps:

(a) The development of the relationship between
the applied stress , the crack length parameter
‘a’, and the applied stress-intensity factor ‘K’
for the given structural configuration.
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(b) The selection of an appropriate failure criterion
based on the expected material behavior at the
crack tip

(c) The fracture strength (f) values for critical
crack sizes (ac) are obtained by utilizing the
results of the first two steps and residual strength
diagram (f vs. ac) for the given structural
configuration is plotted.

Numerical Studies

Example 1: Fracture Analysis of a Rectangular
Plate with Center Crack under Uniaxial Tension

Fracture analysis of a rectangular plate with center
crack subjected to uniaxial tensile loading (mode I)
as shown in Fig. 7 has been conducted to compute
SERR and SIF at the crack tip. One quarter of the
plate with symmetric boundary conditions has been
idealized. FE idealization of the plate using 4-noded
element is shown Fig. 8. Basic stress analysis of the
plate has been carried out by employing 4-noded, 8-
noded (regular and quarter-point), 9-noded and 12-
noded finite elements. SERR has been evaluated by
using NI-MVCCI technique. For evaluating the
integrals associated with NI-MVCCI technique,
Gauss integration technique has been used with rules
of 2, 3 and 4 for 4-noded, 8-noded/9-noded and 12-
noded elements respectively, while for 8-noded QPE
different rules have been employed. Plane strain
conditions have been assumed at the crack tip to
compute SIF by using SERR value obtained using
NI-MVCCI technique. The variation of SIF with
respect to a/a and W/a is shown in Fig. 9 along
with the results obtained by using MVCCI technique
(closed form equations) and the finite plate solution
of Rooke and Cartwright (1976).

Fig. 7: Rectangular plate with centre under uniaxial tension

Fig. 8: FE idealization of rectangular plate (quarter
symmetry) (a) Variation w.r. to a/a (b) Variation w.r.
to W/a

Fig. 9: Variation of SIF for rectangular plate with center
crack (Mode I)

(b)

(a)
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Example 2: Damage tolerant curves generation
for plate with a centre crack using XFEM

A 350WT steel plate of width (2b) 100mm, height
(2h) 310mm with a centre crack is subjected to tensile
fatigue loading. The details of the problem are given
below:

 Size of panel 2h x 2b = 310 x 100mm

 Material is homogeneous, isotropic and made
up of 350WT Steel

 Young’s modulus = 2 x 105 N/mm2

 Poisson’s ratio = 0.3

 Panel is modelled with four node bilinear
element of size 2mm x 2mm

 Stiffener is modelled with two node truss
element

 Plane strain linear elastic fracture mechanics
assumption

 Paris crack growth law constants C = 1.02 x
10–11, m = 2.94

 Fracture toughness KIC = 50MPa m

The objective is to predict the number of fatigue
cycles required for given applied stress range for a
plate with centre crack using XFEM and get the
applied stress range versus number of fatigue cycles
required to fail i.e., the damage tolerant curves. The
failure criterion of the plate has been set as the crack
length reaching 60% of plate width or fracture
toughness of the plate whichever is earlier. Stress
range is varied from 200MPa to 40MPa for various
initial crack length to plate width ratios (a/b) 0.1, 0.2
and 0.3. For each stress range XFEM analysis is
carried out as per Flow chart of Fig. 6 to find the
number of fatigue cycles required to fail. The results
obtained are shown in Fig. 10, as applied stress range
versus number of fatigue life cycles in the form of
semi-log plot. From the results shown in Fig. 10, as
the external applied stress is decreasing number of
fatigue life cycles taken by the component is
increasing. This figure gives the quick idea about the
number of cycles a crack of initial length to plate width
ratio between 0.1 and 0.3 can take for applied stress
range between 200 and 40MPa.

Example 3: Remaining life Prediction and
Residual strength evaluation of 350WT Steel

Crack growth studies, remaining life prediction and
residual strength evaluation has been carried out for
plate with a centre crack with stiffeners. The plate is
made up of 350 WT steel and the details of the
problem are same as discussed earlier. The loading
spectrum and occurrence of overload is shown in Fig.
11.

Fig. 12 shows the variation of life for different
stiffener areas (as non-dimensional parameter) under
CAL and VAL (OLR=1.25, 1.5 and 1.75). From Fig.
12, it can be observed that

 The predicted remaining life of stiffened panel
under CAL increases with increase of stiffener
area and is about 209% higher for stiffener area
of 100mm2 as compared to the corresponding
unstiffened case.

 The predicted remaining life of stiffened panel
under VAL with OLR = 1.25, 1.5, 1.75 and for
different OLs increases with increase of stiffener
area and is about 237% higher for stiffener area
of 100mm2 with OLR = 1.75 and no. of OLs =
2 compared to the respective unstiffened case.

 The percentage increase in remaining life of
stiffened panel compared unstiffened plate under

Fig. 10: Damage tolerant curves for plate with centre crack
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VAL is approximately same for particular
stiffener area and overload ratio and no. of OLs.

 Remaining life is influenced by the number of
overloads and occurrence of overload.

Fig. 13 shows the plot of crack length vs residual
strength predicted using plastic collapse condition (yield
condition), fracture toughness criterion and remaining
life approach. It can be observed from Fig. 13 that
the residual strength predicted using remaining life
approach are lower compared to those values
predicted by using other two approaches and will
govern the design.

Concluding Remarks

This paper presents an overview of the advanced
methodologies for fracture analysis and damage
tolerant evaluation of structural components. The novel
contributions presented in this paper include:

 NI-MVCCI technique for fracture analysis

 XFEM for stiffened panels

 Improved Wheeler residual stress model to
account for retardation effects due to overload

 Residual strength evaluation using remaining life
approach

NI-MVCCI technique has been demonstrated
for 4-noded bilinear, 8-noded Serendipity (regular &
quarter-point), 9-noded Lagrangian and 12-noded
cubic isoparametric finite elements. An overview on
XFEM for fracture analysis of structural components
has been presented. Methodologies for crack growth
and remaining life assessment of structural components
under constant and variable amplitude loading have
been presented. Brief details related to evaluation of
residual strength has been highlighted. Numerical
studies on fracture analysis to compute SERR and

Fig. 11: Loading Spectrum

Fig. 12: Remaining life for different stiffener sizes under
CAL and VAL

Fig. 13: Crack length vs residual strength
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SIF and remaining life assessment have been
conducted and the results are compared with the
respective analytical/experimental results. From the
studies, it is noted that the fracture parameters
computed are in good agreement with those of
literature values. Damage tolerant curves in the form
of S-N curves have been developed for various stress
ranges. These curves are very much useful for design
of the structural components under fatigue loading.
Crack growth analysis and remaining life prediction
has been carried out for stiffened plate with centre
crack under constant and variable amplitude loading.
The residual strength has been evaluated by using

various approaches and found that the residual
strength predicted by remaining life approach governs
the design. It can be observed that the size of the
stiffener, initial crack length, magnitude of overload
and number of overloads play significant role for the
prediction of remaining life and residual strength of
stiffened panels.
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