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The objective of the paper isto present the advanced methodol ogiesfor fracture analysis and damagetol erant eval uation of
metallic structural components for efficient and safe design of structural systems meeting the functional criteria. An
efficient and novel Numerically Integrated-Modified Virtual Crack Closure Integral (NI-MV CCI) technique has been
demonstrated for 4-noded bilinear, 8-noded (regular & quarter-point), 9-noded L agrangian and 12-noded cubic isoparametric
family of finite elements. Another advanced numerical method, Extended Finite Element Method (XFEM) for fracture
analysisof cracked stiffened panels has been discussed. Methodologies for crack growth and remaining life assessment of
structural components under constant and variable amplitude |oading have been presented. Brief description on residual
strength evaluation has been provided. Numerical studies on fracture analysis to compute Strain Energy Release Rate
(SERR), G and stress intensity factor (SIF) and remaining life assessment and residual strength evaluation have been
conducted and the results are compared with the respective analytical/experimental results.
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Introduction

Many real life structural components such as
aerospace structural components, ship hull structures,
off shore structural components are subjected to
fatigue loading. These components contain internal
defects such as cracks, inclusions, voids which are
devel oped during manufacturing stage or at service
stage. The main function of a stiffener isto improve
the strength and stability of the structure and to slow
down or arrest the growth of cracksin the component.
Remaining life prediction of the cracked structural
componentsin these structuresis necessary for their
in-serviceinspection & scheduling, planning, repair,
retrofitting, rehabilitation, requalification and health
monitoring. It is highly recommended to use the
damage tolerant design concepts for designing
structural components. Damage tolerant design is
based on the information about the effect of cracks
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on the residual strength/remaining life of the
structure.Practically, for al thehigh strength materia's
employed in the construction of above structures/
components, damage tolerant analysis can be
performed using linear elastic fracture mechanics
(LEFM) principles, in which case, SIF is the
influencing design parameter. Ingenerd, itisdifficult
to quantify SIF for most of the practical applications.
For ssimple geometries, SIF can be cal culated by using
handbooks (Rooke and Cartwright 1976; Murakami,
1988). There is a need to evolve efficient
methodol ogiesfor computation of SIFand to provide
an integrated approach that would include fatigue
crack growth models for remaining life prediction.
During the last four decades, agreat deal of research
(Poe, 1971; Chuet al., 1982; Ghassem and Rich, 1933;
Wen et al., 2000, 2003; Saves et al., 2001; Dexter
and Pilarsk, 2002; Taheri et al., 2003; Mahmoud and
Dexter, 2005; Rama Chandra Murthy et al., 2007;
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Liu et al., 2012; Hosseini et al., 2013) has been
dedi cated to the development of numerical/ana ytical
methods for computation of SIF for stiffened and
unstiffened plate panel s subjected to uniaxial tensile
stresses.

The field of fracture mechanics is
interdisciplinary requiring information from non-
destructive techniques (NDT) to determine the size
of possible pre-existing cracks, mechanical testing to
determinefracture toughnessof the material and stress
analysisto determinetherelevant fracture parameters
required for the crack to grow (Zheng, 2001; Schijve,
2003). Work on NDT and the determination of fracture
toughness are primarily experimental in nature
whereas numerical techniquesarethe most preferred
for stress analysis. Output of the stress analysis of
cracked structures is essentially used in post-
processing stage to eval uate the well-known fracture
parameters (Vasudevan et al., 2001; Broek, 1982)
such as (i) SIFs, (ii) SERR and (iii) J-integral, in the
realm of LEFM.

Among the various numerical techniques used
for stressanalysis, the finite element method (FEM)
has evolved over the past 25 years as the most
powerful numerical techniquefor the solution of solid
mechanics problems (Zienkiewicz and Taylor, 2000).
In recent years attention has been focused to study
thefatigue and fracture behavior of complex structural
components using FEM. Computation of SERR and
SIF is a post-processing approach to finite element
analysis (FEA). Advances in finite element (FE)
technology with high performance computing have
significantly improved thefield of fracture mechanics.
Number of software have been devel oped for fatigue
and fracture analysis of structural components based
on FEM. Some of the popular public domain and
commercial software used for conducting fatigue and
fracture analysis are: ZENCRACK, pc-CRACK,
AFGROW and NASGRO.

Modelling of moving discontinuities(cracks) in
finite element framework is a difficult task because
of the need to update the mesh at each step as the
crack propagates. A very fine mesh is required near
the vicinity of the crack and mesh need to be
conforming to the sides of the crack. Also the
singularity at the crack tip must be accurately
represented (Tong et al. 1973) Another way of
handling discontinuities such as cracks is to model

the crack, which isindependent of the mesh. XFEM
isoneof the advanced numerical methodsfor fracture
analysisof structural components. XFEM can be used
to add discontinuous enrichment functions to the
original finite element approximation (Belytschko et
al., 1999; Moes et al., 1999; Dolbow et al., 2000)
through the partition of unity (Melenk and Babuska,
1996). Automatic crack propagation can be obtained
by properly implementing XFEM algorithms.

This paper presents an overview of the
advanced methodologies for fracture analysis and
damagetol erant eval uation of structural components.
Thenovel contributionspresented inthis paper include:

e NI-MVCCI technique for fracture analysis
e XFEM for stiffened panels

e Improved Wheeler residual stress model to
account for retardation effects due to overload

e  Residud strengthevaluation usingremaininglife
approach

Formulation of NI-MVCCI Technique (Palani et
al., 2004)

The derivation of element dependent MV CCI
expressions for computing SERR for mode | and |1
cracks (G, and G,) for 4-noded element, 8-noded
element and 8-noded QPE involves evaluation of
constants used in the polynomial assumed to represent
displacement and stress variation and eval uation of
many integra s having polynomial terms. Asmentioned
earlier, the derivation of MV CCl expressionsbecomes
atedious exercise for higher order 2-D (such as 12-
noded singular) and 3-D (such as HEXA20 and
HEXAZ27) finite elements. One of the main objectives
of NI-MV CCl techniqueisto overcome this tedious
exercise by involving numerical techniques for
computation of the constants and to evaluate CClI for
G, and G,,. NI-MV CCl is generalized technique and
isindependent of thetype of finite el ement empl oyed.
Consider atypical FE mesh at the crack tip as shown
in Fig. 2. The procedure for evaluating MV CCI for
mode | and Il cracksin 2-D problemsusing numerical
techniquesisexplained. For model crack, SERR (G))
can be evaluated by multiplying the stressdistribution
along OA (ahead of crack tip) with the corresponding
COD distribution along OB (behind crack tip) and
integrating this product over Da.
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Fig. 1: Structural integrity assessment diagram

For evaluation of SERR for mode | crack (G))
the stressdistribution on the crack extension line OA
isexpressed in terms of thenodal forcesF, ;, F ..,
etc. acting at the nodes |, (j+1), etc. respectlvely
COD distribution along OB is expressed in terms of
the nodal values at j, (j-1), (j-1)’, etc. SERR for
mode | crack (G,) isderived by evaluating the energy
required to close the crack over alength Aainterms
of these nodal forces and displacements. The shape
functions for elements 1 and 2 along OB can be
obtained by substituting n = -1, in the respective
element shape functions. Let these shape functions
be N.. Let COD which is the difference between y
displacement between the top and bottom faces be
designated as U, in the discussion in this section.
Similarly crack s)f]earl ng displacement be designated
as U,. COD distribution along OB can be expressed
in terms of nodal displ acements{(Uy)i} as

U,=[NJ{(U)} i=1..n )

where n is the number of nodes on the edge OA or
OB of theelement. Consistent with theisoparametric
formulation, coordinate of any point X(x, y) isgiven

by
=[NJ{(¥)} i=1 ...n 2

where {(X),} arethe nodal coordinates. Eq. (2) thus
provides the transformation between the global and
natural coordinate system. Consistent with the
element shape functions, COD variation along OB
can be expressed as function of £’ as

Uy(&’ )=a,+ aié ot a(n_l)a i(n-1) 3

where U (£”) isapolynomial of order (n-1). The

constants a,, &, ..., 8,5, can be evaluated by
matching the displacement conditions at the nodesj,
(i-1),....,(j-n+1) in element number 1. A set of
simultaneous equations of order n isformed, which
can be solved for obtaining the constants a,, a,,....,

n1)" Again referring to Fig. 5 and considering
element number 2, stress (¢, ) distribution along OA
can be expressed as a function of £

0,(€) = by + by€ +... by €D (4)

where ay(g) is a polynomial of order (n-1). The
constants bo, bl, .. b ) Can be computed by
matching the nodal forceswith the derived consistent
load vector from FE analysis. The nodal forcesF,, .,
Fy ety - Fyen) ShOWN in Fig. 2 are the forces
exerted at nodesj, (j+1), ..., (j+n-1) by the structure
below OA on the structure above OA. InFEA, these
forcesare obtained by adding the contributions of the
forcesat nodesj, (j+1), ..., (j+n=1) from the elements
on the edge above OA. These forces should be
consistent with the stressdistribution givenin egn (4),
which can be expressed as

F = J.[Ni]TGy@)dX i=1, .n ®)

where N, are the shape functions of the respective
element obtai ned by substituting n =-1. By using the
transformation between the global and natural
coordinate system (egn (2)), the basis can be shifted
from “dx’ to ‘d¢’. The integrals givenin egn (12) can
be evaluated by numerical integration techniquewith
suitableorder. In the present study, Gaussintegration
technique has been employed with different integration
rules. By substituting the expressions for COD and
o, stress variations given by egns (3) and (4)
respectively in CCl, G, can be expressed as

f o, (€)U,(E")ax ©)

Aa 02A

Similarly crack shearing displacement U, ()

and o, distributions can be developed and G, can be
expressed as

= L= f 0, (E)U, (E")dx @
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The integrals given in Egs. (6) and (7) can be
performed by numerical integration technique. The
numerical integration has to be carried out in two
stages: One for evaluating the constantsin o, (or axy)
distributionsin termsof the nodal forcesF (vor Foin
Eq. (5) and the second to evaluate the integral for G,
(or G,)) ineqgn (6) (or egn (7). In the present study,
Gaussintegration technique hasbeen employed inegn
(6) with the same integration rule that is used for
evaluating Eq. (5).

It can be observed from Egs. (1) to (7), the
proposed NI-MV CCl isageneralized technique and
is independent of the type of element, except for
assuming the expressionsfor displacement and stress
variation (Egs. (3) and (4)). Theorder of polynomials
for displacement and stress variation can be assumed
to be consistent with the element shapefunctionsalong
the edge n = —1. NI-MVCCI technique explained
above can be easily implemented in any finite el ement
codewhich has4-noded, 8-noded (regular and quarter-
point), 9-noded (regular and quarter-point) and 12-
noded (regular & singular) quadrilateral isoparametric
elements. However, some basic discussion on the
polynomials to be selected will be required for
implementation of NI-MVCCI technique for these
elements. These basic aspects for each of these
elements corresponding to Egs. (8)-(14) are now
presented.

8-noded and 9-noded (regular) Quadrilateral
Elements

Shape functions (N;) in egns (1) and (5) along the
edge OB asshownin Fig. 2 (for theedge OA replace
&’ by &) can be obtained by substitutingn = -1 in 8-
noded or 9-noded element shape functions

N, = L2(1+E¢E)EE for nodeswith

g

Uy : ;
(kr+1) B @ @ —* - T |
= '
(neay i
©)

n = number of nodes on edge 0A/OB

ey e—Lap|

Fig. 2: Typical FE mesh of crack tip region

g ==x1 (8a)
= 1/2(1-£’) fornodewithE” =0  (8b)

Using the shapefunctionsgivenin Eg. (8a), the
transformation between global and natural coordinate
system as given in Eq. (5) can be expressed as

x=—(Aal2)(1+L") (8c)
By substituting n=3in Eg. (3), COD variation
along OB can be assumed as
U,E)=a+ag+at"” (8d)
By substituting n = 3 in Eq. (4), the stress

variation along OA can be assumed as

ny(&.,):bo+b1§+b2a2 (8e)

Displacement and force conditions for
evaluating the constants g, a,, a,and b, b,, b, canbe
expressed as

U=0a & =-1; U = ;Y 1)

ag’ =0 U= U p)al’ =1
(8f)

F=F, a&=-1F=F , at=0

I:y = I:y,(j+2) at 5 = 1' (89)

Referring to Fig. 2, therelation between £’ in
element 1 and ¢ in element 2 can be expressed as

g =€
8-noded and 9-noded QPE

Shape functions (N,) in Egs. (1) and (5) along the
edge OB asshownin Fig. 2 (for the edge OA replace
&’ by &) can be obtained by substitutingn = -1 in 8-
noded QPE shape functions

N, = L2(1+E¢E)EE for nodeswith

g ==+1 (9a)
N, = 1/2(1-€?) fornodewith &’ =0  (9b)

Using the shapefunctionsgivenin Eg. (9a), the
transformation between global and natural coordinate
system as given in Eqg. (2) can be expressed as
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X = (Aald)(1+E ') (90)

By substituting n = 3in Eq. (3) and accounting
for the quarter-point position of the mid-side node,
COD variation along OB can be assumed as

U, (") =a,+a(1+E")+a,(1+E")" (9d)

In order to account for the singular stress
conditions represented by QPE, the stress variation
along OA can be assumed as

6, (E)=b,/(A+E)+b +b,(1+E) (%)

Displacement and force conditions for
evaluating the constants g, a,, a,and by, b, b, canbe
expressed as

Uy: Oat &' =-1; Uy = (Uy,(J—l) - Uy,(J—l)’)
AL =0Uy = (U= Uyg)

A =1; (%)
F,=F, a&=-1; F,=F a&=0

I:y = I:y,(j+2) a 5 = 1' (gg)

Referring to Fig. 2 and accounting for the
quarter-point position of themid-sidenode, therelaion
between £ in element 1 and ¢ in element 2 can be
expressed as

(1+E) +(1+8") =4 (9h)

XFEM for Fracture Analysis and Remaining Life
Prediction

In XFEM, the following approximation is used to
compute the displacement for the point x located
within the domain (Belytschko et al., 1999)

u"(x) =u +u

= 2 N, (x)u, +i N, (v (X)a, (10)

where u; is the vector of regular nodal degrees of
freedom (DOF) in FEM, nisthetotal number of nodes
in FE model, N, shape function associated with node

I, 4 isthe added set of DOF to the standard FE model,
m is the number of enriched nodes and {)(x) is the
discontinuous enrichment function defined for the set
of nodes that the discontinuity has in its influence
(support) domain. The enrichment function {(x) can
be chosen by applying appropriate anal ytical solutions
according to the type of discontinuity. Thefirst term
on theright hand side of Eq. (10) isthe classical FE
approximation to determine the displacement field,
while the second term is the enrichment
approximation, which takesinto account the existence
of any discontinuities. The second term utilises
additional degrees of freedom to facilitate modelling
the existence of any discontinuous field, such as a
crack, without modelling it explicitly in the finite
element mesh.

When XFEM is applied to fracture mechanics
problems, displacement field istaken as(Moeset al.
1999).

u"(x) = zn: N, ()u;, +Y. N, (X)H (x)a

jed

Y Nk[i F.l(x)bt.j Y Nk(i Fﬁ(x)sz

keK, keK,

(11)

where, H(X) is the heaviside enrichment function
defined suchthat it equals 1 for all x above the crack
and -1 for all x below the crack as shown in Fig. 3
and a, is the heaviside enriched node. Jis the set of
nodes, enriched with heaviside enrichment function,
whose nodal shape function support contain crack
but not crack tip.

H(X) = Hix, y) =1

H(x) =H(x,y)=-1

CRACK

= = = = CRACK EXTENSION

Fig. 3: Heaviside enrichment function definition
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Here k, and k, are the set of nodes, associated
with crack tips 1 and 2, whose element contain crack

tips respectively; by,b;, are vectors of additional

nodal DOF for modelling crack faces and the two
crack tips.

Typical flow chart for fracture analysis and
remaining life predictionisgiveninFig. 4.

Modelling of Stiffenersin XFEM Domain

Asthe stiffeners are placed concentric and the applied
loadingistensilein nature, onecan model the stiffeners
using truss elements. It isassumed that stiffenersare
continuous and are connected to the plate along the
nodes of the plate element modelled as bilinear
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Fig. 4: Typical XFEM flow chart for fracture analysis and
remaining life prediction

element. For example consider asquare plate of side
L modelled using four bilinear elementsof sidel and
an edge stiffener using two node truss element as
shown in Fig. 5 (Nanda Kumar et al. 2016).

4 g A‘-’ T_‘ . T 8 Ti._
4 5 6
' ' 3 2 o
] 3
(A) (B)

Fig. 5: (A) Finite element model of plate using four node
bilinear element and (B) Finite element model of
stiffeners using two node truss element

Assuming that the Young’s modulus of stiffener
and Young’s modulus of panel is same and denoted it
as E and area of cross section of each stiffener asA.
Thelength of trusselement is same asside of bilinear
element. Thus element stiffness matrix of truss
elementisgivenas

AE[1 -
sz[—l 1} (12)

The global stiffness matrix of panel modelled
using four node bilinear element be K . Size of K
depends upon the location and position of thecrack in
thepanel. Theassembl ed stiffnessmatrix of stiffeners
modelled as truss elements can be obtained as

2 8 14
= 1 -1 0])2
0 -1 1114
6 12 18
P g ~—3 Wi"

0 -1 1]18

where K, and K, are the assembled global stiffness
matrices of stiffener 1 and stiffener 2 respectively
each of sizeequal to Kp. Notethat the matrices shown
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in Egs. (13) and (14) are only sub matrices and the
valuesin other |ocations of matrices Ka and K, are
Zero

Thus the final stiffness matrix of panel and
stiffener is

K=K, +Ky+Kyg (15)

Similar lines, thefinal stiffness matrix of panel
and stiffener for various mesh discretizations can be
formul ated.

Damage Tolerant Evaluation

Damage tolerant evaluation involves the techniques
for arriving at the residual strength diagram and the
crack growth diagram. From the residua strength
diagram, it is possible to determine the maximum crack
length that can be sustained safely. Thisinformation
isused inthe crack growth diagramto find number of
loading cyclesthat will be necessary for the crack to
grow to its critical length. So, obviously damage
tolerant design requiresreliable estimation of fatigue
crack growth.

Crack Growth Models

The crack growth models address the crack growth
behaviour by using SIF at crack tip. The amount of
crack advancement, Aa= a-a;, during AN number
of cyclesis described by SIF range associated with
maximum and minimum stress of eachcycle (K, —
Kmin). The rate of crack growth, da/dN, in terms of
the crack tip SIF range, DK can be expressed as

da
—= f(AK
N (AK) (16)
The function f(AK) can be obtained asaresult
of experimental dataand can then be utilized to solve
crack growth problems in which the structural part
has undergone the sameloading conditions.

Modelsfor Fatigue Crack Growth under Constant
Amplitude Loading (CAL)

Paris formulated the earliest relationship describing
crack growth behaviour. When a cracked structural
joint or component is subjected to cyclic loading, the
crack propagation rate, da/dN is governed by SIF
range AK asfor astandard through thickness cracked
specimen under constant amplitude fatigue loading,

da m,
o - Ce(4K) (17)
where N is the number of cycles, C and m are
constants dependent on material property and are
determined from experimental data. Paris equation
doesnot takeinto account the crack growth behaviour
in threshold and unstabl e fracture regions. The other
popularly used crack growth model simplemented are
Walker, Erdogan and Ratwani, Klesnil and Lucas,
Forman and Forman New-de-K oning. The details of
these models are presented by Rama ChandraMurthy
et al. (2004b).

Crack Growth Models for Variable Amplitude
Loading (VAL)

The effect of tensile overload has been reported by
many investigators (Rama Chandra Murthy et al.,
2004a). Singletensile overload introduce significant
crack growth delay depending on the overload ratio
(OLR). A superimposed single overload during CAL
isthesimplest case of VAL. The application of single
overload will cause significant decrease in the crack
growth rate for alarge number of cycles subsequent
to the overload. This phenomenon is referred to as
crack retardation. Since analytical modeling of crack
closureisvery difficult, models based on yield zone
concept are generally employed in the analytical
investigation. It is well known that the widely used
Wheeler and Generalised Willenborg residual stress
models are based on yield zone concept assuming
that crack growth retardation is caused by
compressive residual stresses acting at the crack tip.
In the present studies, Wheeler model has been
employed to consider the retardation effects due to
overload. Brief description about improved Wheeler
model is given below (Ramachandra Murthy et al.,
20043).

Improved Wheeler Residual Stress Model

Thismodel assumesthat the crack growth retardation
is caused by compressive residual stresses acting at
the crack tip. Wheeler employs the residual stress
retardation model to account for crack growth
retardation due to tensile overload (Fig. 6). The
devel opment of Wheeler model beginswith the basic
crack growth equation
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Plastic

zone size—" 'l
due tO | .< ............ >

overload . A

Fig. 6: Wheeler residual stress model

da
aN - [@K) (18)

Since the load is discontinuous variable, the
crack growth can be computed using cycle-by-cycle
approach

3,=a,+), T(AK) (19)

where, a, = final crack length after N cycles, a=
initial crack length AK; = stressintensity factor range
for cycle iTo account for crack growth retardation,

Wheeler introduced aretardation parameter, Cpi, Eq.
(29) then reduces to
a,=a,+Y,C, f(AK)) (20)

Theretardation parameter is cal culated asshown
below

Ci= [ﬁ) for (a+ rp) <a,

=1.0for (a+ rp) > 8, (21)

where, r_= extent of current plastic zone (ap —-a)=
distance from crack tip to elastic-plastic interface
(refer to Fig. 6) m, = shaping exponent, which is

generally obtained through experiments. The value
of m, depends on applied overload, crack size and
width of the plate.

Expressions have been proposed for evaluation
of shaping exponent m, for various geometries
considering overload, crack size and width of the
plate. Details can be found in Ramachandra Murthy
et al. (2004a).

Itisobserved that C; isminimumimmediately
after the application of overload, when (ap —a) has
its maximum value. As ‘a’ approaches a, Cpi
increases.

Remaining Life Prediction

Remaining lifefor flat sheety/stiffened plates or tubular
joints can be estimated using any of the crack growth
models. Themodelsgive an empirical formulafor da/
dN where dN is the increment in crack length and
dN isthe corresponding remaining life. To estimate
theremaining lifethefollowing steps arefollowed:

1. Thevaueof remaining life (N) isinitialized to
zero at first.

2. Thevalueof K for each crack length g starting
with theinitial crack length is calculated. The
calculation usesthevaueof a,,, (= (3+,,)/2)
for each computation.

3. Thevaue of SIF corresponding to each of the
crack length is computed using the analytical
expressiong/interpolation method described
earlier.

K =f(a)oy/Ma (22)

4. Thevalueof AK iscalculated for crack growth
models other than Walker using appropriate
formula. In case of Walker model the value of
K e 1S calculated.

5. Apply theretardation model if needed.

6. The value of AK or K__ is passed to the
function that cal culatesthevalue of dN provided
AK or K__ is greater than the K, of the
material. Thefunction returnsvalue of dN. This
valueisadded to theexisting value of remaining
life (N).
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_ da
"~ C(AK)™

dN (23)

7. The values of crack length, SIF and N are
writtento afilefor plotting graphs.

8. Steps2to5 arerepeated until the crack length
becomescritical.

Residual Strength Evaluation

Residual strength (remaining strength under the
presence of crack) can be computed by using

(i) plasticcollapsecondition or yield criterion
(i) Fracturetoughness criterion and
(i) Remaininglife approach.

First two approaches arewell known. Thethird
approach is proposed by authors (Ramachandra
Murthy et al. 2009).

Brief description of residual strength evaluation
using remaining life approach is presented below:

Irwin proposed the following stress intensity
factor K to quantify the intensity of the stressfield
surrounding the crack tipin afinitewidth platewith a
remote stress, o:

K.=PBona (24)

where a = half-length of the crack, 3 = Geometry
factor

Hence such a plate with a half crack a, will
fracture when the applied stress o, satisfies the
equation

K.=PBo,Jna, (25)

where K = critical SIF, whichisamaterial property.
The rate at which the crack grows under constant
amplitude cyclic loading can be derived from the
following equation that was proposed by Paris and
Erdogan (1963).

da/dN = C(AK)" (26)

which can bewritteninthefollowingintegral formto
give the number of cycles N, that are required for a

crack of initial length 23 to propagateto acrack length
2a;

= J‘2ax da

« SR @)

where C and m are Crack growth constants and AK
= range of SIF by the cyclicload Ao.

From Eqg. (24)

AK =BAc Vra (28)
and from Eq. (25)

a, =K’/B%c’n (29)

Substituting Egs. (28) and (29) into (26) and
integrating givesthefollowingresidua strength curve,

where o is the residual strength after N cycles of
load:

N, =D, - § (/o)™ (30)

where

D, - (23)™ /[CB (o) - H

(31)
and
2 \I-(m/2) m
2Kc m m_ 2 m_
S_(BZRJ /{CB (Ao)™n (2 1)}
(32)

wherefor afixed initial crack size g the parameters
D, and S, are constant.

Theresidual strength of aplate/panel istheleast
value obtained by using the above three criterions.

Ingenerd, the construction of aresidua strength
diagraminvolvesthree mgjor steps:

(@) The development of the relationship between
the applied stress o, the crack length parameter
‘a’, and the applied stress-intensity factor ‘K’
for the given structural configuration.
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(b) Theselection of an appropriate failurecriterion
based on the expected material behavior at the
crack tip

(c) The fracture strength (o;) vaues for critical
crack sizes (a,) are obtained by utilizing the
resultsof thefirst two stepsand residual strength
diagram (o, vs. &) for the given structural
configurationisplotted.

Numerical Sudies

Example 1: Fracture Analysis of a Rectangular
Plate with Center Crack under Uniaxial Tension

Fracture analysis of a rectangular plate with center
crack subjected to uniaxial tensile loading (mode )
as shown in Fig. 7 has been conducted to compute
SERR and SIF at the crack tip. One quarter of the
plate with symmetric boundary conditions has been
idealized. FE idealization of the plate using 4-noded
element is shown Fig. 8. Basic stress analysis of the
plate has been carried out by employing 4-noded, 8-
noded (regular and quarter-point), 9-noded and 12-
noded finite elements. SERR has been evaluated by
using NI-MV CCI technique. For evaluating the
integrals associated with NI-MV CCI technique,
Gaussintegrati on technique has been used with rules
of 2, 3 and 4 for 4-noded, 8-noded/9-noded and 12-
noded el ements respectively, whilefor 8-noded QPE
different rules have been employed. Plane strain
conditions have been assumed at the crack tip to
compute SIF by using SERR value obtained using
NI-MV CCI technique. The variation of SIF with
respect to Aa/a and W/a is shown in Fig. 9 along
with the results obtained by using MV CCI technique
(closed form equations) and the finite plate solution
of Rooke and Cartwright (1976).

treeateeee
Young's Modulus, E=10000.0 N/mm?
Poison’s ratio, v = 0.0
2a 2H
Thickness, t = 10.0 mm
H =250 mm
HIy T e
2W a=20mm

Fig. 7: Rectangular plate with centre under uniaxial tension

Fig. 8: FE idealization of rectangular plate (quarter
symmetry) (a) Variation w.r. to Aa/a (b) Variation w.r.

to W/a
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Fig. 9: Variation of SIF for rectangular plate with center
crack (Mode 1)
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Example 2: Damage tolerant curves generation
for plate with a centre crack using XFEM

A 350WT stedl plate of width (2b) 100mm, height
(2h) 310mmwith acentre crack issubjectedtotensile
fatigueloading. The details of the problem are given
below:

e  Sizeof panel 2h x 2b =310 x 100mm

e Material is homogeneous, isotropic and made
up of 350WT Steel

e Young’s modulus = 2 x 10° N/mn?
e  Poisson’sratio=0.3

° Panel is modelled with four node bilinear
element of size2mm x 2mm

° Stiffener is modelled with two node truss
element

° Plane strain linear elastic fracture mechanics
assumption

e  Paris crack growth law constants C = 1.02 x
101, m=294

e  Fracture toughness K, . = 50MPa \/m

Theobjectiveisto predict the number of fatigue
cycles required for given applied stress range for a
plate with centre crack using XFEM and get the
applied stress range versus number of fatigue cycles
required to fail i.e., the damage tolerant curves. The
failure criterion of the plate has been set asthe crack
length reaching 60% of plate width or fracture
toughness of the plate whichever is earlier. Stress
range is varied from 200M Pa to 40MPa for various
initial crack length to plate width ratios (a/b) 0.1, 0.2
and 0.3. For each stress range XFEM analysis is
carried out as per Flow chart of Fig. 6 to find the
number of fatigue cyclesrequiredtofail. Theresults
obtained are showninFig. 10, asapplied stressrange
versus number of fatigue life cycles in the form of
semi-log plot. From the results shown in Fig. 10, as
the external applied stress is decreasing number of
fatigue life cycles taken by the component is
increasing. Thisfigure givesthe quick idea about the
number of cyclesacrack of initial lengthto platewidth
ratio between 0.1 and 0.3 can take for applied stress
range between 200 and 40M Pa.

220, 0 44 e 24

Applied stress range in N/mm2

10 10* 10° 10° 10
Number of fatigue cycles to fail

Fig. 10: Damage tolerant curves for plate with centre crack

Example 3: Remaining life Prediction and
Residual strength evaluation of 350WT Steel

Crack growth studies, remaining life prediction and
residual strength evaluation has been carried out for
plate with acentre crack with stiffeners. Theplateis
made up of 350 WT steel and the details of the
problem are same as discussed earlier. The loading
spectrum and occurrence of overloadisshowninFig.
1.

Fig. 12 showsthe variation of life for different
stiffener areas (as non-dimensional parameter) under
CAL and VAL (OLR=1.25, 1.5and 1.75). From Fig.
12, it can be observed that

»  Thepredicted remaining life of stiffened panel
under CAL increaseswith increase of stiffener
areaand isabout 209% higher for stiffener area
of 100mn?? as compared to the corresponding
unstiffened case.

»  Thepredicted remaining life of stiffened panel
under VAL with OLR = 1.25, 1.5, 1.75 and for
different OLsincreaseswithincrease of stiffener
areaand isabout 237% higher for stiffener area
of 100mm? with OLR = 1.75 and no. of OLs=
2 compared to the respective unstiffened case.

»  The percentage increase in remaining life of
stiffened panel compared unstiffened plate under
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Fig. 11: Loading Spectrum
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Fig. 12: Remaining life for different stiffener sizes under
CAL and VAL

VAL is approximately same for particular
giffener areaand overload ratio and no. of OLs.

»  Remaining lifeisinfluenced by the number of
overloads and occurrence of overload.

Fig. 13 showstheplot of crack length vsresidual
strength predicted using plagtic collapse condition (yield
condition), fracturetoughness criterion and remaining
life approach. It can be observed from Fig. 13 that
the residual strength predicted using remaining life
approach are lower compared to those values
predicted by using other two approaches and will
governthe design.

Concluding Remarks

This paper presents an overview of the advanced
methodologies for fracture analysis and damage
tolerant evaluation of structural components. Thenovel
contributions presented in thispaper include:

Crack length, mm

Fig. 13: Crack length vs residual strength

e  NI-MVCCI technique for fracture analysis
e  XFEM for stiffened panels

e Improved Wheeler residual stress model to
account for retardation effects due to overload

e  Residud strengthevaluation usingremaininglife
approach

NI-MVCCI technique has been demonstrated
for 4-noded bilinear, 8-noded Serendipity (regular &
guarter-point), 9-noded Lagrangian and 12-noded
cubic isoparametric finite elements. An overview on
XFEM for fractureanalysis of structural components
has been presented. Methodol ogiesfor crack growth
and remaining lifeassessment of structural components
under constant and variable amplitude |oading have
been presented. Brief detailsrelated to eval uation of
residual strength has been highlighted. Numerical
studies on fracture analysis to compute SERR and
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SIF and remaining life assessment have been
conducted and the results are compared with the
respective analytical/experimental results. From the
studies, it is noted that the fracture parameters
computed are in good agreement with those of
literature values. Damagetolerant curvesintheform
of S-N curves have been devel oped for various stress
ranges. These curves are very much useful for design
of the structural components under fatigue loading.
Crack growth analysis and remaining life prediction
has been carried out for stiffened plate with centre
crack under constant and variable amplitude loading.
The residua strength has been evaluated by using
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