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1. INTRODUCTION

In recent years, the Lie-algebras of the orthogonal group, considered as asso-
ciative algebrag generated by a number of symbols satisfying a set of relations have
been found to be of importance in the theory of elementary particles in Quantum
Mechanics. The Clifford-Dirac algebra of 4 symbols which is the Lie-algebra of the
orthogonal group in 5 dimensions was employed by Dirac in his theory of the
electron whose spin is . Explicit matrices of the representation of the Clifford-
Dirac algebra with any number of symbols were given by Brauer and Weyl (1935).
The Lie-algebra associated with an elementary particle of spin 1 was investigated
by Kemmer (1939) and the matrices of the representations were obtained in an
explicit form by D. E. Littlewood (1947).

The investigation of the Lie-algebras for higher spins is more complicated. It
was, however, proved by Madhava Rao, Thiruvenkatachar and Venkatachaliengar
(1946) that the algebra for the case of half-odd-integral spins is the direct product
of the corresponding Clifford-Dirac algebra and another algebra called the £-algebra
generated by the symbols &, &s, . ... £, satisfying the commutation rules

(i) {fn {fr: fs}} = fs,
(ii) [fr) {fnf‘}]=0; r;és;ét,

where {a, b} is the anticommutator ab+ba and [a, ] is the commutator ab—ba.
This direct product resolution simplifies the problem of determining the irredu-
cible representations of the Lie-algebra considerably. The matrices of the irreducible
representations of the Lie-algebra are then the Kronecker products of the matrices of
the irreducible representations of the £-algebra and those of the corresponding
Clifford-Dirac algebra. In the case of spin 4, the symbols generating the original
Lie-algebra satisfy a quartic and the corresponding symbols £, satisfy the quadratic

£ = -t

In this paper, we take up the investigation of the £-algebra 4, generated by
the n symbols &, &, . .. &, with spin §. We show that the centre of the algebra is
generated by a single element § and obtain the minimal equation it satisfies. We

set £,_1 = wy,} { w1y wis} = wy and show that the irreducible representations of the
algebra A, are given by
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I (a) when »n is even ;
an (wn,n+1) = %Efl + (2r—n—6) 1 |
2(n—2r+4)
(n—2r+4)2—1 (2r—n—2)
(n—2r+4)2 2(n—2r+4)

X Efz'!' %Ef3

1<r< g+1

(b) when = is odd, we have the same expression for Du{w, n+1) as I(a) with

1<r<g n;—l and an additional representation.

.Dn, n+3 (wn, nt1) = %’ E’f4+_% Ef5
5 .

where E; is the unit matrix of order .
IL. Dulawp, p+1) = D1, v-1(@p, p+1)+Da-1,r (wp, p+1)
p=1,2,3,....(nm—-1).

By taking the anticommutators of the w,, ,+; repeatedly, we obtain the matrices
for £ .

We prove also that the dimension of the algebra 4, is given by the simple

1
expression pogrig) 2”: . It follows, therefore that the dimension of the corres-

ponding Lie-algebra of the orthogonal group is given by
2n+1 2n+ 1
n+2 n )
2. THE £-ALGEBRA

Let A, be the {-algebra generated by the n symbols £ £, ....¢

. £, which satisfy
the following relations :—

1) (@). £ =g

1) ®). (£, {8 EYY =¢&,5 (€, &) = EE+EE,.

(1) (o). [£, {6, 6}]=0 [§ £] =646,
r#&s#*t.

We set

§1—1= Wiy = Wy ; [T=2, 3, e (n+1)]
and

{fr—l, fs—l} = {wlr, wls} =@
It follows easily that {¢, fs}z =3—{¢ &}

* In the paper by Madhava Rao and collaborators referred to, ¢ is taken to satisfy

£ =f4+32. We have here replaced { by —¢ for the slight simplification of some of the
formulae.

iB
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Hence the w’s satisfy the relations :

(1) (. wy, = $—wpy (PFEQ).

(ll) (b) {wlf, wrs} = Wy

(1) (c). [wlf’ w,]=0; W, = @,
rZ 87

From 1’ (a), it follows that in any representation wy, has the eigen-values § or —4.
Consider a representation in which wy, is diagonal, say | A,.| and let w;; = [aqu

We have {o, @} =] ApFAg) ayl.
Since {w,, w, } = o,

(’\p+/\4)2 Opg = Qpq

4 /\P Upp = Qpp s
i.e. either Ap=+4ora,,=0.
Now spur w, = Y d,,

and
spur {w,, w, } = 22,0, =Y a,, =spur v,

Similarly, taking w,  diagonal, we obtain

Spur w, = spur {w, @, }.
We therefore have
(2) SpUr @, = Spur w, = Spur w,_ .

It is clear that (2) is true for any spin.

We now proceed to obtain explicit matrices for the irreducible representations
of the algebra 4, . From the theory of the orthogonal group (cf. F. D. Murnaghan :
The theory of group representations) it follows that the dimension formula for the
irreducible representations of the Lie-algebra (generated by » symbols) is

P .
20l m (2=r = 2k
(3) (@) Dz\lz\z..../\k=ll—[_ ]2k 1p<q( - )
and
k-1 k ( 2
3) (b) D = o (B-1 = 2k—1,
@ ( wew =z, T k)

where Ay, Ag, . ...A; are half-odd integers such that A, > A, > ... > A I, =2+
(k—p); I = I,4+%; and A; is the spin. Denoting by f,\l PYSRN the dimension of
the corresponding irreducible representation of the ¢-algebra, we have, since 2* (or
2¥-1) is the dimension of the irreducible representation of the Clifford-Dirac algebra
according as #n = 2k (or 2k—1),

DA Ay ... Ak
(3) (@) Didg o=
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: Dy a,....2
(3) () g =5 n=2k—~1.
If spin = 3, the A’s are all either § or 1.
Let f,.=/s,....5,4,....4 With ('—1) - $’s and (k—r+1) > {’s, r taking the

values 1, 2,....(k+1) where n =2k or 2k—1; there will be (k+41) irreducible
representations of the algebra 4, .

We obtain after some simplification that the formulae 3'(a) and 3'(b) both
reduce to

_ n—2r+4 (n+4+2
(4) f,,,=fg....g,}....§=7_‘,3_(,._1)
we define f =0 for r >n_—;_—é’ since f =0 for n=2r—4 and negative for

n<2r—4. ie. r takes the values

1,23,.... 32”+1 if n is even
and
1,23,.. ."T“,”f’ifnisodd,

We denote by D,, the irreducible representation (of the algebra A4,) whose dimen-
sion is f and by D,,(wp,) the matrix of representation for w,, in the representation
D,,.

It follows from the theory of the orthogonal group that the algebra 4, branches
over the algebra 4,_; according to the law

(5) D,, (wpq) = -Dn—l,f—l (wpq)'!'-Dn—l,r (wpq)
[1t is verified easily that fu, = fu.1,,-14+fn-1,-].

We next show that if §,, is the spur of any wy, in the irreducible representation
D,,, then

_p 12+ (5—4r)n+4(r—1)(r—3)

(6) Snr = fnr 2n(n+1)
— (o (n—1)n—2)... (n—ri-4)
= (n—2r+4) 2[1—_1

X {n24+ (5—4ryn+4(r—1)(r—3)}
Proof :

We assume the result to be true for the algebra 4,_; and prove it for 4,.
From (5) it follows that
8= Sn—1,1—1+Sn—1, r
Now Sn-l,r—1+ Sn-l, r =

%fl_#l (n—=2)(n—3) ... (n—r+3) {n2+(3—4r)n+4(r—1)(r—2)}

+

_ (n—2). . (n—r+4)[ (n—2r45)(r—1) {n2+(7——4r)n+4(r—2)(r——3)}+
2fr—1 (n—2r+43)(n—r+3) {n=+(3—4r)n+4<'r—1>(r—2>}]
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ie. Sn-l, 7—1+Sn—1, =

_(m=2)...(n
- 2[r—1

—r+4) [(n—2r+4)(n—1) {n2+(5_4r)n+4(r—1)(T—3)}:|

on simplification.
= S8,y
Now D, (wp) = % for all n so that 8,; = 1 and for the algebra A,, one can
see easily that
3

0 -3

Dyg(wg) = or Sz = —L

That is, the formula is true for §,; and Sy, and hence by induction it is universally
true.

3. THE IRREDUCIBLE REPRESENTATIONS OF 4,

We consider the algebra 4, as generated by the n symmetric symbols w,
Wz, « .. Wy, nt), - Wy oatl and define

wrs = {wiy, w15} 5 7 5 8 with the relations (1').

From (1') (¢) it follows that
[@pg, 0] =03 D, g5£s,t

Therefore, w, 4+ commutes with wyo, was, . .. wu-2 x-1, i.e. with the algebra
A,_2. We also have the branching law

Dir (@p,p+1) = Du-1,1-1(0p,p+1)F D=1, r (@p,p41) s p=1,2,3,... . (n—1).

We now show that—
(7) (@). When » is even

2r—n—6
2(n—2r4+4.
-Dnr (wn,n+]) = % Efl + X Efz‘!—%Efg
(n—2r+4)2—1 (2r—n—2)
(n—2r44)2 2(n—2r+4)

1<r<Z+1
(7) (b). When nis odd, we have the same expression for D, (ws, »+1) 88 (7) (@) with
1<7r < 1%1 and an additional representation
(8) Doy @nntt) = 1 Byt =4 B,
where Ey, By, Eyy Ey, Ej; are unit matrices of orders
S1=Fn-2,r-2
fo=Jn-2,¢-1

fS =fn—2,v
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f4 =fﬂ—2, n-1
2

f5 = fa—2, n+1 Tespectively
z
with B, =0fork <{0Oand £, = 1.

Proof :
We first of all determine Dy, n4+3 (wn, n+1) When n is odd. We have, by the
2

branching law, that D, .+3 i8 the same as D, _1, n+1 Over the algebra 4,,_;. Taking
5 '

z

2
the branching again over 4,_s we have

D,y ns3(wp,pr1) = Doz, n-1 (0p, p1)+ Doz, nt1 (wp, p41) OVET Az
2 2 ’ 2

(1 <p<n=-2).
Since w,, 41 commutes with the algebra 4,-¢ we have by the Schur lemma,

D,,, _,_,_;._3 (wn; ”+1) = /\1 Ej4+ Az Ef5-
2

Writing » = 2m+1, we have
3(m+3)(m+4)....(Z2m)

f4 ::f?.m—l,m= lm—l
_ _ (m42)(m+43)....(2m)
f5 '—f2m—1,m+1 = lm :
Hence taking the spur of ws, »41, we have
9 M fatAo fs = 8u ne3 = Some1, me2
.z
_ —3(m43)(m+4)....(2m)
[m. ’

ie. A3m4As(m+42) = —3
or A =1%and 2y = —4.
Thus, we have
(8) Dm_n'ﬁs (wﬂ, n+1) = lEﬂ}'i" _%Ef5-

2

To prove (7), we observe, first of all by the branching law, that
Dylwp, p+1) = Du-1,r=1(@p, p41) F+ Dy, {@p, p41) OVer 4,y
= Doz r-a(wp, p41) + Dz, r-1(wp, p+1)
+ Doz, r-1wp, p+1) T D3, f(wp, p+1) OVEr 4,_g
= Du-2,r-2(wp,p41) +E2X Dn_g,r-1(wp, p41)

-l‘- Dn—2, ,(wp’p+1) over An—Z-
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Since wy, »4+1 commutes with the algebra A, .2, we have by the Schur lemma,

Az Qog
-Dm-(wn,n+1) =an Efl + X Ef2+a44 Efg’
* lage a3z :
where fi=Fus 03 fo=Fuz, 1 fs=F0_s,-
2
: — 3
Since w”’ nrl = 4T Wn,n41,
11, a/44 = % or -—%, a22+a33 = 1

and
2
Qoo+ o3 Ay = §—ags.
Taking the spur of w,, »4+1, We have

a1 fy+(as2+ags) fo 4+ fy = Sy,

ie.
(10) (n—r+44) (nT:_-}-Sf)) ceo(n—1) {411 (— 27+ 6) — (n—2r+;ll(;z—r+3)
(n—2r+2) (n—r+2) (n—r+3)
i (r—1)(r—2) }
= (n—2r44) n—r+4) (n—r+5)....(n—1) «

2[r—1

X {n2+(5—4r) n+4(r—1) (r—3)}.

It is easily seen that (10) will be consistent for the value } only for ay; and ay, .
We now assume the result (7) for » = m and prove it for (m+4-1).
We have just proved that

[12% as
-Dm+1, r (wm+1,m+2) = %Ef' + 22 =3 xE’fl + %Ef.')
1 . asga 033 2 . 3
where Fo = Foer e o =fp1r5 f3=1F,, and e tags = —1.
Hence
SPUr (Wm+1, my2) = %fl—fé+12f3 = Smi1,r.
Now’

Dy, d@m, m+1) = Do, 71 (0m, ms1)+Dpm, » (0, my1) by the branching law

(2r—m—8)

T m=—9) 1
2(m—2r4-6
= 1B+ ( ) x B+ By

1 (m—2r4-6)2—1  (2r—m—4)
(m—2r+1)2 2(m—2r—6)

(2r—m—6)

2(m—2r+4) 1

+ L B+ X Bty By
’ Cl(m—2r4-4)2—1  (2r—m—2)

(m—2r4-4)2 2(m—2r4-4)




516 K. V. IENGAR & K. N. 8. RAO: LIE-ALGEBRA OF THE

where f =t -9’ Jo=Fn 0,0 3 =g, -1

fl =fm—2,r-2; f2 =fm—2,r-1 H fs =fm—2,r.
It follows easily from (1')(b) and (1’)(c) that {wss, w} = w, and hence

BPUL {@Wm, mi1; Wmt1, m+2} is also Smy1,r; we thus have

(m—2r+8) ., (m—2r+4)
(11) %f;*m) fo— mazzf;
—2r46
+age fi+ass f1— %—_—é—g ass fe
_ (m—2r+2)

mfz-l-%fa = 8pi1,r
[Observe that f;—f; =13 f;=fy =fs fy=h =13 fi=fo = £}

We also have

(12) ago+tagy = —1.
On solving for agy and agg from-(11) and (12), we obtain,
2r—m—=17

%22 = Sm—2r+5)
P 2r—m—-3
8 7 9(m—2r+5)
from ¢12§+a,,2 Qg3 = § —asy, We have

(m—2r+5)2—1
G200 = o B
m+6 m44

Hfap=%o0r —3,r= —5— or—g respectively and this is clearly not possible.
Hence agp 7 3 or —3 or agp ay3 7 0.
We now effect a similarity transformation of the matrices Dni1,r (0my1, meo) and

1
D th trix — .
m+1,r (wm, ms1) by the matrix Qg Efm, r-1 -i.-Efm,'
altered while in Dy sy, (Wmt1, mas) it changes agg to 1 and agy to agy azg. We have

thas proved the result for # = m+1 if it is true for » = m. Before completing the

This leaves D,y , (wp, my1) un-

proof by induction, we observe that the foregoing does not cover the case r = g +1

when = is even ; for then

Dm nt2 (wn-l, n) = -Dn—l, n (wn—l, ) +Dn—1, n+2 (w”—l,ﬂ)
2 2 ) 2

= "—l.p(ww-l,ﬂ)'i'%Ef”,_s ”_2+_%Ef” 3
2 te== %2

2 3
We therefore treat this case separately : i.e. writing » = 2p, we show that

Dyp, p1 (@ap, 9p41) = } By +

XEf
2p=2, p-1 .

-1 1
2p -.2, p.

i
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We assume the result for n = 2p and prove it for 2p+2. The preceding result
shows that (7) is true for n = 2p+1.

Now
Dapra, pr2 (@, k41) = Dopi1, pr1 (0n, k1) F Dop1, p+o (@i, k41) OVer A,y
= Dep, p (0k, 541)+Dap, p+1 (04, k41) +Dop, p11 (s, 541) 0ver A,

Hence from the Schur lemma,

Qoo 1
Dopyo, pr2 (‘”zp+2, 2p+3) = @11 EfZP’P + X Efzp, p+1
agz Ogg
where ayg is taken to be 1 as before.
3 —_ —_—3 == —
From w2p+2 2p48 = $-— Wopio 2pss WO have again a;; = } or —§ and as3+agg 1.

Taking the spur of 5,42 2,43, we have

4(p+4)(p+5)...(2p+1) _ 2(p+3)(p+4)...(2p+1)

11 [p—1 Iz = Sop42, p42
(P+ 1)(p+4)(p+5)...2p+1)
|p+1
from which a;; = } only. Therefore,
[22:7) 1
Dopiz, pr2(@aps2 2pes) = 1 By + XB
Qg Qa3
and
Dopro, pra (wopi1, 2p42) = Dopry, p+1 (w2p+1, 2p12) + Dop1, pr2 (w2041, 2p42)s
ie.

Dopys, prz (@Popi1, opr2) =
1

cﬂm

LE +

LE
fop-1, p-1 - +3

E
X fop~1,p " fop-1, p+1

—1
6

[

o

3 E .
fop~1, p 2 % fap-1, p+1

Since spur of {@gp41 942, Pop+2,2p+3) 18 also Sppio 542 we have
2 fop=1, p-1 — 8 Sop-1, p— % f2p-1, p Q22+ fap-1, p+1 G2+ S2p-1, p @a3—3 fap-1, p+1
= Ssp+3, p+2 = $f2p, p —fop, p1 .
and we also have @z5+a33 = —1. On solving for a,e, @33, We obtain
A = —1,a33=0; age = §.

We have thus shown that in all cases (7) is true for n = m+1 if it is true for
n =m. Now for the algebra 4,, one can show easily that

0 -1 1

3 ,
Dyy(@yp) = 0 ; Dgg(@yg) =

3 3
-4 i 0
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and D, (@, ,.1) = } for all n. This proves that the irreducible representations of
A, are given by (7) and in case n is odd, we have an additional representation

given by (8)

We observe that the representation matrices are chosen in such a way that
their elements are rational numbers. If, however, we want them to be symmetric
matrices as is generally required in Quantum Mechanics we can take

_ _ [(n=2r4-4)2—1
Qg3 = Q39 = m

As an illustration, we give below the matrices of the irreducible representations for
Wig, Wog, .... W of the algebra 4;. By taking the anti-commutators of these

W, 5.1 repeatedly we can compute the matrices for §,_, = @,
The algebra A4 has 4 irreducible representations Djsy, Dgs, Dss, D34 of orders
1,5, 9, 5 respectively.

(i) Dgy :—
wr,r+1=%i; r=1,2 3, 4,5.
(ii) Dyg:—
wlZ—%E4“f'—-%E1
-1 1
Wog = § Hg+
20
-3 1
Wgy =} Hy+ \ l+%E1
§ —%
—~3 1
w45=%E1+ +%E2
o
-5 1]
“s0 = ’+%.E3
24 _ 3 |-
73 EK(
(ill) D53:'—
w12=%E3+—%El't'lz‘Ez'l‘—%El'l“%El"-.—%El
-1 1 -1 1
@og =} Hy+ + 3B+ x E,
3 0
-t 1 -3 1
wy, =} B, + +1E:+ +3 Bt —3 By
- § —3
—3 1 -1 1
Ces= i‘lj%Es'!' X By
—5 1
w50=%E1-|_-l X By+ 4 By
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(iv) Dsq:~—
=4 B+ —3E1+ 3B+ —1 B

]—-1 1
@y3 =3 E1+EsX l
' 10
-3 1
Wy = +i B+ —3 By
¢ —%
-1 1
‘"45=%E1+l X E,
' 30

_ 1
Wso =3 By+ —3 By,

4, THE DIMENSION OF THE ALGEBRA A4,

We now prove that the dimension of the algebra A4, is given by the simple

2n+1
expression ni2 ( n: ) ; i.e. we show that
+1 . 3 1 LoONZ N
Z £ = Z (n—2r+4) (n+~) 2 -n+1)
T\ nd2 r—1) " a2\ =2

for n =2m or 2m—1
(i) Let n = 2m ; to show that

i 2m+-2 4m+1
> m=p#0e () = ()
0

2m
2m+2
2m+2
Proof :— (1+z)™*2 = ( ) L2mte=p
Z 2m+-2—p
2m+2
e 2m+2
a™ " (142) ™ = ( ) m—pt1
Z 2m+2—p
2m+2
d (¢ —m-1 2m+2 2m+2 m—p
 Ea = e B | |
z 5 Z om+2—p
2m+2
2
Also (142)2+2 = Z ( m+2) o
0 vy

2m+2

i —-m—1 2m+2 = — _ 2m+2 -—me-2
A R p+1) ) )=
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Hence, in
2m+2 -+ 2
2m+-2 m—p — 2m -2 P
—_ - 1 1)
{om () S e (75
2m+2 2
the coefficient of —_= - Z (m—p+1) ( +2)
r

m 2
2m+2
=—2Z(m—p+1)2( ) :
0 .p
This must therefore be equal to the coefficient of xlz in

d S -m-1 1 2m+ 2 ?
0_};7 Lx ( +.’Z) § ’

i.e. to the coefficient of % in

{@m+2) (14+2)" 27" — (m4-1) (142) ™22 2]

_ m+1)* (142" (1—0)®

22m+4
. 1 2 4m+2) (4m+2) (4m+2)
Coefficient ofg:—2 = (m+1) {(2m+2 -2 om+1 + 2m

4dm+41
= —2(m4-1) om | OO simplification,

Hence

i 2m+2)\° dm+1
> =1 (") = ety (1),
0 P 2m
When n = 2m—1, one can similarly prove the result by considering the expansion
for (1+422)*"*!, We thus obtain that the dimension of the Lie-algebra of the ortho-
gonal group with spin § is
grtl (2n+ 1)
n+2\ n

5. TaE CENTRE OF THE ALGEBRA 4,
Let P, = Egplpz-mﬁ, where fPIPZ"-'Pr = fpl f,,z e f,,, and the summa.-
tion extends over n P, permutations.
= N
Thus ¢, P,, ., =3¢ fqlqzv...qz,,,ﬂ"' o~ '51'5142,...42,”,1

+....+.---‘+2§1§q2...

+X&¢

g9g1g3. .. - dom41

-92m+1, 1
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where the ¢, are to be summed up over all indices excepting 1.
Since [&5, {£,,€,,}] =0, we obtain

€1 P = §1q1...‘42m+1+(m+1) €11gg.. +m¢

- 92m+1 199193 ... 021 °

the g, being summed up over all indices excepting 1.

Now 280+ = €8y,
§1 P2'"+1 = 514142~"'42m+1+ %ngqs- e 92m4l
- 1—; 5421143""‘12m+1+ (g + 1) §11q2. B
From €= %—fl we obtain
§1P2m+1 = §141-~-42m+1+ 2_m1+_3 99 dom 41
- mT-Mglqzm-azml-,-7‘121§42143--~42m+1

we have similarly

P2m+1 §1 = 'fqlqz....q2m+1_1+(m+1)§1]«72q3....q2m+1

+m €igg105. .. 4,1 @0d hence
[§1’ P2m+1] = [§1’ 571‘72"~~92m+1] .

b Forming in the same way &5 Pamy1, ... & Poamsr, Poms1 oy o Popy £,y We
obtain.

72— 2m)(2 3
(13) Py Py = P2m+2—P2m+1+(—-m—i(ﬂt—) Py = Popi1 Py

It can be seen similarly that

m m m
§1P2n = §14142....q2m+2_‘§q2....q2m—§'§142....q2m+ §§‘12143-~~42m.

and

m m m
P2m§1 = §1qlq2....q2m+?ng,...qzm','Eglqz..“qzm—E‘nglq:},,,,qzm

from which we have

[§1) sz] =1m (§q21q3 q2m—§142~-~-‘12m) = —m [§1) §q2 qu]’
ie. P,,.+m Ps,,_, is an element of the centre.

[We take Py =1 and P, = 0 for r > n and r << 0; we notice that there will be
(k+1) elements of this form for n = 2k or 2k —1.]
We also obtain

(14) P,P,, = szﬂ.;.w_'"_l)

9 P2m—l=P2mP1-
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From (13) we have Py = Py —Py 4 o0

P1+P2 = P12+2P1—§4?.
—9m+1
(Py#+Py) Poy = Py Poynt "0 pop,

3
+2P1Pyp—"7 Pap,
(P1+Py) Py, 1 = P1Poy+ PPy

-2 2)(2 1 3
( m+4)( mt )P1P2m—2— ZnP2m—1-

+

We thus obtain

3
(Pr+Ps)(Pen+mPon-1)+ (Pan+mPop-1)=

I&m—l

-2 3
Py Pyp1+(m+2) PPy, + ﬂ(ﬂ-?m—_}-—)Pl

+m(n—2m-|:12)(2m+ 1)11,1]_,,2"'_2
= sz+2—P2m+1+w)?*W P,
+ m___“___g(n—;m-}-?)) Popt (m~42)Poy 1
" m(m+2)(;z—2m+1> Papor— %_;@ Py
+ m(n—2m+3)(n—2m+2)(2m+-1) Pyp_s

8

—2m<+2)(2
+m(n m-: N m+1)P2m.1

m(m—1)2m+41)(n—2m +2)(n—2m+3) Po_s

+ 3

or we obtain the recurrent relation
(15) (P14 Psg)(Pow+mP2p-1) = (Pemsat+m~+1 Popi1)+m(n—2m)(Pon+mPam-1)

+m(2m+ 1)(n—27§+3)(n—2m+2) (sz—2P+;’—'f:—1P2m—3)-

Tt is evident that on utilising (15) in succession, we can express a central element

Py, +m Py, as a polynomial in § = Py + Py = ny + Z (&8} rs
r,s=1

r=1
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We obtain the minimal equation that 8 = P; - P, satisfies indirectly as follows:

Since spur £, = spur & = spur { &, &},

spur of f = n(L;-l) 8., in the irreducible representation D,,,
. _ n{n+41) n2+ (5 —4r)n44(r—1)(r—3)
i.e. spur 8 = 3 S S (n 1) .

24 (5—4r)n+4(r—1)(r—3)
4

r=1,2,3,...(k+1) where n=2k or 2k—1

or the minimal equation that @ satisfies is

Hence the roots of 8 are n

» i {0_ n2+(5—47‘)n1-4(7'—1)("_3)} o,

We wish to thank Prof. B. S. Madhava Rao for his interest in the work and
kind encouragement.

SUMMARY

In this paper we determine explicitly the matrices of all the finite-dimensional representa-
tions of the Lie-algebra of the orthogonal group with any number of symbols with spin = 2-
For this purpose we use the direct product resolution of such an algebra into that of a Dirac.
algebra and a ¢-algebra due to Madhava Rao and others. We find first of all the matrices
for the representations of the {-algebra; since those of the Dirac-algebra are known one can
work out the same for the Lie-algebra. We determine finally the centre of the ¢-algebra.

REFERENCES

Brauer and Weyl (1935). S8piriors in n-dimensions. Jour. Amer. Math. Soc., 57, 425.

Kemmer (1939). The particle aspect of Meson theory. Proc. Roy. Soc. A., 173, 91-116.

Littlewood, D. E. (1947). An equation of Quantum Mechanics. Camb. Phil. Soc., 43, 406—413.

Madhava Rao, Thiruvenkatachar and Venkatachaliengar (1946). Algebra related to elementary
particles of spin = . Proc. Roy. Soc., 4, 187, 385-897.

Issued October 15, 1954.



