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INTRODUCTION

The method of normal co-ordinates (Wilson, 1939 and 1941) has been applied
in the following calculations for the molecule BFy. Of the two plausible models—
Pyramidal and Plane symmetrical—for BF3, the latter has been used in the present
calculations as it has been confirmed both by electron diffraction experiments
and measurements of dipole moments (Herzberg, 1945). In the plane symmetrical
model BF3 has three in-plane and one out-of-plane vibrations. The simple valence
force field is inapplicable to account for the out-of-plane vibration unless a separate
angle bending constant is introduced. In this paper, the stretching, bending and
interaction force constants are calculated with the observed Raman and infra-red
frequencies (Herzberg, 1945) of B''Fy. The correctness of these values is verified
by utilising the set of force constants thus obtained to calculate the corresponding
frequencies for the isotopic molecule B'YF, and comparing these with the
observed values.

CALCULATIONS

The Plane symmetrical BF3 molecule belongs to the point group Ds;,. From
the group characters, it is seen that this molecule has one non-degenerate type 4,’
vibration, one non-degenerate type 4" vibration and two doubly degenerate type
E," vibrations. Qut of the above six modes, one is non-planar type 4,” vibration,
which is not considered in the present paper.

CONSTRUCTION OF THE SYMMETRY CO-ORDINATES

The internal co-ordinates from the structure of the molecule are Ad;, dds,
4dds, the changes in the three B-F distances and Aa;, Aa,, Az, the changes in
the inter-bond angles. (Fig. 1.) The symmetry co-ordinates for each species are
constructed as linear * combinations of equivalent internal co-ordinates in such
a manner that they satisfy orthogonality, normalisation and transformation t
properties. In this case 4d;, Ady and Adg form one set of internal co-ordinates,
and de;, das and dag form another sct of internal co-ordinates. The set of
symmetry co-ordinates thus formed is given below. For the type 4,’ vibration,

R, =8"Yddy+ddot-4ds) .. .. .. .. (1
Ry =37 (4o, +dag+das) =0 (Redundant co-ordinate)

* Most general expression for the symmetry co-ordinate is R, = P Uy, 7y, Where ry is the k-th
k

internal co-ordinate and Uj 5, 18 the coefficient of k-th internal co-ordinate in j-th symmetry co-ordi-
nate, the condition for normalisation and orthogonality being 3, (U, J-k)2 =1 and } Uijlk =0

k k
respectively.

1 Each symmetry co-ordinate should transform according to the characters of the vibration
type concerned under all covering operations of the point group of the molecule,
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Fia. 1.
F,, F,, Fg are the three fluorine atoms.
B—-F,=d,, B-F,=d;,, B—Fy3=d;.

For the type E, vibration v
Ry, = 671 (24d,— Ady— Ady)
R, = 27} (ddy— Ady)
Ry, = 674 (240; — Aoty — du)
Ry, =27} (day—day)

where the suffix a and b denote the degenerate vibrations. Since there are only five
vibrational degrees of freedom, only five internal co-ordinates are necessary to
define them. But from the structure of the molecule there are six internal co-
ordinates. Instead of ignoring one of the internal co-ordinates, one symmetry
co-ordinate is constructed in such a manner that it is identically zero. This is
justified as this co-ordinate contributes nothing either to P.E. or to K.E. In this
case Re =37} (doy+ dog+duy) is considered to be the redundant co-ordinate, for
the sum of the changes of all the angles in a plane around a point is zero.

TRANSFORMATION MATRICES .

The transformation matrices which transform the internal co-ordinates of each
type of vibrations are then determined. Transformation matrix U for the type
A,' vibration is

All Adl Adg Ad3 Ad.l Aot2 Aocs

R, |33t 37t 37t 0 0 0
For the type E,’ vibration it is written in two ways. Considering the coefficients
of the internal co-ordinates in R,, and Rj3, the U matrix is

(2x6‘* —-6"F —g7t 0 0 )
0 0 0 2x6°t —¢t —g°t

2

(3)
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and considering the symmetry co-ordinates B, and R,,, the U matrix is

3562

(0 27t o7t 0 0 )

0 0 0 0 9=t _g-i (4)

The following table explains the transformations of the internal co-ordinates under
all the covering operations of the group D,, .

E o (05:8) (6;.8) (Cna) (Co) (o)
4d; - 4d, Ad, Aad, Adg Aad, Ady 4d,
Ad, — Ad, Aad, Adg 4d, Aadg Ady Ad,
Adg ~ Adg Adg 4d, 4dy Aad, 4d, Adg
Aoy ~ Aoy Aday Ay Adag Adaxy Aag Aoy
Aoy~ Aoy Ay Aag Aday Aoy Ay Aoy
Aag ~> dag Adaxg Aoty Aoy das Aoy Aoy

With the help of the transformation table and the coefficients of the internal
co-ordinates, the transformation property of the symmetry co-ordinate is verified.

F MATRIX ASSOCIATED WITH THE POTENTIAL ENERGY OF THE MOLECULE

The general * quadratic potential energy in terms of valence type co-ordinates
is assumed and is given by

2V = f, (Ad> + Ad2+ Ady) +d°f,, (Ao’ + Ao® 4 Aol
%, (Ad\Ady+ Ady Ady+ Ady Ads)
2df,, , (doy+ Aotg) Ady + Aoty + Aots) Ady+ (des + dug) Ady
2d° f,,, (doy datg + Adag Ao+ Aoy dtg)

where f, is the force constant associated with bond stretching, J, that associated
with bending and f,,, f,, and f,, are the constants representing the interactions

between stretching and stretching, bending and stretching and bending and bending
respectively and ‘d’ is the equilibrium length of B-F bond. In this P.E. function
there are thus five force constants to be determined only by three frequencies.
Hence the stretching force constant f, is calculated from Badger’s (Badger, 1935)
rule. The remaining four are determined by the three frequencies, f, and f,,

having been obtained only as a difference (f,—f,,)-

* In case of valence force field, P.E. is given by 2V = Xf,, r, 7, (Whittaker) whers f;, = f;

is the force constant associated with ¢+ and k which extend over all internal co-ordinates. In
terms of the symmetry co-ordinates 2V = Z'Fjl Rj R,, the relation between f and F being

F=UfU".
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The f matrix associated with the potential energy function is

[ Lo fu df sy 0 dfy, ]
T fo f g dfyy 0
fuo  fu 0 Afyy  dfny
dfy,  df O &, s a ©
0 Ay, W AT fy A

| Ay O Boy  Cfua  Tfay Ay

The matrix F for type 4," vibration consists of only one element and that is
given by
Fio=f+2f, . . . o (N

and that of &, consists of four elements

Fay F23—| ~ (fa—t ) gfocd _l
Fa Fu | | S, @t |

The elements will be the same whether the expression (3) and its transpose or (4)
and its transpose matrices are used. In these calculations the latter matrices are
used as they involve more vanishing elements and thus lessen the labour.

G MATRIX ASSOCIATED WITH THE KINETIC ENERGY OF THE MOLEQULE

The elements of the kinetic energy matrix for the non-degenerate type 4,’
vibration are obtained from the equation (9) and for degenerate type E,” vibrations
the equation (10) is used. It has been shown by Wilson that the K.E. can
be expressed as a dot * product of two vectors and finally written in the form of a
matrix. As there are three cquivalent fluorine atoms it is enough if the vectors
are obtained for any one of the atoms. The following is the set of the s,, vectors

used. (Cleveland, 1948.) Boron atom

Sip = -V Sap = \/g(vl‘l‘ VZ)/d
S48 =—V2 Suyp = V3¢ (Vat+ V) .. @8
8433 == '—Vg 80‘33 = '\/§€ (V1+ V3) )
* sz=2ﬂpgpS§-SiWhereS;=%'Ujkskg and .. e ()]
4
@y =1 X, 9,(5" . sja+s;b. Shto) )
P .

where y , is reciprocal mass of the atom in p-th set of equivalont atoms g, the number of equi-
valent atoms in p-th set and « is the degree of degeneracy. (Wilson.)
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Fluorine atom

S =V1

4 F

~V1/24 V) V3/2, where € = 1/d, d is the B-F bond length.

1

18y
Suyr, = € (—V1/2— V) V/3[2

The rest are zero.

Vi, Vo and V3 are the unit vectors directed along the bonds (shown in
Fig. 1). In these calculations, «; = ay = g = 120° as obtained from the electron
diffraction experiments. (Pauling, 1939 and 1941.)

From these s,, vectors and the coefficients of the internal co-ordinates of the

symmelry co-ordinates, the following S;. vectors can be easily obtained.

8% = —(Vy+ Vot V) 374 ST =V./V3

1

S0 =18 (=2Vi+ Vo4 Vy) Sl =2V,/A/8

8p =1/4/2 (Vs—V2) 871 = 2¢/1/18 <V3—2VD—E—) .. (D

82 = ¢/\/2 (V1+Vo—2Vy) S5l = 2e/4/6 (V1/24V3)
Sp,=V3[V2 (Vo

The only element of G matrix for type 4," vibration is

Gll:”F .. . . . .. (12)
The four elements of @ matrix for type E,’ vibrations are
B —3./3
Ga2  Gos (3/2 pptay) rata: _]

- — 7
Gz Gs3 ‘_ 34"/3 kg (9y3+ 3 f‘p) J

where p, and uj are reciprocal masses of the Fluorine and Boron atoms respec-

tively. *
The secular equation for type A," vibration is given by

A=F11G11 .. . . .. (13)

where ) = 47-;21»? ¢2, vy being the frequency in cm.”™" of type A’ vibration. For
the doubly degenerate vibrations the secular equation is

Az'—')\ (F22G22+2F23G23+F33G33)+ fFl.)G[ = O . . (14)

The force constants are calculated by solving the two secular equations (13} and
(14) making use of the following data:—

vy = 888 em. ™! type 4.’ vibration
vy = 1445-9 cm.”

1
} type B’ vibrations . .. (15)
vy = 4804 cm, ™
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po = 5469x10% gm.™*
pp = 3169x 107 gm.™!
B-F bond length = 1-302 &
f, = 7-099x 10° dynes/cm. (Badger’s rule).
At this stage the numerical values should be substituted.
From (13) f,+2f,, = 8:833x10° dynes/cm.
Hence S, =0867x 10° dynes/cm.

Substituting the two values for A as obtained from the two frequencies 4804 and
1445 9 in the equation (14) simultaneously, we obtain

30156 (f,—foo)—7104f, = 11-57x 10° .. .. (16)
—73:08 f2,+1821-5x 105 (f,—f,,) = 608x 10" .. .. (17)
From (16) and (17) it is seen that
73-08 f5,—429-1 f, ,—90-8 = 0 S €3}
Equation (18) leads to two sets of values which are given in the following table:—
T Set IT Sct
fa 7-099 x 10° dynes/cm.
(Badger’s rule)
fu 0-867 x 10° dynes/cm.
Soa —0-2052 ” 6-077
Sa—Tsa 0-3352 » 1-814

CALCULATIONS OF THE FREQUENCIES OF B''F,

The force constants of the first set are used in calculating the corresponding

vibrational frequencies of the isotopic molecule B'"F5. The same formulae hold
good for the isotopic molecule but with different numerical values for the elements

of the K.E. matrix since the value of ,ug) is different*from that of u} . Further,
the element of the K.E. matrix for type A4,’ vibration is equal to p, and is thus

seen to be dependent only on the mass of the Fluorine atom. Hence the corre-
sponding frequency of the totally symmetric vibration of the isotopic molecule

BY°F, is expected to be the same as that of BY'F;. In these calculations u 0=
B

6-010x 10°* gm.™!
The calculated and the observed frequencies are shown below:—

Calculated Observed
888 cm.™" 888 em. ™"
1499 ,, 1497 ,,
497 ,, 482 ,,

The agreement is found satisfactory.
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VERIFICATION OF THE PropucT RULE

Finally the product rule formulated by Redlich and Teller is verified. The
rule states that the product of the frequencies of a certain molecule divided by the
similar product for the same molecule with isotopic atoms is independent of the
P.E. function and depends only on the masses and geometric situation of the case.
Wilson expressed this in terms of the K.E. matrix elements and shows that

I, 2 L
A 1G]
Where IT) A is the product of all X's of the same symmetry class as G.

The primes refer to isotopic molecule. (Glockler, 1943.)
For the type £’y vibration

AN _ ugmxasee
I, ) T 144592 x 48042

| &

12112

|G |

ABSTRACT

Wilson’s F-G matrix method has been applied to determine the force constants for the
plane symmetrical molecule BF;. The set of the force constants thus obtained are used to
determine the vibrational frequencies of the isotopic molecule B10F,.
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