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An accurate analytical solution for predicting the free edge effects in sandwich laminates under tension, bending and
twisting loading is presented. The recently developed mixed-field multiterm extended Kantorovich method (MMEKM)
has been used to obtain the solution of the governing equations, which are developed using the Reissner-type variational
principle. The present mixed-field approach enabl es the exact and poi nt-wise satisfaction of traction-free edge and interlaminar
continuity conditions for displacements and stresses. The numerical results presented for different loadings and lay-up
show rapid convergence of theiterative series solution. The comparison of the present resultswith the detailed FE solution
shows good agreement. The present sol ution capturesthe singularity of stressesin the free edge region by showing therise
inits peak magnitude with the number of termsin the solution. The presented accurate 3D el asticity based solution can act
as a useful benchmark for assessing the accuracy of solutions obtained from other approximate methods.
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Introduction

With the wide use of laminated composite and
sandwich structures in many advanced applications
(aerospace, automobile, naval, civil etc.), the
vulnerability of such structuresto delamination damage
initiating from the edge region has been a serious
concern among the designers. The occurrence of
localized interlaminar stresses near the free edge/
boundary region is known to be the main reason for
initiation of such damage, and iscaused by thematerial
and geometric discontinuitiesthat exist at theinterlayer
regions at the free edge boundaries. The devel opment
of such threedimensional (3D) stressesin thevicinity
of free edges under various loading conditions are
commonly known as the free edge effect, and has
been a topic of intense research since the work of
Hayashi (1967). In thiswork, an accurate analytical
3D dasticity based solution for the free edge stress
field in sandwich laminates under axial extension,
bending and twisting loadingsis presented.

Comprehensive reviews of various
methodol ogies used by researchers for studying the
free edge effects have been reported by Mittelstedt
and Becker (2004, 2007) and Kant and Swaminathan
(2000). Subseguent to the initial work of Hayashi
(1967) and Puppo and Evensen (1970), where they
presented approximate solutions for transverse
interlaminar shear stresses by neglecting the
transverse normal stress, Pipes and Pagano (1970)
presented a finite difference (FD) solution of the
complete system of 3D elasticity equations for the
free edge problem. Thereafter, there has been a
continuous effort to obtain accurate solutionsfor the
free edge problem based on 3D elasticity, satisfying
all boundary and interfacial conditions exactly at all
points.

Various numerical methods such as the finite
element (FE) method (Wang and Crossman, 1977;
Raju and Crews, 1981; Lessard et al., 1996), the
boundary element method (Davi and Milazzo, 1999)
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and the scaled boundary finite element method
(Lindemann and Becker, 2000) have been employed
for the free edge problems. The limitations of such
numerical methodsin accurately predicting the stress
field in presence of sharp gradients and possible
singularities are well known. Various approximate
analytical/semi-analytical solutions have been
presented, to overcome these issues. Cho and Yoon
(1999) extended the L ekhnitskii stress function based
solution of Flanagan (1994) for the free edge stresses
in composite laminates under extension loading,
employingtheiterative extended Kantorovich method
(EKM) (Kerr, 1968). This method has been further
extended to obtain the free edge stress solution for
symmetric laminates under bending, twisting and
thermal loadings (Cho and Kim, 2000). In another
development, Andakhshideh and Tahani (2013a,b)
adopted a displacement based formulation in
conjunction withthe multiterm EKM for the freeedge
stress analysis of finite rectangular plates under
extension, shear, bending, twisting and thermal
loadings. The stress based formulationsfail to satisfy
pointwise interlaminar continuity conditions for
displacements. On the other hand, in case of
displacement based formulations, the interlaminar
stress continuity and traction free edge conditionsare
not satisfied exactly at al points, but in an average
sense. In both formulations, therefore the accuracy
of predicted interlaminar stresses becomes
guestionable. Recently, the author group has presented
amixed-field multiterm EKM (MMEKM) solutionfor
the free edge stress analysis of composite laminates
under thermomechanical loadings (Dhanesh et al.,
2016). The governing equations are devel oped using
the Reissner-type mixed variational principle for
composite laminates, consi dering both displacements
and stresses as unknown variables. This approach
allowsexact satisfaction of thefreeedgetractionfree
conditionsaswell asinterlaminar continuity conditions
of displacements and stresses in a point-wise sense.
It al'so ensures the same degree of accuracy of the
displacements and stresses.

All of the above mentioned studies on free edge
stress analysis deal with composite laminates. Very
few studies, however exist on the free edge effect in
sandwich structures, which consist of relatively thin
and stiff face sheets separated by a relatively soft
thick and lightweight core. Such structures are
preferred in applications where a higher bending

stiffnessis required, maintaining the light weight of
the structure. Because of widely different material
propertiesof the face sheet and core, the 3D elagticity
solution may face numerical difficultiesin solvingfor
sandwich laminates. Lovinger and Frostig (2004)
presented a hybrid approach for the study of free
edge effects in soft core sandwich plates which is
supported only at thelower face sheet, employing the
classical laminate theory (CLT) approximations for
the face sheets and 3D elasticity theory for the core.
Theanalytical solution for bending, thermal, moisture
loading conditions was obtained by using the EKM.
Afshin et al. (2010) employed Reddy’s layerwise
theory (LWT) to study the free edge effects in
cylindrical sandwich panel. Recently, a closed-form
solution for the free edge stress field in sandwich
structure subjected to differential temperature and
mechanical loading has been presented by Wong
(2015, 2016), following the strength of material
approach. In thiswork, the face sheets are modelled
as beam elements and the soft core as an elastic
medium. The approach leads to a discontinuous
peeling stress at the interface between core and face
sheet layers. Such smplified 2D theory based solutions
generally lead to inaccurate prediction of the 3D free
edge stress field. In the present work, an accurate
solution for the free edge stress field in sandwich
laminates under tension, bending and twisting loadings
ispresented using the recently devel oped technique,
MMEKM, of theauthor group (Dhanesh et al., 2016).
The convergence of the iterative series solution and
its comparison with the detailed FE analysis are
presented. The results are obtained for sandwich
laminates having both cross-ply and angle-ply lay-ups
for the face sheets.

Governing Equations

Reissner-type Mixed Variational Principle

To study the free edge effect, an elastic sandwich
panel having stiff unidirectional composite facesand
a soft core is considered. The infinitely long (y-
direction) panel has awidth a in the x-direction and
thickness h in the zdirection. The panel has free
edgesat x =0 and x = a. It is subjected to auniform
axid strain (g,), bending (), and twisting curvature
(©) as shown in Fig. 1. The reference xy-plane of
the L-layered panel is located at the mid-surface of
the panel. The layers of the panel are numbered from
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Fig. 1: Geometry of the sandwich laminated panel with free edges subjected to extension, bending and twisting loading

bottom to top, and the z-coordinate of the upper
surface of the kth layer with respect to the xy-plane
is denoted as z.. The thickness of each layer can be
different, and for kth layer it is denoted as t9. The
fibres of the unidirectional composite laminas are
oriented at an angle 0 with the x-axis. The principal
material axis x, of all thelayersis oriented along the
z-direction.

Since the problem falls under the class of
generalized plane deformation as described by
Lekhnitskii (1963), the displacement field u,(x, y, 2)
inthelaminate under extension, bending and twisting
loading can be written as

U =u(x,2)-0yz+mw,z—0,y+U,

U, =V(X,2) — (€, — o2 Y+ 0 X—®,Z+V, (1)

u —W(xz)+X°y2+G) -
3 = WX 2) + 50+ OXY 0,y ~0,X+ W

whereu, (i =1, 2, 3) are the displacement components
inx, yand zdirection, respectively. u, vand w arethe
unknown displacements, which arefunctionsof xand
z coordinates. The constants Ugy Vor Wo and Wys Wy, We
characterizetherigid body translations and rotations
of the panel, respectively.

Using the displacement field given in Eg. (1),
thenormal and shear strains, ¢; and -y, can be obtained
as

€, =U,, € =€~ XoZ €, =W

Yy =V, tOX Y, =W, +U,, ¥, =V, -0z (2)

where asubscript commafollowed by x, for example,
denotes partial differentiation with respect to x.

For the kth layer, the constitutive relationship
between the strain (aij) and stress (aij) components
in the plate coordinate system (x, y, z) can be
expressed as

& | |31 S S5 0 0 5|0

& | |32 S %% 0 0 50,

€ | |Ss Ss S» 0 0 540,

Y.| [0 0 05, S5 0|1, 3
Y x 0 0 0 55 5 Ojfr Zx
|V [Ss S S 0 0 S |txy|

where §; are the transformed elastic compliances,

which can be expressed in terms of the engineering
properties, namely, Young’s moduli Y;, shear moduli
Gij and major Poisson’s ratios v (Jones, 1999). Upon
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substitution of gy from Eq. (2) into the corresponding
congtitutiverelationin Eqg. (3), oy isobtained as

0, =&~ %025, —(5,/5,)0,

—(85/5,)0, _(§26/§22)Txy (4)

Substituting the above expression, o, can be
eliminated from the other constitutive relationsin Eq.
(3) as

& =PO,t PO, + plGTxy + §21(80 - XOZ)’
€,= POy + P30, + Pyl + S50 %02 (5)

Y = PeiOxt Pe0,F Pelyy + S6(€0— %02

where p; =S, —S,S;; /§22’§21 =S ISy,,, fori, j =
1, 3, 6. The governing equations for the free edge
problem are developed using the Reissner-type
variational principle (Shamesand Dym, 1985) for linear
elastic medium, which can be written as

[Bue,,+0,,)

+ov(t | +OWO ,, +T )

+80x(8x - u,x) +d0 z(gz - Wz)

T, (), —V,) (6)
+6‘EZX(’YZX _u,z _\N,x)

43T (1, ~V, )]V
[ (" -T"8udA-[ T/5udA=0,¥8u,50,,5t,
A A,

where V denotes the volume of the panel per unit
length. The summation convention for repeated
indices holds for i and j. A; and A, denote,
respectively, the surface boundaries where tractions

T" and displacements T, areprescribed. T" arethe

components of the traction T, givenby T," =o;n;
wheren. denotesthe direction cosines of the outward
normal f to the surface. The areaintegral termsin
Eq. (6) vanish, asall the surface boundary conditions
are sought to be satisfied exactly. Upon substitution
of the strain field obtai ned from strai n-di splacement
relationsin Eg. (1) and constitutiverelationsin Egs.
(3) and (5), thevariational statement in Eqg. (6) reads

[Bue,,+0,,)

HOV(T,,, +T,,)tOWO,, +T,,)

+36 , (PuO « + Pus , + PigT oy + 51 (€ — X02) —U,)
+00 (PO  + PaiO , + PagT oy + 55 (€0 — X02) —W,)
T, (S,Ty, + ST —V, —OX) (7)
0T, (ST, + ST —U, —W,)

+OT , (PesO « + PecO , + PecT oy

+S,(ep — X02) —V, +OZ)]dV =0,Véu,, b0, ,67”.

Boundary and Interface Conditions

Theboundary conditionsassociated with the free edge
problem considered in the present study are the
traction free conditions at the bottom and top surfaces
of the laminate and at the free edges, and the
interlaminar continuity conditions assuming aperfect
bonding between the layers at the interfaces. These
conditions can be written as:

(i) traction free conditions at the bottom and top

surfaces (z=Fh/2):

6,=0t,=01,=0 (8)

z yz x

(if) continuity of displacements and stresses at the
interface between the kth and (k + 1L)th layers

k
(U,V, W,G Z’T yzvr zx) |(Z=)Zk

= (U,V,W,6,,T,,,T,) [ (©)

(iii) traction free conditions at the free edges at x =
0,a

6,=0,7,=0,7

w =0 (10)
MMEKM Solution of Governing Equations

TheMMEKM solution considers both displacements
and stresses as primary variables. Thefield variable
vector is defined as

X=[uvwe,c,7,1,1,]" (11)
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Thefollowing normalized coordinates ¢ and ¢
are introduced for the in-plane and local thickness
coordinate for the kth layer such that they vary from
Otolfor0< x<aand z,< z< z, respectively.

E=xa, (Y=(z-z )Y (12)

The solution of the field variables X (&,¢) is
expressed as an n-term series of the product of two
independent functions f'(€) and g'({) inthein-
plane and thickness direction, respectively.

n

XE0=Y € g ©) (13)

i-1

Functions g/({) are defined separately for

each layer, whereas functions f,'(§) are the same

for all layers. The analytical solutions for these
functionsare determined iteratively, satisfying all the
boundary and interlaminar conditionsspecified inthe
previous section. Each iteration processinvolvestwo
basic steps, which are described bel ow.

Step 1: Solving for Functions g; (¢)

In the first step of an iteration, functions f' () are
treated asknown from the previousiteration, and the
functions g'({) for each layer are determined. In
thefirgt iteration, thefollowing trigonometric functions
arechosen asinitial guessfor f'(€):

€)= 1E)=1E)=fs(€)=cosint
€)= f,€)="f€)=f€)=sinin (14)

Unlike other approximate methods of solving
PDEs (e.g. Ritz and Galerkin), the EKM does not
warrant theinitial functionsto satisfy the prescribed
boundary conditions and the selection of initial
functions does not have any adverse effect on the
accuracy of the final solution. Since the first step

considers f,' () asknown, thevariation 6, obtained
from Eq. (13) reads

n

5 X :2 f'€)d g, (15)

i=1

The unknown variablesin thefirst step, g/ (C)

for each layer aredivided intotwo groups G and G
asfollows:

G=[0,070,050,0; O 0c0, 05 Os Tl

G=[d, a; g, o' (16)

where G contains those displacements and stress
components appearing in free edge boundary and
interlaminar conditions [Egs. (8) and (9)], and G
which contains the remai ning two stress components,
which are the dependent variables. Now, substitute

X, and its variation ¢X, from (13) and (15) into the
variational equation (7), and perform integration over

the ¢-direction. Sincethevariations § g/ arearbitrary,

the coefficients of § g' in the integral must vanish

individually, which resultsin thefollowing first order
differential-algebraic system of equations for each

layer
MG, =AG+AG +Q (17)
KG=AG+0 (18)

where matrices M,K,A,K and A are of size 6n x

6n, 6N x 6n, 6N X 2n, 2nx 2nand 2n x 6n, respectively.
The nonzero elements of these matricesareidentical
to those presented in Dhanesh et al. (2016), and are

omitted herefor brevity. Q,Q aretheload vectorsof

size 6n and 2n, respectively. The nonzero elements
of these load vectors are defined using the notation,

()a = afol(- --)d&, which denotestheintegration over
the span length a:

Q,=-0at(E 1)) ,Qs=15(f) €~ xctL),
Qu=-8, (1)), &~ xotd), (19)

Q, =8 (fs) @&~ Xotl) - O(Fe) (2, +1C)
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where £ =¢, - %,z - All integrals appearing in
the elements of the matrices in Egs. (17)-(19) are

evaluated exactly in closed form. The following 6n
first order ODEsin ¢ are obtained after eliminating

G (obtained from Eq. (18)) from Eq. (17)
G,=AG+Q (20)
where
A=M7A+AKA] and Q=M [Q + AK Q]
The solution of the abovefirst order ODES can

be obtained anaytically in closed form, and the general
solution can beexpressed intermsof 6nreal constants

cl as
I

BL=JROCK+U,+LU, ()

where the elements of the column vector F,(¢) are
expressed using the exponential and trigonometric
functions of ¢ in terms of the eigenvalues and
eigenvectors of A. U, and U, are the particular
solution vectors corresponding to the constant and
linear loading terms of Q. The detailed solution
procedure is omitted here for brevity and the same
can befound in Kapuriaand Kumari (2011). The 6n

x L unknown constants C* ’s for L layers are
determined from the following 6n surface boundary

and 6n x (L-1) interface conditions, obtained from
Egs. (8) and (9):
for k=1, a {=0:9;=0, g,=0,g;=0,
fork=L,a{=1:9.=0, g,=0, g,=0 (22)
(91 G5+ 9av G5, 97, Ga) K2,

=(9 02 95 G5 97, B S (D)
fork=1,2,...(L-1)andi=1,2,...n. The solution
G() obtained after solving the system of ODESsis
now substituted back into Eq. (18) to yield G(Z).

This completes the determination of functions g/ ({)

for al the L layers, and concludesthefirst step in an
iteration process.

Sep 2: Solving for Functions f,'(£)
Inthe second step of iteration, the solution for functions
inthein-planedirection, f;'(€) isobtained. Here, the

solution for gj({) obtained in the previous step is

considered asknown, hencethevariation oX obtained
from Eq. (13) reads

5 X =igf ©€)sf (29)

Similarto g/ () , functions f'(£) asodivided

into two groups F and F asfollows:
F =[ fli... fln le fzn fe,l fan f4i... f4n fei... fen fsi... fgn]T

F=lfg £/ f, T (25)
Now, substitute equations (13) and (24) into the
variational equation (7), and perform integration over
the thickness direction ¢, as g; ({) are known. The

coefficients of § f' in the resulting expression are

individually equated to zero, sincethevariations are
arbitrary. This yields the following 8n differential -

algebraic equationsfor unknowns f,':
NF, =BF +BF +P (26)
LF=BE)F+P (27)

where N,B,B,L and B are matrices of size 6n x

6n, 6nx 6n, 6N X 2n, 2nx 2nand 2n x 6n, respectively.
The nonzero elements of these matrices are as given
in Dhanesh et al. (2016), and are omitted here for

brevity. P and P represent the load vectors of size
6n and 2n, and their nonzero elements obtained as

i =20($a0k), = Xo(Sa(Ba + )0k),

R, = €0<§26gf2>h B X0<§26(Zk‘1 i )gg>h
10 (2, +10)5),

F?l = —80<~%39i5>h * XO<§23(Zk—1 +tc )gi5>h
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7, -cet (g)), 2

1

where the notation (..., = thlt(k)fo (..)"dg

representsthe integration across the thickness of the
laminate. Similar to the first step, al integrals in
nonzero terms of the above matrices are evaluated
exactly in closed form. Sincetheresulting differential -
algebraic system of equations in this step ((26) and
(27)) are of same nature asin the previous step ((17)
and (18)), the solution procedure remains the same.
The unknown constants are obtained from the free
edge boundary conditions obtained from Eq. (10),

writtenintermsof f' as
f,=0,f,=0,f, =0,i=12,..,n

The solution of F(§) and F(&) completesthe
second step, and oneiteration in the solution process.

The stepsfor computing g ({) and f/'(€) are

repeated until desiredlevel of convergenceisachieved.
For a particular problem, the convergence study is
performed by obtaining the solution using different
number of terms (n) in the solution approximation.
From the previous studies on composite laminates, it
has been observed that the solution for each term
convergeswithin two to threeiterations, and in most
of the problems, an accurate sol ution can be obtai ned
with five to six terms. The convergence of the
MMEKM solution for free edge problemsin sandwich
laminate will be verified in the numerical results
section.

Numerical Results and Discussions

Numerical results are presented for the free edge
stressfield in soft-core sandwich panelswith the lay-
up configurations as shown in Fig. 2. Five-layer
sandwich panels having athick central core and two

Table 1: Material Properties

\ Face 90" | 0.05h | Face 45" | 0.05k
[ Face 0" ] 0.05h | Face 45" | 0.05k
Core } 0.80k > Core } 0.80h

Face 78 0.05h | Face 45 i 0.05h
Face  o90° 005k [ Face 45 ) 005k

{a) Cross-ply sandwich panel (b) Angle-ply sandwich panel

Fig. 2: Lay-ups of sandwich panel

thin composite face sheets at its bottom and top with
cross-ply [90/0/core] .and angle-ply [45/-45/core] | ay-
ups are considered. The material properties of the
soft-core and face sheet layers are selected from
Kapuriaand Achary (2006) and are presented in Table
1. The span-to-thicknessratio of the panel considered
isS=a/h=5. The numerical results are presented for
theextension (g,), bending () and twisting (©) load
cases. Theresults are normalized with respect to the
corresponding load asfollows:

Extension:

6,7 Tx) =0,T,T,)SIYE,
Bending:

(G, T T,)=(0,1,,1,)S 1aY,x,
Twiding:

(6, Ty T Ty) = (0T, T 5T ,,)S/AY,0

A dimensionless global thicknesses coordinate

{ =z/h varying from -0.5 to 0.5 is introduced to
present the through-thickness distributions of stresses.

Uniform Extension

First, the cross-ply sandwich panel showninFig. 2(a)
under unit axial strainisconsidered. Fig. 3 showsthe
longitudinal distributionsof theinterlaminar transverse

Materia Y, Y, Y, G G,, G;, (I (T Upg
Face! 131.0 6.9 6.9 3.588 2.3322 3.588 0.32 0.32 0.49
Coret 0.2208 0.2001 2.76 0.01656 0.4554 0.5451 0.99 3x10° 3x10°

1K apuria and Achary (2006)
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