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Chandrasekhar (1948) in his treatment of the transfer of radiation in a plane
parallel, electron scattering atmosphere worked out the modification of radiation
of a particular wavelength caused by multiple Compton scattering to the first order,
by his new method of approximation. The coefficient of scattering was assumed
to be independent of the wavelength as in Thomson scattering and the Compton
change in wavelength given by

8A = Y(1—cos §), where ¥ = -]l >
me

was taken into account. The scattered intensity was expanded in a Taylor’s
geries in powers of y (eqn. (5)) and only the term proportional to ¥ in the expansion
was taken for subsequent calculation in an isotropic conservative case. The
external boundary condition was simply the absence of incident radiation, while
the internal boundary in the form of an infinite plane surface was supposed to
radiate with a known speectral distribution. The intensity distribution in a spectral
line when plotted against the wavelength shift showed a displacement of the maxi-
mum in the right direction, but a finite part of the distribution of intensity
corresponded to negative values of the wavelength shift, This error was sus-
pected to be due to the approximation involved in using the first term in the
Taylor’s series.

It was thought worth while to consider the contribution of the second term of
the Taylor’s series, proportional to y2. This has been carried t hrough in the present
paper. The method of solving the boundary value problem followed here is, how-
ever, different and is dependent on expansion in trigonometrical series, It is found
that the use of trigonometrical series in the problem of this kind is quite handy
and appropriate, and yields rapidly convergent series for calculation.

The results of the second order calculation considerably reduces the error
mentioned above. The correction term is negative all throughout, so that the effect
of the second order term is to lower the intensity curve. The shift, however, is
of the right type and the shift of maximum is slightly increased. The contribution
of the second order term cannot thus be called negligible. It appears quite
plausible that a calculation up to third order will again slightly raise the curve, and
may give non-negligible contribution.

§ 2. The equation of transfer appropriate to the problem is given by (p. 509,
Proc. Roy. Soc., London, Vol. 192, 1948)

AI(r, u, A) | A , L
-%=I(T,#,A)—Z;J‘ Iz, p', A=¥(1 =cos O)dp'dg’ .. (1)
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where v, the Compton wavelength is given by
h
=— ="'024 A4, .. .. .. .. .. (2)
me

# = cos § and 7, the optical thickness is given by

T=J.p0'd2, . . . o (3)

where p is the density and o the scattering coefficient. I (r,u,]) is the specific
intensity of the radiation of wavelength A at the optical depth = and in a direction
S to the outward drawn normal. 8 is the angle of scattering and

cos 0 = pp'+(1—p2)(1—p2)¥ cos ¢’ .. . @)

The source function represented by the second term of the right-hand side of
eqn. (1) means that a radiation of wavelength A—y(1—cos §) in the direction
(n’, ¢'), when scattered in the direction (u, 0), will have the wavelength A.

We shall now suppose that I (7, u’, A—¥(1—cos 6)) can be expanded in Taylor’s
series, so that

L, 1/, A=Y —cos 8)) = I{r, u’, \)—Y(1—cos §) aI(—Té/‘\l—’—/\—)
Y2, 0 X '
+2 {1—cos 6) e T .. .. (5)

The equation of transfer on substitution of this becomes

+1

l(r, w. \) R {CNTDN)

—‘T—a—;“——=l<w,x)—4 [I(T,p,/\)~7(1—p#)~—7~5§—~
-1

+72 G—pp F PP =) — (6)
when second order terms of Taylor’s expansion are retained.

In solving this equation, Chandrasekhar’s method of replacing the integrals by
sums given by Gauss’s formula for numerical quadratures, has been used. Thus
in the »-th approximation,

8l (r, X 1 oI (r, ) ' 3
M, T = ]‘(T, A)—- é [Zjajlj—y zjaj(l—pip,j) J—aA— -+ }’2 zjaj Z —_— /"'i"j

oU(r, i, A)] W

A +3 2 9 15 1 . izzl
gl T gt T gk | (g2
where t=(+L*2.... £2),j=(£1,x2....£n) .. .. (7)

where u's are the zeros of the Legendre polynomial P,(u) and the aj’s are the
appropriate Gaussian weights.

a. =a
4 ~

jandj=d1,42...... +n. (8

Now restricting ourselves to the case of first approximation only, we put

a,=¢_=landy, =—

+1

1
[L_]=\—/§. . ‘e (9)



532 K. K. SEN: PROBLEM OF SOFTENING OF RADIATION BY MULTIPLE

Eqn. (7) gives the following two equations :—
__1._81 _zﬂ__%_val 129_2{2 2’_28_2£‘_1-_-_1 I -1 ) (10)
\/3 Or 3 oA 3 0dA 6 oAz 2 0xz 2\7+1 T

and
LI L e e L S YR B
\/3 o7 3 oA 3 0\ 2 0x2 6 9x g2\ +1 “-1fc

Now introducing the variables

x=27andy—§—(z\ /\0).. - .. ..o (12)

where ), is some suitably chosen wavelength of constant value, equations (10) and
(11) can be written in the following forms :—

V8oL, 10l o, 30, ?a_ﬁzl-l_l(z 1 ) (13)
2 9r 29y oy 8 9y '8 ayz 2\ 1 -1
301 oI ol ozl 021 '
V3oL, o, 191, 9 213 ;1_—_1(1 =) . as
2 ox oy 2 oy 8 dy2- 8 ady 21+ )
Adding (13) and (14) and writing
K,y) =1, (xy+I_(x,y)and H(z,y) =1 (&, y)—1_,(x,y) .. (15)
we get
V30K  10H 39H (16)
2 oz 20y dop
and also subtracting (14) from (13)
oH oK
2 — 3 a +J3a2=0. R X))
To satisfy (17), we write
_0F@y o _ (aF(x,y) ar"F(:v,y))
K==g B, H=p{=2 2 252 f). . s

Substituting these in eqn. (16), we get

8°F 30'F 535°F 9*F oF
axz+§§y‘4—‘_§aya+3a“y‘2——'2—ay=0. P P (19)

From equation (18) we obtain

oF oF 0°F
I (x,9) = K+H_-[ +\/(y W)} .. .. (20)
= (0F @2F
and I (z,y)=K~H= 5[ \/3(@—552-)]. . .. (21

The boundary conditions are—

(i) existence of a known spectral distribution at the lower boundary denoted
by 7 =7, or z=uz; ; and
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(ii) absence of inward radiation at the upper boundary denoted by r=0 or x=0.
These boundary conditions are equivalent to

1 [ +4/3 (aF a—f)] = a known function of y =4 () .. (22)
X = xl
‘ aF _aF .
and [~ 4/3 ( £ )] =0. .. .. .. (23)

The problem before us is to solve eqn. (19) under the boundary conditions (22)
and (23).

§3. The boundary value problem formulated in §2 can be solved by the
method of expansion in trigonometrical series.
Let us take as trial solution of (19) *

F(z,y) = Ag(a2+y)+ Box+ dems+ir. . . o (24)
Substituting in (19) we obtain
m?2 = 3n2 (1—in?)+in(2—3n?)

= (2, +18,) (say).

Hence m= % (a,+18,) .. .. .. .. .. (25)
where ,2—fB,2 = 3n2(1—1in2) .. .. . .. (26)
and 2u,B, = n(2—3n2) .. .. .. .27

From (27) it is clear that when = is a positive integer, a, and B8, will be of opposite
signs and when » is a negative integer «, and B, are of the same sign. It should
also be noted that as » approaches zero, «, and 8, will be of the same sign.

Now from (26) and (27) we have

o2+ B,2 = \/ zns— —1‘% nd—nittdn? .. .. .. (28)

and from (26) and (28)

- /3 1 5 9 11
a"'_/\/ﬁnz(1—§n2)+12’\/1718—177'6_"44‘4"2 B .. (29)

= —,\/ \/9 nB——Enﬁ—n4+4n2—§n2 (1—%n2) .. (30)

when » is a positive integer.

We see that the solution of (19) can be expanded as the sum of the
following series

Fla,y) = Ao +9)+ Bystaot {4, g leamiBarmi

n=1

+O'e‘(au+"ﬁn)’+"”~" + D, (an=iBa)s-iny } .. .. (31

* The first two terms in eqn. (24) have been introduced to adjust the bound&ry conditions
of our problem. This will be shown in §4 and § 7.
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and n having only integral values. Writing the solution in the real form

Pz, y) = Ao(@®+y)+Box+ao+ > [e22] a, cos (Ba+ny)+b, sin (Ba-+ny) |

=1
+e"°"‘“’{ ¢, cos (B,x—ny)+d, sin (B,2—ny) }] .. .. (32)
. o - oF oF
§4. Now substituting in the boundary condition (23), the values of 7 and
2
%?—/{: derived from (32), we get
'D‘ ( DI AN 2
Bo—3dot > [ {act=/3n)+bu(Ba—/3n)~cufant 30%)

n=1

+d, (Bn+J3n)} cos ny

Bt = f37%) = 0By 30) - 0o(But 30) - dy(aaF Y30%) | sin ny] = 0.. (33

From this it is clear that the individual coefficients of cos ny and sin ny are zeros.

Bo-—':\/ng . . .. .. (34)
and
0 = (O(-;12+Bn2—3n2—3n4)cn+2‘\/3n(nﬁn_an)dn
" (}8'1_\/3'7l)2+(aﬂ-_\/3n2)2 . 35
b . _2.\/372(713»1_“71)0/1_(!1712_!_an_Snz_3714)dn5 o ( )
" (Ba—/30)% +(0,—/3n2)2
Now substituting in the boundary condition at the lower bound of the atmosphere
. ] o 0F OoF o2F . )
given by equation (22) the values of %% oy and Er derived from equation (32) and

simplifying, we find that

HBo+24ex,4+/34, ) + Z [% e*n-"l{(an(oc,,+\/3n2)+b.,(/9n+J37z)) cos B,z
n=1
+ (bn(mn+ \/3%2)_‘0’11(Bn+ \/37’7 )) Sill B,,xl}
+ lze_aﬂxl {(du(ﬁu—‘\/370)—6,.(01,,—-\/3712)) COS anl

_(dn(an_\/3n2)+cn(ﬁn_\/3n)) sin B,x; }] cos ny
+ > [1e271 { Buloat/352)—a,(B, 4 3m) cos B,
= (@alot 31D+, (B, + 30) sin B2, )
+ 167" { (A o/372) 40, (B — /31)) cO8 By

+(d"(ﬁﬂ—\/3n)—-c,,(a,,—J3n2)) sin B,z }] sin ny
=% L (36
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We now assume that the distribution at the base of the atmosphere is capable of
Fourier’s expansion in the form,

b (y) = Ao+ Z A, cos ny—+ Z B, sin ny .. .. (37
n=1 n=1

Thus comparing the coefficients of cos ny and sin ny in (36) and (37), and replacing
in them values of By, a, and b, by (34) and (35) it can be shown that

A =M., +N.4, .. .. .. .. (38)
B'=Ngo—-MJd, .. .. .. .. (39)
Ay = Aglx +./3) .. .. .. .. (40)
where
% %y (ai+ﬁi_3n2_3n4) (O(;1+\/37ZZ)+2\/3H(7’LB"—CL“) (/3/:+\/37I') B
M,=3e 5 cos B,x;
’ (ot —/312)° +(Bu— J31)° :
(a2 +BL—3n2—3nd) (B, +/3n) — 2/3n(nB, —x,) (aa+/302) 2
— 5 5 sin 8,1,
(171_\/37%2) +(ﬁ72_\/3n) g
—1 P {(ot—/3n2) cos 8,214 (B, —/3n) sin ﬁﬂxl} .. .. (41
and
ez § 2J3n(nB,—a,) (o, +/302) —(ai+Bi—3n2—3n4) (B, +.3n)
N,=1e"? — - cos B2
(an —\/37L‘2)~+ (ﬁn - \/3/”)“
(ar+By—3n2—3n%) (2, +/3n%) +2/3n(nf,— ) (8,+/3n) _
— - ; sin B,x
(ot —o/373)*+ (B, — /30)" '
+ie Ta¥1 { (By—+/31) cos By — (2, —./3n?) sin B,z 1. .. (42)
From (38), (39) and (40), it can be shown that
Ay N
AO = .’l‘1+\/3 (4)\
M,A+NB,
and €, = ———————
M 4+ N
(44)

_NA/—M,B/

T ME4N:

From (43) and (44) it is clear that A4,, ¢, and d, can be evaluated when the values
of the Fourier coecfficients are known. (M, and N, can be calculated from (41)
and (42) for different values of n). And from (35), we can calculate the values of
a, and b, once the values of ¢, and d, are known.

§5. Thus completing the determination of constants a,, b,, ¢, and d, as in §4,
it is easy to find out the values of K(z, y) and H(z, y) at any level of the atmos-
phere (equation (18)). But we are mainly concerned with the distribution of the
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emergent radiation at the outer boundary of the atmosphere. This from equation
(32), and equations (18), (21) and (20) is given by

0

1,,(0.9) = y3do+ > [ {(au—co)out (ba+d)Bs} cos ny

n=1
+{ Batdi)ta—(@—c) By b sinmy| .. (45)
where «,, b,, ¢, and d, are given by the method described in §4.

§6. It has been supposed that an infinite plane surface is radiating outwards
uniformly with a known spectral distribution, Above such a radiating surface
there exists an atmosphere of free electrons which modifies the distribution at the
base. The expression for the modified emergent radiation at the upper boundary
of the atmosphere has been given in § 5.

Let us suppose now that the spectral distribution at the lower bound of the
atmosphere is given by

)
( = —=e ¥ .o .. .. .. 46
$(y) v (46)
We expand this in a Fourier series of cosines between — = and 47 as follows
_1 2 e
¢(y)—;+;zle cosmy .. .. .. (47)

This range (—m, =) practically covers the significant part of the function y(y).
Then in equation (37)

A, =—2~e_"2/4, Ay = iand B, =0, .. .. (48)
T ko
From (43)
Ay = 1 49
O_ﬁ(x1+J3) (')
and from (44),
c,,=z.————-—2]”" 26_”2/4
Tr 'Mn+Nn
2 N (50)
and d, = — —-2—"-——26—"2/4
™ M. +N,

and a, and b, are given by (35).

For a particular value z; or 7; (the optical thickness of the atmosphere)
the value of M, and N, are obtained from (41) and (42) for different values of n.
These values are used for determining the constants a,, b,, ¢, and d,,. Substituting
these in equation (45), we can find out the value of 7.,(0, ¥, ¢), the emergent radia-
tion from the outer surface of the atmosphere, when the distribution at the base is
given by (46). The values of 1,(0, y, ) obtained for z; = 1 or r, = % are shown in
the third column of Table 1.

§7. To compare the effect of retaining the second order term of Taylor’s series
in the representation of I(r, u’, A—¥(1—~cos 6)) it was thought worth while to
repeat; the caleulations by the present method of expansion in trigonometrical
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series for the case obtained by retaining only the first order term of Taylor’s series
and compare the results with those obtained by the use of Green’s function by
Chandrasekhar. In this case of first order calculation the equation corresponding

to equation (19) will be (cf. Eq. (23), (20), (21), p. 511, Proc. Roy. Soc. London,
Vol. 192, 1948)

02s(x, y)+a s(x, ) _0s Os (51)

0x2? oy R
where
Lot p)~Toe y) = 3 250 (52
9s(x,
Lz, P+ -1(z, y) = % R 7::)
The boundary conditions are representable in the present case as
[az+“/ ayL_zl = {(y) = a known distribution in y .. (54)
and
0s ds
[a_ 3@]“0:0. e e (BB)

Taking a trial solution of the type

8(x, y) = Ao(22+y)+ Bou+ Aematiny
as before, the general solution can be written in the form by a similar type of
arguments as

8(z, y) = Ag(22+vy)+ Boxr+ao+ Z [ 1"" a "cos (B, z+ny)+b, sin (8, :c+ny)}

+e“°“"‘”{c,,’ cos (B, r—ny)+d, sin (Bn'ﬂf“ny)}] - - (56)

where

a,,'=\/%(n2+\/n4+4n2) N (5.
,3,.'=\/%(\/n4+4n2——n2). N ()

Relations corresponding to equations (26) and (27) are now found to be

€2—B2=mn - .. .. .. .. (59)
2’ nB, = 2n L (80)

’

for n positive, a,” and 8, will be of the same sign, and for » negative, «,” and 8,’
will be of opposite signs.

Now applying the boundary condition (55), and putting the coefficients of
cos ny and sin ny individually equal to zero, we get two relations between the
constants of the type,

By=34q .. .. .. .. .. (8]
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’ (a"'2+B ’2—3n2 (' —2J3na,,'d,,'

Tn= a, 24 (8, — /3n)2 62
Yo 2./3na,’c.’+(o,'24+-8,"2—3n2)d,’ (62)
L '2+ (B, —./3n)2

Now from the boundary condition (54), we get

3 { Bo+245m1+ 340} +z [1et § (@ 4+, (B, + y3m)) cos B2y

n=1
+ (b2~ (B /3m) sin ', )
+1e7 0 {(4,/(8, ~ /3n)—c, ', cos B,z
— (dn'an'+c"'(,8n’—J3n)) sin 8,7, }] cos ny

"

+ Z‘ [%e’xn’xl {(bn’an'_'anl(,gn"f'\/?’n)) _COS Bn'xl

n=1
- (an,an’+bn,(:8n’+ \/3n)) sin Bn,xl%
+1emn {(d,,’(ﬁ,,’—J3n)—c,,'oc,,’) sin 8,'z;
+(%,'+,/(8,'— J3n) c0s B,z ] sin ny

=%y .. . (83

As before, the distribution at the base is supposed to be capable of Fourier
expansion

Ply) = A4,/ + z A, cos ny+ ZB,,' sin ny .. .. (64
n=1 n=1
Comparing the coefficients, we find that
A =M/¢c'+N,/'d,' .. .. .. .. (65)
B, =N)¢,’'-~M,d, .. .. .. .. (66)
Ay = Aglx;+./3) .. .. .. .. {87)
where
: 2/3na, 2+ (.2 4-B,'2—3n2)(8,' +/3n)
P 1,007 —
Mn == ge ) { an’2+(Bn, \/371 SIH IBn xl
(x,24+B,"2—=3n%)a,’ —2./3na,’ (B, + /3n) , }
+ ’2+(,8 I_J3n)2 cos ﬁn 2a]
— e~ y ’ cos B, 'z, +(B,’ —./3n) sin 8,72, } . .. .. (68)
and
P (@,24-B,2—3n%a, - 2./8na,’ (8, +/3n) .
'z 1% @ — ’
N, =le 1{ 024 (B — J3n ) sin B,'z;
2J3na,'2+(Ot,,'2+/37,'2—3'n2)(/3n’+~/3") ’ }
- w2 (B, = J30)2 08 B’z

+ b~ =L {(B, '~ /3n) cos B,z —a,’ sin Bz, }. . (89)
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From (65) and (66) it is seen that
,_M,/A,'+N,'B,

o =Sy (70)
and

’ anAn, - Mn(Bu’ o~

d"=—Tn,2—_FN7§— .. . . (7D

It is clear from (70) and (71) that ¢,” and d,” can be determined, when the
values of 4, and B, are known. We can calculate the values of @, and b, from
(62).

) It is now easy to find out the values of I, (#,y) and I_,(x,y) at any depth
(equations (52) and (53)). But we are mainly concerned with the intensity distri-
bution at the outer surface of the stellar atmosphere and this from (52), (53), (56),
is given by

I,.,0,y)= 340+ Z [ {(a,z’——c,")oc,,’+(b,,'-i—d,,')ﬂ,,'} cos ny

n=1
’ 1 14 ’ ’ ’ : 1
+ {(b,, +d. e, —(a,—¢c, )8, } sin 7zyJ .. .. .. (72)
. . 2 2 o . oo
Again supposing that $(y) = —=e™ , and expanding in a Fourier series in

k0

cosines as before and comparing the coefficients we get from equations (67), (70)
and (71)

, 1 . _ 1
Ay = ) and hence 4 = 1*—r(1‘1+J3) (73)
d ¢! = gan,e—"?“
an g - ﬂ'Mn,2+'N1l12
(74)

Z r 2 ‘Zvn’e-_”“/4

t, = ;Mﬂ,z-i—Nn,Z
The constants @, and b," are given by (62).

For a given value of x,; the values of M, and N,” have been calculated, and

these values are used to determine a,’, b,", ¢,’, d,’. From (72), we obtain the values
of emergent intensity at the outer boundary of the stellar atmosphere, when the

2.,
vV

x; = 1 or 7, = £ are shown in the first column of Table 1.

intensity distribution at the base is given by #{y) = “¥" . The resulis for

§ 8. The second column of Table 1 contains the values of the intensity obtained
by the method of Chandrasekhar (1948) in the case discussed in § 7. ~Chandra-
sekhar calculated the values of I +1(0,9, 8) for different values of y (Radiative
Transfer, p. 332) supposing the distribution at the lower boundary to be 8(y). It
was also mentioned that the solution for any other distribution y(y) at the lower
bound of the atmosphere could be obtained by

I+1(Or y.¥) = J‘ I+1(0’ y—n,9) P(n) dny n .. (75)
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In the present paper we take

i) “—‘;6 "
, V3 (p cos By+PBg sin By)v/ 1452
and 14,00, y, 8)=—7T—eyj p oS y(pf_l_s;’;qf;’ V148 dp .. (76)

(cf. eqn. (104), p. 333, Radiative Transfer.) :

The values of I.4(0, y, ) have been calculated for values of y ranging from
y =1, to y = 3, using the values of I.,(0, y—n, 8) from Chandrasekhar’s Table 1
(Proc. Roy. Soc. (London), Vol. 192, p. 516). The values of I.(0, y, ) for ¥’s
beyond this range are not calculated, as these cannot be obtained from the data
of the Table 1 mentioned above,

It is found that within the range allowed by the
table, the values obtained by the method of trigonometrical series followed here,

agree completely with those obtained by Chandrasekhar’s method
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Fig. 1.

The abscmsae y denote wavelength shifts in units of § Compton wavelength and the ordinates
+1 {0, y, ¥), the emergent intensities from the outer boundary of the atmosphere.
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TaBLE 1
I+1(O: Ys S[’) I+1(0: Y, 5[’) I+1(O: Y, ‘»b)
First approx. First approx. Second approx.
Y (with first order (by Chandra- (with 2nd order
term in Taylor’s sekhar’s term in Taylor’s
series). method). series).
0 0-34 cenn 0-30
05 0-41 ce 0-33
1-0 0-40 040 0-34
1-5 0-33 0-33 0-28
2-0 024 0-24 0-17
2:5 016 0-16 0-05
3-0 011 011 0-003
3.142 0-09 e 0-003

§9. The comparative results of the first and second order calculations are illus.
trated in Fig. 1. It should be remembered that y means wavelength shift in units
of § Compton wavelength. It is clear from Fig. 1 that in passing from the first to
the second approximation the shift and intensity distribution are affected to a
marked degree. The second approximation curve is drawn in daghes and the first
approximation results are traced as dots and dashes. The additional term of
Taylor’s series which we have included for the second approximation makes negative
contribution to the intensity. Thus the reduction of intensity for different values
of y is evident, and this overall lowering of intensity reduces the error of the first
order calculation noticed by Chandrasekhar. There is possibility of the intensity
curve being again raised a little, if we include the third order term Taylor’s series in
our consideration.

It is clear from the above treatment that the trigonometrical series gives us a
very effective method of treating problems of this type. The agreement between the
results obtained by the present method and that of Green’s function used by
Chandrasekhar, show that the accuracies obtained by the two methods are practi-
cally the same. The series representing 1., (0, y, 4) is highly convergent and hence
easy to calculate numerically.

The probiem of transfer, allowing for the partial polarisation of the scattered
radiation is also being considered by the same method. The results will be
published shortly.

In conclusion, I have much pleasure to acknowledge my indebtedness to Prof.
N. R. Sen for many helpful discussions and encouragement during the preparation
of this work.

ABSTRACT

The problem of softening of radiation by multiple Compton scattering in stellar atmos-
pheres containing free electrons, has bzen solved in the first approximation (in Chandrasekhar’s
method of solution by Gaussian approximation) by the method of trigonometrical series. The
intensity distribution at the outer surface has been calculated by retaining the first and the
second order terms of Taylor’s expausion of scattered intensity. The first order caloulation
by the method of trigonomotrical sories gives result which is identical with that found by
Chandrasekhar’s method with the aid of Green’s function. The second order calculation
considerably reduces the error which was noticed by Chandrasekhar in the first order
calculation.
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