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1. INTRODUCTION

Recent experiments of Abraham, Osborne and Weinstock (1949a) and of Daunt
and Heer (1950) indicate that He3 does not show superfluid properties even down
to 0:25°K, unlike Het which becomes superfluid at about 2:19°K. This seems to
confirm London’s (1938) hypothesis that the peculiar phase transition in Helium
(i.e. He4) can be interpreted as the ‘condensation’ phenomenon exhibited by an
ideal Bose gas so that no transition would be expected in the case of He3, which
obeys Fermi statistics. Hence, it is now generally held that the difference in the
Behaviour of He3 and He# arises from the different statistics that they obey.

Heer and Daunt (1951) have proposed ‘smoothed’ potential models for con-
sidering mixtures of Bose and Fermi liquids. They have assumed that the ‘Fermi

liquid’ can be regarded as an ideal Fermi gas in a constant potential well —X';,,

and the ‘Bose liquid’ as an ideal Bose gas with a constant potential well —x%.
In the case of the mixture they have assumed that the liquids are incompressible
and form statistically independent systems. Thus they have written for the total
volume V, and the total potential y, of the mixture the expressions

V=NFV(I)V‘+NBV(})9‘

0 G
X=NFXF+NBXB:

respectively, where V(I), and V% are the respective atomic volumes. Further,
they have assumed the vapours to be perfect gases. Heer and Daunt (1951) and
more recently Daunt, Tseng and Heer (1952) have applied this model to calculate
the partial vapour pressures and the distribution coefficients of their ‘model solu-
tions’. They find that the theoretical predictions are in good agreement with the
observed properties of He3.-He4 mixtures.

The present paper is concerned with a detailed discussion of the thermodynamic
properties of mixtures of Bose-Einstein and Fermi-Dirac liquids when the distri-
bution laws are of the more general type:
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for a Bose and a Fermi ‘liquid’ respectively. In the sequel we shall refer to them
as Liq. B and Liq. F. Clearly, our results would reduce to those of Daunt and
Heer when _

3
SB = SF — § s
and
2mg(2m)}
C="5—,

where g is the weight factor, being 1 for He4 and 2 for He8, As usual, the conditions
for the onset of extreme degeneracy are

0
X .
AOB exp (1—07%) = AOB =1,
X()
A exp (M) =47 >1.

Kothari and Singh (1941, 1942) have studied the properties of pure Bose and
Fermi gases obeying general distribution laws of the type given above. Wherever
possible, we shall use their notation.,

In the sequel we shall consider the following cases of mixtures of Liq. B and
Liq. F':

(i) Lig. F Boltzmannian (4} - 0),
(ii) Liq. ¥ Non-degenerate (4, < 1), and
(iii) Liq. ' Degenerate (AIF > 1) .

In each of these cases we distinguish between two ranges of temperature, viz.,
(a) below the A-temperature and (b) above the A-temperature, of the mixture.

It is of interest to do so because below 7'y Liq. B is degenerate (A; = 1) and
above 7', Liq. B is non-degenerate (4}, < 1).

2. Ter Pure LiQuibps

The generalized distribution laws lead to the following expressions for the
Helmholtz free energy :—

x = b *
£ = =N x0—=N, kT [1 —log Agy +bedos + 5 (Agp)"+ .- ] N E))
F) = —N.x%—N, kT[ —log Ay; —beAd; — %?’(Agrf)?_ o ] Y
of non-degenerate and
N kT
= Bx%—TC(SBH)’ .. .. .. .. (5)
0B

Fo 0 W3 0 w2 kT ’ 6
F=_NFXF+%__F‘1NF§0[1~E(8F+1) (_55)]’ - (6

0
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of degenerate Bose and Fermi liquids, respectively. Here Eg is the Fermi
degeneracy energy for pure Liq. F* and

o _ (4™ _ N
40 = Zi n® } T ors) kT NV

n

2 1

b2=25+1’b3 3541_4_5'

Following London (1938) we have for the degeneracy temperature of Liq. B the
expression

1 —
T():—"Z‘:[*—'—-(-}-——l——-———]sB. . .« . (7)
Oy VBF(SB) Z(SB)
For completely non-interacting systems (Heer and Daunt’s case) s, =4 and
2(2m)*?
) = ———k3

and eq. (7) reduces to the well-known expression due to London. Eq. (7) shows
that the introduction of the potential well does not, in the first approximationt,
modify the degeneracy temperature. It may be noted that in this paper the
degeneracy temperature will always refer to the condensation temperature of the
Bose assembly, unless otherwise specified.

3. THE A-TEMPERATURE

We shall now consider the case of a mixture of Liq. F and Liq. B. Since they
are assumed to form statistically independent assemblies the modification of the
degeneracy temperature is purely due to the change in the volume of the Bose
agsembly. We shall therefore get the degeneracy temperature, 7'y, of the Bose
assembly (Liq. B) in the mixture by replacing the volume NBV(; of pure Liq. B
in eq. (7) by the volume (N FV(I),+NB Vg) of the mixture, thus giving

1

r _1 Ny 1 ]S—B 8)
Tk [NFV?-‘-I-ATBV% Cplsp)llsg)) 7 h -

This, on combination with eq. (7), leads to

1 1

T [ NBV(L)':‘ ]SB 1-X, 5z

To NVt N,V 14X, K%_l ,
Vs

* Throughout this paper the superscript zero (0) is used to indicate quantities referring to
the pure liquids.

+ Our model must be regarded as a first approximation in so far as the variation in x©,
with volume, has been neglected, In practice it i8 well-known that the A-temperature of He ¢
depends upon the external pressure. Since contributions to the pressure will come from (i) a
kinetic term and (ii) & statical term due to the variation of x° we expect that in the second

0
approximation, i.e., when % is taken into account, T, would be modified by the introduction

of x°,
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whenece
L
LR VPN Vi (10)
aXF sB VO %.*, 1 V‘;; ' .
B
1+X, (—F - 1”
l Vi
where X, = :VFTFN; and X, = ﬁ;; are. respectively, the cencentrations

of Lig. F and Liq. B in the mixture.

4. PRrROPERTIES OF MIXTURES IN CASE (i)

As pointed out in Sec. 1 we shall get two sets of expressions aceording as the
temperature is above or below the A-point of the mixture.

(2} Below the A-point. .

For a mixture of volume (NFV(;,+NBV2,) eqs. (4) and (5) lead to the
following expression for the free energy :—

P= =N xXo— Ny Xot N kT Jog A} ~CpTis ) kT BT L(s,+1)
X (N Vo+N V9, .. (b

whereas, the free energy of mixing, AF = F——F’;-—-F’OB will be given by

.

4
AF = N T log —5t ~C, P)kD) B s, + DN, VS, L 12
OF

where all terms of the order of A;F have been neglected corresponding to the
Boltzmannian case.

It is usual to assume, for a liquid, that G ~ F, G being the Gibbs free energy.
In our model the ‘liquids’ are actually gases with certain potential wells. It is,
therefore, of interest to note that if this assumption is not introduced the pressure
values so obtained are higher by about 20 per cent for low temperatures and by
about 10 per cent for high temperatures (Bhagat and Katti 1954a). However,
following Daunt and Heer we assume that

G =F+P(N Vo +N,V3),
~ F,

for sufficiently small pressures. Then, using the usual thermodynamic relations
we obtain for the thermodynamic potentials the expressions

'

My = =Xp—kT—kT log {C D(s,) VotkT)F}, - - (13

By = —xXp=CpVokT) B ¥ I an)(an+1), P £
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for the pure liquids and

X HDT log 1 -
pp= —xp—X kT +EkT log 70 —kT log C.I'(s,)(kT)

_ 0 |

— VAT B (s, (s, 41). .. (15)

up = =Xy —CyVoe)’s T (s, ) E(s,+1) O

for the liquids in the mixture.- Since the vapours are assumed to be perfect gases
we use the relations:

P
pp—py = k1" log —OE’
Pr
P
pp—py = kT log =2,
Pg
and obtain for the partial vapour pressures
pF 7 V?: €(83+1) . T\ lgB ’
—=X_exp| ———— X (——) +X.1, .. 1T
o [ Ve ) 71T °
Py Vs
— = ex - —=X_1, . .. .. . .. {18
el i ad "
where
. NeVe 4 x NyVs
L=~ an = =,
LNV NY TNV NVG

Fuarther, the total energy U, entropy 8, and specific heat € are obtained from
the expression for the free energy by using the well-known thermodynamic relations

oF oF oU
U=F-—-T(~a—T), S=——(5—T~), and C=(a_T.),

whence,
3B+1 (XFV:‘-'-XBVOB)

2 (19)

1
U=Xps,T~ B [prg“"NBXcz'a]"'Cﬂr(sB"' 1)(kT)
. O
S=X(sp+1)—X; log ‘101?'*'}7}!2 D(sp+2)l(s5+1)RT)B(X Vo+ X, V5),  (20)
B

O = X 8p—Cpl(s5+2) (k) BL (s, + 1) (X V24X, V7). .o Loen
in units of R (= k(NF+NB) )-

(b) Above the A-point.

Combining eqgs. (3) and (7) we obtain the free energy of non-degenerate Lig. B
in the form

- 0 . T \*8 ‘ T )SR
Fo= =N, xo—N kT [l-—-log {(s5) +1og (ﬁ) +bsL () (-TE +
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whence the thermodynamic potential of pure Liq. B becomes

®B

"‘OB = —-X%—-kT [l—log Z(SB)+10g (%)83_’_[)2 :(SB) (T?o)

3t (7)o e

On combining the expressions for the free energies of Liq. B and Liq. F we obtain
for the free energy of the mixture and the free energy of mixing (for 7' > T,) the
expressions:

8

. . T \3B
F= =N, x%—N,x}—~N kT log A;,—N kT [l—log {(s)+log (TA) +

TA sp b3 2 T/\ 2sp
+b2§(83) (7) + "2‘ [:(SB)] "7‘—7‘ +.... , .o (24)
, A\;F To\%e &(3g) s B
AF—-—ICT —AFIOgE+NB IOg (ﬂ) +b2NB TSB (TAB —-70 )+
b C(S ) 2 25 s =
+.2§ [ TfB] (T/\B-—T(Q)B)+.... } .. (25)

Thence the potentials in the mixed state take the form

el
’

0 ’ » IF T/\ Sp 3
M= —XF—XF kT+kT log AOF_'XBT[}E}'T l—bgc(SB) (7 ‘—b3 [C(SB)‘] X

B
2s
x(—i;i) B—....}, .. (26)

’ VO ’ T Sp ’, TA SB
By = —x%—XF;(—)I;kT——kT [XB—Iog {(s5) +log (ﬂ) + (1+XF) ballsy) (TI’_)
b T 2sp
+ (142X ) 2 (s, (-,f“) ... ] e

which when combined with the expressions for the potentials of the pure liquids,
eqs. (13) and (23), give for the partial vapour pressures

Py .V TO)SB C(83+1)(T)83
E‘XBGXP[‘XB“X@“%(? ey \7g) B )
, T:\5 , 7,\ 2%
— (14X) bal(s) (~Ti) " rexy) 21,7 (7) -.] . 8)

for T\ < T < Ty,

Po_ y Ty '___1_) ™\"_
P%—XBGXP[(I V‘;,)XF bzi(sB)(l+XF X, (.T._)

~ % [4(s,)]" (1+2X;-— é)—g) (%—)283-—- o } .. (28)
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for T > Ty, and
, V% , .V T\ %8
%= X pexp [ <1_ *1}6) XB"'XB#r {ng(SB) (FA)
F B B
T\ 2sp
+03[2(s,) T (%) Foos H . (29)

It is important to note here that the distinction between the two temperature
ranges T, < T < Ty and T > T, above, as well as in the following sections, has to

be introduced only because the partial pressures have been expressed in terms of
the saturated pressures. Otherwise, the pressure of Lig. B in the mixture is given
by the same expression both above and below the degeneracy temperature, 7'y, of
pure Liq. B.

The expression for the free energy of the mixture when substituted in the
thermodynamic relations quoted above gives for the emergy U, entropy &, and
specific heat C, in units of R, the expressions

1
U=-3 [N Xz + N pxp)+ (35 X gt 6, X p) T~

me 2 [patie)(B) ez () "+ ] 60

8=1-X, log A5, —X, log {(s,) + X, log (1) " (s, X y s, X )~
0 T;

/

~ [ () s+ e x ) (5) Tt ]. e

. T)\°r
O = (s Xpt+s, X, )+ X, [bZSB(SB—l)l(sB) va +

bgs5(25,=1)[L(35) I (%*)283+ . ] O3

From eqs. (32) and (21) we obtain for the jump in the specific heat at the A-tem-
perature of the mixture the expression

AC = Xy, [14008(5,) (55— 1) F 0 [ L(3,) P (255~ 1)+ - | =
—OpT (3,4 2) (KT (X Vot X V(s +)- -0 (38)

5. Lig. F NON-DEGENERATE

In our considerations so far Liq. F has been regarded as essentially Boltzmannian
in character, We shall now study the case when Liq. F is considered to be a non-
degenerate ‘Fermi liquid’. For this purpose we shall have to include the higher
order terms in the series expression for the free energy of Lig. F, i.e., eq. (4). The
results of the preceding section then take the generalized form given below:

(a) Below the A-point: the free energy expression becomes
1
F= _NFX?-‘—NBX%—CBF(SB) (st 1)(NFVOF+NBV%)(ICT)SB+ -

L] . b -
_,NFkT[l—log Agp=bedr— 3 (Agr)*— ] . (34)
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which gives, on combination with eqs. (8) and (9), for the free energy of mixing,
APF,

Ay . . .
AF = —N kT {log 4—gf+bz(A3F *40F)+b3 ((AO # (AOF)2}+ B ] -
“Aor

' sp-1
—CpT(s) (s, + )N, VOET)BT . .. (35)
In this case the thermodynamic potentials of Liq. F take the form
,u.o——xr—kT[logAr+A F+ * (40 )2+...-], . .. (36)
when pure, and

1 .
pp = '"XF OBV(I)«‘”"T st Yspt1)+kT [10g AnF'*‘2(’2Anp"“:'3")‘il (AOF)2+ h J -

— X kT [y dgp+by (A7) + -], N 1)

when in solution. Also, the potential of Liq. B, when in solution, takes the form

pp = -X%"'CBU"T)SB+ : V%C(SB+ 1)—

LT .
~kTX, [~V§+b2AOF+%:"' 24 )+ - ] : .. (38
¢ 2
These then give for the partial vapour pressures the expressions
P Vo or o .
-2 = exp {— -V-g X, — X, (bodfp+bs (dop) + - - - .)}, .. (39)
Pp F
P ’ VO C( +1) ’ . » 2
gL =X o [XB VL) (7:) "X fbbetibts ()" -+
F J
- b3 o*
+ {bz (dop—agp)+ ([40:) = [40])+ - }] L 40)

The expressions for the energy, entropy and specific heat (all in units of R) will,
from eq. (34), come out to be

] 1 o1 X V04X VO
U=~ R (ZVFX(I)«‘+NBX(;)+CBP (8B+1) C(‘gs+1) (kT) A w +
+ X8, [T+b2A;F+b3 (4gp)’+ -], L@
C
8= —EI(s,42)l(s,+1)(RD)P (X V3 4+X,V5)+

Sp

- L] b -
+X5 .[1+3F"'1°g “1()1«"'+'l72(‘91V"I)A()F'+'§3 (28p—1) (AOF)2+ T ']’ (42

Q
i

Cl(8,42) (85 + 1) (kT)°2 (X VO+ X, V) +

+ ;'SF[ —bod;p—2bg (477) —] L (43)
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(&) Above the A-temperature: each expression will involve two series since both
Liq. F and Liq. B (in solution) are non-degenerate in character. Thus the free
energy of the mixture and the free energy of mixing (T > Ty)* will be given by

- x b s (2
F= =N xp—~Nyxy—NpkT [l—log Agp=ba 4y — 2 (4or) — .}—

N kT [I—Ic)g {(s,)+log (;)6 +ba £(s,) (]Tz)éfb’_{_

st (2) )
AF = —N T [log (%‘)634- bzg,(::)( 38)+
+3 {C;i’;)}z (T35 =T57)+. .. } -
— N kT {log%—bg(A;F vy— {(AOF) ~(4 g;)Z}_....]. L (45)

Eq. (44) gives for the thermodynamic potentials the expressions

* , ’ * 3 ’ - 2
bp = —XoHkT [log A —X by (2—XF)AOF+b3(—2——X )(AOF) +A...]—

F
0

V Ty s o (T 2s .
~X WkT[ —bol(s,) (T") =t () - } . 46)
o
Mg = _XOB—X I:V() kT+b2A0F+b3 (AOF) +.. ]

, 1\ 8 , T 8
— kT [XB+log (%) "X bllsy) (1) "

T

, o {Tr\28
+(1+2XF)%3-[5(33)]~(—T3) B+....}, um

which, applying the usual method, give for the partial pressures

pB— ) . . .2 C(8B+l) ']r Sy
;g_.XB exp[ -X,-X, W-‘X {b2A0F+b3(AOF) +""}+ (s5) (_T—,\) -
—{log(%) +b:8(s, (1+XF)( )BB+
o

+’g[c(sa]z(uzx;)(%)”‘u....}}, Sy

\

. It may be noted that here, as elsewhere, the range T > TO has to be specxﬁed because in
the range 7'y < T' < 7T, pure Liq. B is degenerate and therefore the expression for AF will be
different according as T > Ty or T) < T Ty .
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fOtT,\<T<T0,

P , , v . .
5= X, exp [XF {1- Ff —bodyp—bs (Ay) —.. .}~
B F

~$oatop) (13- ) () "+ B e >]2(1+2x;~@§)x

X — +. 48
(T) v e e 3 .o ( )
fOI' q >QO and,

B, exp [X; {1-;%+bzc<sg> (2) 7+ e (3) "+ s

B

X {bedletbs(d5) 4]+ f (45, A0+

+2%";[(A;F)z—(A8;)2]+----}]. L (49)

Using eq. (44) we obtain for the other thermodynamie properties of the mixture
the relations

U= = 5 (Fexst N o) +X s, [Tbadypotby (43) '+ ] -
s [=140.8(55) () "0 ltenT (3) 4] - o)
8 =X, | Lhs,—log Lo ~ta(o,=1)2(5a) () "
S Y LT i I

+X, [1+.9F-log A;F+b2(sF—-1) 0F+ (28 —1 (AOF) +.. ] .. (81

X, . . _—
‘= ;BF[”g;“bonﬁ%(AOF)2+----] +sBXB[1+b2(sB—1>z(sB> (7) "+
T,\ %8
#2201 5001 () +] -

From egs. (52) and (43) we get for the jump in the specific heat at the A-temperature
of the mixture

AC = X, [1+bal(s,) (85— 1) +ba[4(35) ] (255= 1)+ ] =
—C,I(s;+2) (kT))s, (X5 V°+XBV‘;); sp+1). .. (53)
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6. Liq. F DEGENERATE IN THE PURE STATE AND NON-DEGENERATE
WHEN IN THE MIXTURE

Evidently, this case is of interest only for very dilute mixtures at temperatures
below the Fermi degeneracy temperature, 4-85°K., for the pure Fermi gas (with
liquid density). Also it is important only in so far as it is customary to express
the partial pressures of the liquids in the mixture in terms of their saturated pressures.
As regards the partial pressures themselves they would still be the same as in the
previous case. As in the previous case we shall obtain two sets of expressions
according as the remperature is above or below the A-temperature of the mixture.
Now, we have for the thermodynamic potential of pure Liq. F

o . 0, %F L0 < kT
,LF__XF.;.%__,_TgO[l—(L +1)6(§)]. L (5e)

The other thermodynamic potentials are unaltered and therefore only the expressions
yn P y P

forp—gwould be modified. Combining eq. (54) with eqgs. (37) and (46) we obtain

Pr

a) for temperatures below the A-point:

Pr_ X, (i)x
pp  T(S;+1) \#T

. Ysptl) VT s &
o |2 SR ) = e T () ]
+{b2(1+x;)A;F+bg(%+x;)(A;F)2+....}}, .o (85)

and (b) for temperatures above the A-point:
pe_ X _(E?L)SFX
p% L(sp+1) \kT

8B

’ , VO 2sp
X exp [—XF+XB - {—1+62£(83)(%) +6a[¥(s) I (ZfA) T } +
B

TS EAIES AP (S AP }-

_%%{ ~(p 1) (‘é)” )

Further, the expressions for the other thermodynamic quantities are left un-
altered since the expression for the free energy of the mixture is the same as in
Sec. 5.
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In the extreme (Boltzmannian) case A;—»o and eqs. (56) and (56) reduce
to the form

Py _ Xy () Ly foz b
2 = e) = |~ e (g) |-

1 VU A B
C(33+ ) PX ( 4\) ]’ B (55,)

{(sp) -V—(L),

X exp [-—X +X;%{—1+b2§(88) (%‘)NB_*_%[{( ] (Zj;) +....}._
_(S:il)kﬁ;{ — (s 1) T (Z) ” . (58

respectively.
7. Li1Q. ¥ DEGENERATE

Now we deal with the other extreme case (A;. > 1). It is expected that this

case will be of importance for mixture with very high Liq. ' concentration, that is,
mixtures in which the density of Liq. F is comparable with the density of pure
Liq. F. We shall obtain two sets of expressions according as T =T, or

T)<T <485°K. ForT > 4-85°K. the expressions derived in Sec. 5 would apply.

Hence, we find that
(2) Below the A-point: the expressions for the free energy of the mixture and

the free energy of mixing get modified to

reessgfn i 3]

N5 xy—C ol (8) L5t 1)V Vit N, Vo) er) s . (87)
and

AF:'—— F(fo EO)+3F (kT)2 [to ;]ﬂz
—0, D)) B L) N, VS, .. (58)

respectively. Consequently, the thermodynamic potentials of Liq. F and Liq. B.
when in the mixture, take the form

s +X 7% o S(sp+1) . v T\*E
kg = “XB“‘OBV(L’; (kT)sB+1F("B);(35+l)
X Vi 700
Tl —W 7‘-‘ [1+ (oF+l)(-§;) ] R (69)
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These relations, when combined with the expressions for the potentials of pure
Lig. F and Liq. B, give for the partial vapour pressures

Ps _ X;«‘ V(z)? ) kT
;)g—-exp [—B-I:—ﬁzgﬁ{ +(F+1) (50) } .. . (61)
pr Xpts, £ kT sp £ kT
85 = T+, 77[ (F+l)“(§” i |1t (gg)
Uszt+1) T)SB
2Ty oo
Usy) Bvﬂ( ©

Again, the modified expression for the free energy, Eq. (57), gives for the other
thermodynamic properties (in units of B) the expressions

FF£O

kT
U= — R(NFXF+NBXB)+ 143, kT [ + (s ) (fo) ]+

+oBr(sB+1);(sB+1)(—F—F—ﬂ kT)’BHL, .. (83)

.y O 5
S=’_’;SFXF%Z+§E D(sz42)L(s5+)EDY (X VO4X,70) .. L. (64)
sFng +0, D(s5+2)l(s,+1)RT) B (X, VotX, V0, .. .. (65)

and (b) Above the A-point: Liq. B, when in the mixture, must be considered as
non-degenerate so that the free energy of the mixture will be given by

s kT
r= st b -0 5 () ]-
i °B
—N T [l—log () +log (-%) +b5L(S ) (TTA) +

b 2sg
+—2§{€(83)}2(%) +o ] © .. (66)

In the temperature range 7' > T, the free energy of mixing will take the form

11 8
AF = Ny, o (kD)2 [f" g]ﬁ—f;; Ny (b0—8)

7‘0 B ;(SB)
_.NBLT {log (1—1;\) +b2 o5 (TASB—TOSB)'!'

b g"(SB) 2 8 8
+TZ§{T8B} (TA2B—T02B)+,""}' b (67)~
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Eq. (66) gives for the potentials in the mixed state
X +s LT
. _.0_BT°F
P =X T [ ~l ) (f) }

, V?,,- [ T Sp T 2sg
—X, = kT | 1~byl(s J) —bg {L(s 2(_3) +] .. (68)
b A(sa) (77) bl (3
¥

r V%

i e ]

—kT [X'E—log {(s5) +log (%)

2s
+b§3 {Z(SB)}2(1+2X'F)(%) "o } e (69)

Combining, as before, with the expressions for the pure liquids we have

. . X 7 \
—5 =X exp [— B—_I:.L_Bé{ +(1+s ) (]CT) }+ {(SB+1)(%) 5
F

8

452l (s5) (14X, )(2)83

Pg sp+1 po kT éo {(sg)
(TA\es | by 5110w {Ta) 25 |
—{sz(SB)(1+XF)(7) +%2[2(5)] (H-”XF)(:F) o ‘]
for  Ty<T<Ty, - e e e e e (70)
Pp X

, , 4] kT
g =Xy exp [XF y iﬁ/— T% +(sp+1) (fo) }__
_.{sz( (1+X ——)(TA)SB

+ —S[C(SB)]z (1+2X1’,— (X”l:)z) (:gj) By }] (10)

for T >17, and,
0
pr sp+Xp £ 2 kT sp & ‘ w2 (k7"
g5 =155, &r |\~ o eI E) | e mr |10 g ‘g) -

~x, 2t 1=ttt (7) SB—bs[«sB)f @ -] m

Further, eq. (66) gives for U, § and C (all in terms of E) the expressions

£
TS i 2s
+XBsBT[1—bZC(sB)(7})B—bs[c(sB)]Z(Tf) B—....], .. (72)

1 S ¢ kT
= _f(NFxg?+NBX%)+T-T.I:— T [1+(1+ F)*(c ) }+

3B
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- kT T\°B Th\e
S='§SFXF'§—O +XB [SB+ log (E) —bz(SB——l)l(SB) (—7—14) fr—
Vi 2sp
— B (28, - 1) [2(s,) (7“) _] .73
e kT T)\°s
= —E-SFXF?O- +XBSB [l—l—bz(sB—l)l(sB) (7?.)
T QSB
by(25,—1) [L(s,) T (TA) +] . (14)

The last equation together with eq. (63) leads to the following expression for the
jump in the specific heat of the mixture at its A-point

AC = X s, [L+ba (35 —1) L(sy)+0s(285 = 1) [{(85) P+ | —
— O, T (s5+2) Y s, +1) (X Vot X, Vy) (KT3)5. .. (15)

As expected, eqs. (33), (63) and (75) show that the specifiec heat jump at the A-tem-
perature of the mixture is the same whether Liq. F is Boltzmannian, non-degenerate
or degenerate. The discontinuity in the specific heat is a property of the Bose
assembly alone and therefore there is no question of it being affected by the nature
of the Fermi assembly. The difference in the AC for pure Liq. B and the AC for
Lig. B in the mixture arises purely from the difference in the volumes of the Bose
assembly in the two cases.

8. DiscussioN oF REsULTS

Recently, Bhagat and Katti (1954b) have calculated the saturated vapour
pressures of Liq. He and Liq. He3 on the basis of smoothed potential models of ideal
Bose and Fermi gases. They find that the theoretical results are in good agreement
with the observed pressures. On the other hand, there are many pronounced dis-
crepancies between the theoretical predictions for an ideal Bose gas and the observed
properties of Lig. Het. TFor instance, we have for the specific heat of an ideal Bose
gas the expression (' oc T'° as opposed to the observed relation (' ec T® (T >
0-6°K.) for liquid He¢. This discrepancy may be due to the complete neglect of the
interactions between the molecules in the liquid state. As pointed out by Dingle
(1952) a considerable improvement in the theory is obtained by the introduction
of a ‘self-consistent’ field, that is, by assuming that each molecule is moving in a

2
field due to its neighbours. Thus, the ideal-gas spectrum, € = ‘%, is replaced

by an ad hoc spectrum, e = Bp3s. This modification is assumed to take
account of the interactions between the molecules. We do not wish to insist here
on the details of this concept, which is certainly open to much criticism. It may,
however, lead to a somewhat better description of the properties of mixtures of the
liquids. The modification in the energy spectrum leads to distribution laws of the
more general type:

VoS!

N(e)de = i . .
jexp (W) +1
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Next, following Heer and Daunt, we introduce constant or smoothed potential
wells. In other words, we consider the ‘liquid’ as being a Bose or a Fermi gas in
a constant potential well, each particle of the assembly being subject to a self-
consistent field due to its neighbours. Thus we have written the distribution laws
in the form:

VoSt
1 € x° ’
1P (“T - ﬁ) +1

This single-particle approximation to the liquids stresses the réle of statistics,
obeyed by them, in the behaviour of their mixtures. It may, therefore, be expected
that when a large amount of experimental data become available our discussion
would be of great importance for testing the influence of statistics of the two com-
ponents on the properties of their mixtures.

Below we discuss some of the important results obtained in the previous
sections:

N(e)de =

(a) Variation of the A-temperature with Concentration.
T
Three values of s,, namely, 3/2, 5 and 6, were used for computing QTA from eq.

(9). The molar volumes, as usual, were taken to be 27-6 c.c. and 37:6 c.c. for He4
(Lig. B) and He® (Liq. F), respectively. The results are plotted in Fig. 1 as a
function of the He? concentration, X .. Measurements of the A-temperature of
He3.Het4 mixtures have been carried out by Daunt and Heer (1950) and by
Abraham ef al. (1949). Their results are also shown in Fig. 1. 1t is seen that the

lo

oL

Fia.1, Plots of the A-temperature, 7'), against concentration, Xr, of He® in He# mixtures.
The curves are computed from eq. (9) with g = 3/2 (——uuu), 35 =06 (- ~ - =)
and ¢p = 6 (—.~.—.—). Experimental results are indicated by dots (Daunt et al.)
and by squares (Abraham et al.).
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experimental points are represented fairly closely by the curve for 8, = 3/2,
(which corresponds to the ideal gas case). For higher values of §, the theoretical
curve deviates more and more from the experimental values.

The slope of the T) vs. X, curve for very low concentrations of He (i.e.

X . — 0) becomes, from eq. (10),

aTa TO V‘IJ?

3_@—- '9an
= — 1-986 for s, = §,
= — 0496 for s, = 6.

These values may be compared with those obtained by de Boer and Gorter (1950),
—2-78, and by Stout (1949), —3-50, whereas the observed value is ~ —2-8.
For very high concentrations (i.e. X, — 1)

0T, . )
EY::+ oo since s, > 1.

Hence the curve should approach the abscissae vertically in each case. The
experimental points also indicate such a behaviour.

(b) The Vapour Pressures

Using observed values for the saturated pressures pg. and pOB , the total
vapour pressure (pp+pp) over a 20 per cent mixture was computed from the
theoretical expressions in the following cases:—

(i) when Liq. F is Boltzmannian, with s, = 3/2,
(ii) when Liq. F is non-degenerate, with s, = 3/2,
(iii) when Liq. F is degenerate and s, = 3/2, and
(tv) when Liq. F is Boltzmannian and s, = 6,

In calculating the values of p, for temperatures above 7', no distinction
was made between the regions T'y << 7' < Ty and T’ > T, in fact, the expression for
the latter region were used throughout the range 7' > T). The results are plotted
in Fig. 2 as a function of temperature. Weinstock ef al. (1950) have observed the
total pressure over a 20-3 per cent He3.Het mixture. We have included their
results in Fig. 2 for the sake of comparison. Clearly there is very little difference
between the curves I, and II, corresponding, respectively, to cases (i) and (ii).
However, curve Ip (case iv) has a discontinuity at the A-point, whereas curve
IIT (case iii) is much lower than the experimental values. The agreement between
the theoretical predictions in the first two cases and the observed pressures may not,
however, be stressed. As pointed out in Sec. 4 the assumption G ~ F entails a
considerable error (Bhagat and Katti, 1954a).

In Fig. 2a are shown the plots of egs. (28) and (28'), curves I and IT respec-
tively. In obtaining Fig. 2, as already mentioned, we used for p,, throughout the
range T' > T,, an expression which is valid only for 7 > T,. TFig. 2a shows, in the
representative Boltzmannian case, how far this approximation is valid.
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7%

Fie. 2. Plots of the computed values of the total vapour pressure over a 209, He3 in Het
mixture. Curve I, is for Liq. # Boltzmannian and sg = 3/2, curve I, for Liq. F

Boltzmannian and sp = 6, curve IT for Liq. F non-degenerate and sp = 3/2, and
curve III for Liq. F degenerate and 85 = 3/2. Experimental points (indicated by circles)
are due to Weinstock et al.
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F16. 2a. Plots of the total vapour pressures above a 209, He3 in Het mixture in the tem-
perature range Ty < I' < Ty, 88 computed from eq. (28), curve I, and eq. (28’), curve 1T,
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(¢) The Distribution Coeficient.

From egs. (17) and (18) and (27) and (28’) we have, for dilute solutions (i.e.
NF < NB)’

T<T,
X, Vi b 7\ Hsptl) Vi
-f- = '-1701; .Z')—OBexp 1_ (2,186) C(SB) ’ —I;.—; ’ i . v (76)

x, Vool v (2-186)‘“8
r:;g;)—g exp 1— — l_bZC(SB) T

127
—bg[(s,) T (-‘?—_,;—sf) e ) } ] .

where X, and X, are the relative concentrations in the vapour and the liquid

phases and for 7', ~ Ty, we have taken the observed value 0f 2:186°K. In obtaining

(76) and (77) it has been assumed that X, = i—F- This relation would hold also
B

in the non-perfect gas approximation to the vapours provided that the partial

100 |- -

go |- .
_>_(l’- 6o -
Xy

&40 3 -

Lo -

i N ] N { 1 g L 1 !
ro ra ry "6 Iy 10

X
Fic. 3. Plots of the relative concentration EZ for very low concentrations (X F<<1) as

computed from egs. (76) and (77), Experimental points are-due to Taconis e al. (circles)
and to Lane et al. (triangles).
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X
pressures are thought of as fugacities. Values of (X—V) have been calculated
L

from egs. (76) and (77) for two values of S, namely, 3/2 and 6. The results are
shown in Fig. 3. Measurements of the distribution coefficient of dilute solutions of
He? in Het have been carried out by Taconis ef al. (1949) and by Lane and his co-
workers (1949). Their results have also been shown in Fig. 3. The percentage
error in the experimental results is so large that no decision can be made as to which
law is preferable. However, considering more concentrated solutions Daunt, Tseng
and Heer (1952) have reported good agreement between the 3/2 law and the
experimental results.

(@) The Specific Heat.

In this case no experimental data are available for comparison. Theoretical
values of the specific heat (in units of R = k (N -+N,) ) have been computed for
a 20 per cent mixture in the following cases :—

(i) Liq. ¥ Boltzmannian,
(ii) Liq. ¥ non-degenerate Fermi liquid, and
(i) Liq. F degenerate Fermi liquid.

1 L ¥ L

3-0

25

o 0y i-o 5 &0

L
7k
Fia. 4. Plots of the computed values of the specific heat, C/R, of a 209 He?® in Het mixture
against temperature. Curve I is for Lig. ¥ Boltzmannian, Curye III for Lig. F degenerate
and Curve 11 for Liq. F non-degensrate.
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In each case we have taken 8, == s, ==3/2. The results are represented by

curves I, IT and III, respectively, in Fig. 4.

In case (i) as the temperature decreases from higher values towards the
A-temperature (~ 1-63°K.) ¢ increases slowly from 1.5 to 1-6. At 1-63°K. it drops
discontinuously to the value 1-15 and decreases slowly to 0-3 as the absolute zero is
approached. For temperatures above about 1°K. the curve for case (ii) follows
very closely the curve for case (i). Below 1°K. they deviate appreciably from each
other and the former drops to zero nearabout 0-5°K. For case (iii) € tends to zero
as the absolute zero is approached and above the A-temperature it increases slowly
with the rise of temperature.

Table I below shows the various relations for ' at different concentrations.
The relations clearly show that in the Boltzmannian case the specific heat increases
with concentration at low temperatures. At temperatures above the A-point,
however, it has, more or less, a constant value, ~ 1-5 R, the temperature terms
having little contribution. In the degenerate case ¢ — 0 as 7' — 0 for temperatures
below the A-point whereas in the non-degenerate case C rapidly decreases to zero
at T'~0-5°K. Thus the behaviour of (' for temperature below 1°K. is very sensitive
to the nature of Liq. F being considerably different according as Liq. F is Boltz-
mannian, non-degenerate or degenerate. Experimental measurements of the
specific heat in this region would therefore give an indication as to the nature of
Hes,

In passing, we may point out that recent experiments of Fairbank et al. (1953)
on the magnetic susceptibility of He3 indicate that He3 behaves as a classical liquid
even down to the lowest temperatures.

(e) The Entropy of Mizing.

In the case where Liq. F is taken to be a degenerate Fermi liquid we obtain
for the entropy of mixing, from eq. (58), the expression

_ sl 0 i 0 . .
AS = — —sF =~ &7 [ S+ (¢, — ¢,) +terms involving temperature] .

(78)

As already pointed out by Daunt and Heer (1951) we note that A §— 0 as the absolute
zero is approached. This leads us to expect an unmixing of the liquids as the
absolute zero is approached. This may be in accordance with Taconis’ hypothesis
that He3 mixes only with the normal part of He# so that at the absolute zero, where
no normal He? atoms are present, there would be a complete unmixing of the
liquids. Also, it is clear that eq. (78) is in accordance with Nernst’s theorem. The
classical expression for A 8, however, does not show such a behaviour, that is, AS
does not vanish at the absolute zero.
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SuMMARY

Smoothed potential models of the type used by Heer and Daunt are considered when the
distribution laws have the generalized form introduced by Kothari and Singh. In the mixture
the liquids are assumed to form statistically independent systems. The thermodynamic pro-
perties of mixtures (both above and below their A-points) are derived when the ‘Fermi liquid’
18 (i) Boltzmannian, (ii) Non-degenerate and (iii) Degenerate. Comparison with observed
properties of He3-He* mixtures is carried out. The behaviour of the specific heat, below
1°K., is found to be very sensitive to the nature of the Fermi liquid,
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