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1. INTRODUCTION

In World War II the German engineers made a notable contribution in the
field of low pressure guns by closing the front of the cartridge case with plate having
one or many nozzles usually in the form of holes. Suitably choosing the nozzle
area the chamber pressure was kept considerably high while the projectile suffered
a low pressure in the bore. Thus the ignition properties and regularities were
improved without increasing the barrel length. The reduction of the volume of the
cartridge case, thus achieved, was a decided advantage.

A simple theory of the internal ballistics of the high and low pressure gun for
tubular (f = 0) propellant has been given by Corner. In this communication the
author has presented a generalization of Corner’s theory for a propellant of any
shape, i.e., for any value of 6.

2. NOTATIONS AND ASSUMPTIONS

Fig. 1 illustrates an idealized model of the gun.
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W = the projectile weight.
(' = the charge weight.
K = the volume of the first chamber containing the charge.
Ky = the volume of the second chamber.
8 = the area of the venturi or nozzles connecting the two chambers.

A == the bore area. .
P = the pressure in the main chamber taken to be uniform.
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p = the pressure in the second chamber and the bore.
v = the shot velocity,
x = the shot travel.
(CZ = amount of propellant burnt up to time ¢,
CN = amount of gas in the first chamber at the instant ¢,

In this treatment the usual isothermal assumption has been made and the
mean force constant is denoted by A. The approximation is valid in both the
chambers and bore and we may neglect small regions near the venturi where the
approximation is not valid.

The inijtial resistance to the motion of the shot can be accounted by adjusting
the rate of burning constant 8;. The pressures at inlet and exit of the nozzle are
P and p as near as matters.

Y

y-1
If p/P < (ﬁ_l) then the rate of flow is determined by P alone. For

¥ = 1.25 the condition reduces to
p/P < 0-555,

then the rate of flow is given by V*)‘; where ¢ is the numerical factor which is a

function of ¥ but lies within 19, of 0-66 for all service propellants. A reasonable
correction for friction and heat losses in the nozzle make 4 about 0-63.
If p/P is greater than the limit mentioned above, the rate of flow for ¥ = 1.25

is given by Sp ‘08 0274
(Ve ) (- ()]

where y = 3-162 when heat and friction losses are not accounted. If this is done
x = 3-00.

Further two valid simplifying assumptions have been made,

i) p/P < 0-555
throughout, and

(i) no unburnt eordite passes the nozzles,

3. Basic EQUATIONS UP TO ALL-BURNT

The equation of state for the gas in the first chamber is

P [K— QQST—@ - CNb] =CNA .. .. .. O
and for the gas in the second chamber is
p Ko+ Ax~C(Z—N)b] = OXNZ—N) .. .. (@

Neglecting the conventional Lagrange’s correction, which is indeed very small,
the dynamical equation becomes
dv
’le=A_’p.. .o . . .. (3)

where w, = W;+}C, W, being the effective mass of the shot, allowing for
friction.
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The rate of burning is given by

af _
D% = —pP R 73

The nozzle flow equation is

dN dz  YSP

O—d—t- =O’E—-O\/X .. . .. .. (5
The form function is given by
Z =(1—f)(149f) .. .. .. .. (6)

4, SoruTiON OoF THE EQUATIONS
Equation (6) gives

6—1 FT1)E—40Z
Fa )i‘/2(0+) P 3

Now f being a positive fraction (fraction of web remaining) we have only the
positive sign.
Therefore ’d‘—f = — —-——___‘—_1_‘——*__ @g . . v (8)
di AV (8+1)2—46Z dt
From (4), (5) and (8) we get,
v _az_ ysD___ 14z
dtdt  BON/A+/(0+1)2—40Z dt

Integrating this equation we get

$SD A/ (6+1)2—48Z
BCA/ A 26
By initial condition, Z = 0, N = 0, we get

_ $SD (A (0+1)2—40Z  (6+1)
R B Rl

N=Z+ -+ constant,

(10)

Y {\/<0+1)2—4oz _ <0+1>}

26 26
Y8D_
BCV/A

The dimensionless parameter ¥ plays an important part in the ballistics of
H/L guns as it does in that of RCL guns,
Substituting the value of (Z—N) from (10) into (1) we get

vV (0+1)2— 467 _gﬂ}]
20 26

=P[ _ca-z _, {z+w(‘/(0+1)2“4"Z—0+1)}] LA

where ¥ =

CA [z+¥f{

] 20 20
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o [Z_HF, {\/(0+1)2—4oz_ e+1}]

26 20
or = e (12)
[ _oca=2 _ ., 2+ (\/(0+1)2_40z 0+1) ]
8 26 20
From (4), (8) and (12) we get
V(0+1)2—46Z 6+1 }
1 az_§ ”[Z“”{ .
T_497 dt D _ L1407
vV (6+1)2—46Z [K_ 0(18 Z) _o 24w (\/(0+ 1)2—40Z e+1) }]
20 20
(13)
;041 A/(0+41)2—40Z
Put Z' = ST 26 (14)
' 1 dZ
Therefore — = ———ouw . ..
At \/(6+1)2—40Z d
From (14) we get
(- 00]" e soz
260 | 462 462
On simplification this gives
Z=—0Z24(0+1)2Z
Substituting these values in (13) we get
dZ' _ OpA [—6Z2+(0+1)2'—¥PZ]
[(K— g) +C (3 —b) = 0Z’2+(0+1)Z’2 +ChPZ
Sepa.rating the two variables we get
K=< 5 +ol} s—b {— 02'2+(a+1)2'} +Cb‘I’Z’] dz’
CB)‘ dt
[— 0Z'24 (6+1—~¥)Z']
or
C 1 , ’ ]- ’ ’ ’
K —5) +0\5—b) | = 022+ (O+1-P)Z'¢ +¥C (5 —b| 2 +CWPZ |dZ
[—o0z240+1-¥)2']
Y
=5 dt
This becomes, after simplification and putting into integrable form,
0(1_ _b) iz ¢ {~20Z'4+(0+1-¥)}dZ
8 200 [—0zZ24(0+1—-¥)2']
1 YC(O+1-¥) ( _g)) [l 4 ]dZ’ CBA
+(o+1—av){ sis— T\E—3)( |z T Doz s d
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Integrating this equation we get

c (% ——b) 72—V, [_ez'2+(9+1-—tp)z'J

268
-9 gy |
+ (0+1—?’; [log Z’—logg —0Z’+(0+1—‘I’)}:|
= gg—/\t +constant, .. .. .. .. (18)

We have to determine this constant by initial conditions,
Taking the origin of time when Z = 1, i.e. Z’ = 1, the solution is

1 , we  {—0Z240+1-¥)Z'}

1=7)
¢\ . PCO+1-)
+{(K"5)+ 265 %[br' z(1-¥) H_Oﬁz\t .
6+1—9) S\Zwzreriw = ot 0%

The pressure in the first chamber is given by (12) and its value at all-burnt,
ie.Z=1or Z =1, is given by

1—8 0+1}
o [”"’{“27 ~ 20 ]

b= §1—0  6+1
[I‘“Cbzw - W}]
CA1—Y)

= T .. .. . .. (16
[E—Cv(1—w)] (16)

As for a tubular charge here the maximum pressure does not exactly occur at
all-burnt but for practical cases it is very nearly at all-burnt and equation (16) can
be taken to give approximately the maximum pressure.

Second chamber and bore.

The equation of the second chamber and bore are simply

dv

wla—t=Ap . . - ..o (17)

CMZ~—N)
d = 18
an P [Ky+Az—C(Z—N)b] (18)

Substituting the value of (Z—N) in (18) we get
Ty
on|ty - Y

. (18a)

p= AN S
[K0+Ax—0b¥’ i"il _ \/(9“)2—4__”%]
26 26
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If K, is not zero, then for small Z

o [0-;- IR VATER 1)2—402]
o= 20
K,
o [Z+g,{\/(e+;():—4oz 3 0;—1) z‘]
and P = 0

(==3)

w [0+1 V(e+1)2—4ez] (K_ g)

26 2 5
= 6 .. a9

AV @F1)2=46Z 6+1 ] .
[Z“""U% 20 T 20 } Ko
vz (K— g)
Ko[=0Z24(041—-¥)2)
From (17) and (18a) we get

041 \/(9+1)2—4ez]
ACA'}’[ — gy a
041 \/(0+1)2—4Fzg] 4z

20 20 f

o that initially

s

Rtk

or

dv

Z
wy [K0+Ax—0b¥’ %

(20)

ACND [‘9“ - \_/iﬂﬁ:ée_z_] [ . o1=2) _

5
V(6+1)2—46Z e+1)$ |
— {2y - (VP2 Lo

vV (0+1)2—40Z

or 77 s . (20a)
w, CAB [Ko-i-Ax—Cb?”l o+1_ ————-———%] X

26 26

S VEEIE _0+1)
X \V/ (0+1)2—46Z [Z+W(———2—B—~—__%. |

Transforming this equation to Z' we get

ACXYDZ' [(K— —q) +C (- -b) {—0Z’2+(0+ l)Z/} +0b‘PZ’]

W OB [Ko+ Az—Cb¥PZ' ][ ~02'24(0+1—¥)Z']
C 1 ’ ’ ’
D [(K— 3) +0C (’s -—-b) { —07'24(0+1)7 } +cwfz]

T wp [Ko+Az—Co¥Z ] [— 022+ (04+1—¥)7']
Further making the following substitution,

X = AL; <K0+Az) (%’,‘")é

v
iz

. (20)
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b b
and V= ‘—4—1—33 (’IDIO/\III) y
equation (205) becomes
d —0Z224+(6+1-)Z' dX

az’ 1 o\ [dZ'
C (5 —b} §0Z22—(04+1)Z' ¢ —CWPZ' ~\K— 3

. [o (-; —'b) %0Z'2—(0+1)Z'} —CBPZ — (K— g)]
= X7 07T 0F1—F) -] @

. 2bp

It is easy to show that v ~ 5
on the shot up to all-burnt. If p =8 tons/sq. in., which is not likely to be
exceeded in H/L guns, v << 0-3.

Generally, the integration of equation (21) is best affected numerically. The

boundary conditions are Z’% =0 and X = X; when Z'=0, (Z=0). The

pressure, velocity and shot-travel at any value of Z between 0 and 1 are, respectively,

and small, where p is the space-mean pressure

L (w,CA\?
BCAPZ ( 7 )

P="ADX =)
_ 8Oxw,ONp)t 7
- AD (X —vZ')
__( y )% dX —0Z'2 4 (04127’
[(K-

w.0n) Oz o n (23)
) +C (‘a —b) {—0z'z+(o+ 1)Z’$ +ChPZ’

(22)

D P\
Xr = F [X—Xg] (m) . .. .o (24)

(]
where X, = B—I—{Q (w;g’ /\)

As the maximum pressure occurs at all-burnt, we are interested in the values
of pressure, velocity and shot-travel at all-burnt only.

Series solution.

By Maclaurin’s theorem we can express the solution of equation (21) as a
power series in Z as follows:

X = Xo+ XoZ + 1 X" 22+ 3 X" 2%+ . . .

where the coefficients are the initial values of successive derivatives of X with
respect to Z’, these are obtained by successive differentiation of equation (21). The
golution becomes

5B
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2
X=Xtz |23
- 0 XO(Z:
o[ 1§30 (a5, 00 1 (1 1 19
TR e \et ) T2 (T T 20
2 (] 2 0 2
2 2
RYESE 1400;3a1+1wj°‘1_89a;a1 4 %
0 3 d2 112 2 3 \ocz

) o]

where a1=<K—§),a2=(9+1—‘I’),a3= {C(%

and a4=0(% —b)_

The corresponding pressure is given as

_ﬁox(wlcm*< VA )
P=—"ID X7

Substituting the value of X from (25), and then bringing this term up we get

ADX,

2

1 1 3(11 o3 a,@ 1 1“1 1
+‘Z'2[”§{““(“+7 +mys vty T

2 X; (Zae\®2 o )\ X0 (20 X,

2 2

1 1 (1 fog 1180%7 149 8040t
+2Z31 =45 _g_,_ 41+ 0;3011_ 01;1

6 Xo 3 o, o %, %,

2

2
1 5 edl oqg
: +“‘é{‘ "<“?+‘T
¢X0 3 %, e,

2
_ B0 X2 |y [_1_ % _,L}
N 0
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+l_{1(2v2“f 13 10 13a3af))§
1 T2 T 9 s T 9 4
X, 3 %o 2 %o 2 %g
4
1 30(11/
4
0 2“2
6
1 {5
Xy (O,
-1
Ao N B N . . .. (26)

Z' being small we can expand this binomially. After expansion this reduces to

e L B R S R
P=an TR | T\ TR

2 4
1 3 1§ &3 a10 1 9“1 1 5“1
—{ = — 2 | =22 —{ = i ..
X(Z){2°€2(¢2+a;) ”}*xg{%g” Txi 2o

2 2
1.1 01 [ag 116%7 146050, 8foa
—gz3[—{§(7+ i —
2

Xg « a, ®, o,
2

1 ({32 (0O«

2 () )
X, %y U

L L{1(63 erand 67
X (3\ o 28 2 o
1 51 =

AR
0 &y

L1 {5%?”
361 @ _6
X, 6 %Xy

o ] e (26w

and the velocity is
vt ax —0Z24 (641—-¥)2'
=(r m) ‘oz C 1
S [ o o e e
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Substituting the value of j—é{, obtained by differentiating equation (25),

this equation we get
_ g@)*__ —0Z24+(04+1—P)Z
( wy ] Xo C 1 , ,
K— 3 +C 3 —b {—-BZ e+ (04+1)Z % +Cb¥Z’

"2
%,

Bl

2 - 2 4
oy , 3(11 [ 2% a10 1 }il i 5_1“1
[ ”H““(‘* )}J’E{zaz”}%za 241

. 2 2
+ }ZIz ]: ﬁg + 140(13311 + 110ia1 _ 80&;11
? LS & %y %y

2

+ 1 5 0(1?+ [+ 3733
— < =y | —
-XO 3 a d.g

3
2
L1 {1(2%:1 1399 13asa )}
w233l T2 T 95 T 9 %
X3\ o 2w, ?oa
L1 {_§Q}+L{5§H
3 3 i )
Xo 20‘2 Xy 6 2
I :l .. .. .. .. 2D
The solution of equation (21) that passes through X =0, i.e for K¢ =0, is
__~°(1 4 4y Ko %% Z 44: va5 Z,2
X= Z + Z +[125 a1+ aZ] +425 X1&Ko
(28)

6005 690!4} Z’%+0(—95— ,,z'%)+0(y3Z’2) .
[+ 51+ 2]

’

g = [0o; + oz0e]

where
We know that the pressure in second chamber is given by
ﬁCA(wloaatf) z )
AD X —vZ'

For solution (28), p becomes
21’212

21’“2 21
{1— BE;Z + { 125(11 *3 5“1(12

2 15 221’15 ZI:
} 7 sa 2

_ BONwiONP) oz 5
2AD *1
2 -1
19 o | Bas ) gy ]
650 o2 a2 13a§a ERE
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. 2
_ BONwiONP)} o z'*[ L2 %181/2(12 2 ag } 7 168vas

24D o1 * 125af 5 aydy 425<:L1
2

17 a5 30@5 30@4

— s = . AL TR . .o (29
+ { 130 o2 130la + 13a, + @9

172 271
For values of —2- less than 5/6, and v being small, p is maximum at Z’' = 1,

oxyog

Generally for all practical densities of loading the peak of p always occurs at
Z'=1.
Therefore

 BOMNwi ONPY a, [1 2vag {ISV‘“’GE 2 a } 158 vacs
o

pnw'x‘ - 24D 5@1 125a? 5 A1y - 435 7?

2
17 oy 300s | 300y .
+{130 ol 13a§a1+13a1 +.... .. (29a)

From (29a), and (16) we get
Poox, _ BnON) MK —cb(1-¥)} oy [ | 20 o 182 g 2 ay
5 « 125 5 oq0e

P___ 2AD(1-Y) x
2
158y ay 17 “5 30as | 30ay
425 a?+ { 130 ,2 “2 13a§a1+13°‘1 o - (80)

>

l,(K_ g) +¢ (% —b) {—0224-(0+1)2'} +cb‘I’Z’}

X[og 1 +g+g{4v a2+§a5} ,§+§8\_ Va5
&g

. (syc,\)*( — 022+ (0+1—¥)Z' I

125 a,

2
5 ].9 (15 60&5 60@4
+2{325a1a3+13a 3o (2 7H |

This gives on expansion and simplification

‘I’O’z\)i PO 2 6 VZOL: 1l a ' 3 w
=|—- VA fia-iy/A4 —_— = _%5_ 34 2 725 grg
( wh [ +5 oy + 125 a? +5 oy0e Z + al Z

2
7 « 2 6 s
+{___,_§_+__a_s_£"i4}zfa+....] SEY



USING PROPELLANT OF ANY SHAPE 361

Therefore the velocity at all-burnt is

2 2

w, 125 2 5 xyao 1‘2‘5’?{%‘&60(22

Zap ] .. (32

By putting 0 = 0, all the equations deduced so far reduce to the equations for
tubular propellant as deduced by Corner.

5. SOLUTION AFTER ALL-BURNT

The gas flow from the first chamber to the second chamber depends upon the
ratio p/P, and for Y=1-25 this ratio p/P is less than 0-555. So leng as p/P < 0-555
the gas flow from the first chamber is the same as if p were zero. Hugonoit’s theory
with Rateau’s corrections for covolume (Corner, 1950, chapter 9) gives the rate of
decay of pressure P.

The solution after burnt in this general case is exactly the same as is for
tubular propellant done by Corner. Simply we have to take our all-burnt values
for tubular propellant.

6. SUMMARY OF WORKING FORMULAE,

Generally we are interested only in a few important features of the ballistic
solution. One of these is the peak pressure which is approximately given by

Cx(1— ‘P)
NE—(1-
$SD
e
where BCVA
If p/P > 0-555 for some time ¥ is multiplied by an appropriate back pressure

factor from Table 2, p. 264 (H.M.S. Office, 1951).
It has been shown in this paper that

P_. (33)

Xy = D\ .. .. .. .o (34
where w, =105 W + % C, and can be calculated easily.
We also work out
Cb
v=- lf (w,OXP) .

Now we calculate Xp and (gZX—') and then the peak pressure
B

_ BOXN®w, 0N} 5
P =Ypxa—y v @)
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the travel at all-burnt is

$
=2 (X=X [@%] 38

™y

and the velocity at all-burnt is

_ (G =) ]dX]
°n = (_uf) [K—Ob(l—stf) [ZZ s - o (37)

The muzzle velocity can be calculated easily as indicated in section 5.

Now it may be remarked here that the equation (21) can be integrated numeri-
cally and tables can be computed corresponding to the tables given by Corner for
tubular propellants.

SUMMARY

In this paper the author has extended Corner’s theory of internal ballistics of high and
low pressure guns using tubular propellants to guns using propellants of any shape. The linear
law of burning has been assumed as was done by Corner.
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