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INTRODUCTION

For a molecule containing = electrons moving in the field of a core, the Hamil-
tonian is expressed in the form

1 e2
H_Hm+§§:? PR )
a
and
Hcore = ZHcore(V)
1 4
where
1 e
507
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is the electronic repulsion between the electrons v and u, Hcore(¥) is the kinetic
energy operator for the electron (v) 4 its potential energy in the field of the core,
the latter takes into account all other electrons also besides the = ones. The
contribution of the electronic repulsion to the energy of the molecular states
can be treated by the well-known perturbation method. Besides, the singlet
triplet separations can also be estimated.

With respect to the determination of the energy levels of the molecules Furan,
Pyrrole and Thiophene, five orbitals one on each atom of the ring and six electrons
including the unshared pair on the hetero atom are considered. Let P, ... Py be the
five Pn wave functions on the atoms of the ring (Fig. 1). The one electron wave
functions ¢; of the molecules are written as linear combinations of the above Py’s

¢J.=Zojkpk O )
k

The best values of the Cj’s are obtained by solving the five equations

5
> CpHy—0,,E) =0, m=1to5
where =
H,, = J. p,Hpdr (* indicates complex conjugate)
(3)
A, = |popdr

1 For the calculation of the two centre integrals vide Roothaan’s (1951) formulae.
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and Ej; is the energy of the electron occupying the MO ¢;. The secular deter-
minant | Hpsa— A meE; | is further factorised by the application of the group théoreti-
cal methods and the MO’s are accordingly classified into different species. From
the energy values, the normally existing occupied and unoccupied orbitals of the
molecules are established. By resubstitution of these energy values into the
equation (3) the constants are determined for each MO using the normalisation
properties of the MO’s. Usually in solving problems of this type the following
approximations are adopted.

A,,=0, when m#£#k }

@
A,,=1, when m=£Fk

(an assumption that all P’s are orthogonal). Such types of overlaps can, however,

without resorting to this approximation, be strictly evaluated with the help of the

Master Tables given by Mulliken and others (1949) using Slater 40’s.

For the molecules considered, if ¢, ¢o, b3 be the three occupied and ¢4, ¢5 be the
two unoccupied M0’s having their energes 1 < By < Hy < By < Ejy, the ground state
is that when all the six electrons occupy the three lowest MO’s ¢y, ¢q, $3, two in each
with their spins opposing, thus giving rise to a singlet state. In the three occupied
MO’s, the one which is having the highest energy level is called the ‘high filled orbi-
tal’. The excitation of an electron from this * high filled orbital ’ to the lowest lying
unoccupied orbital will correspond to longest wavelength transition (¢3 — ¢4).

In the present calculations, the contribution of the electronic repulsion to the
ground state and two of the excited states, ¢3 = ¢4 and 3 — ¢, are evaluated first
in terms of molecular integrals which are then reduced to the atomic integrals.
The method is similar to that deseribed by Goeppert Mayer and Sklar (1938) in
which the wave functions of the ground and the excited states were antisymmetrised
by the proper determinantal method taking into consideration the spin eigen-
funection.

METHOD OF CALCULATION

Let the molecular wave function i of the ground state be written as the product

of all occupied MO’s.
¥, = 61(1)1(2)$2(3)pa(4)d3(5)43(6) .. .. - (B

The number in brackets refer to the electrons occupying the ¢; (=1, 2 and 3).
Each MO has two electrons with opposite spins and hence the spin function is

XS) = o1fo0tafssfe. - - . . - (6)
Then the antisymmetrised molecular wave functions for the ground state taking
spin factor also into consideration is obtained by performing all 6! permutations

P of electrons on the product of spin and co-ordinate functions, multiplying the
result by 41 to the order (odd or even) of the permutation and adding, i.e.

by = % 2 (—1)7pds()b1(2)da(3)do)bs(5)bsO)tsBotoBursBs -+ (1)

the energy of the molecule in the ground state due to the electron interaction is

f?’gH"Pgd-r .. . .. .. (8
where H' is the electronic interaction operator given by
, 1 e?
H = 50 .. . . )

vu i
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(ry, is the distance between the two electrons v and p and the summation is

carried over all the electrons). The energy will then contain chiefly two types of
integrals, namely (1) Coulomb integrals of the type

yu,=”%[¢,(v)zz|¢,,(p)[2dr,df,‘ € 1)

where ! and I’ refer to MO's, v and pu refer to electrons and (2) exchange integral
of type

i j J ;2—¢z(”)¢;r(#)[¢,(ﬂ)¢p(")]'df,, dr, .- o (1)
v

The energy of the molecule in the ground state consists of two factors (a) sum of
the energies of occupied MO’s counting once for each electron and (b) energy due to
electronic interaction, i.e. Coulomb and exchange energies cited above.
The following permutations are considered :—
. o2
(1) Considering the identity permutation and summing over all ;—, the

v
Coulomb energy of the molecule in the ground state is

Y11+ Yoo+ VYas+4Y12+4Y 13+ 4793 . .. .. (12)

{2) The permutations involving one interchange of electrons (P = 1) having
opposite spins need not be considered as they do not contribute to the energy term.

The permutations involving one interchange of the electrons designated in the
brackets need be considered.

P(13), P(15), P(35), P(24), P(26) and P(46).
These types of permutations will result in the exchange energy
—2815—2815—2855 .. .. .. .. (13)

While considering the permutations involving a particular interchange of electrons,
the integration should be carried over only for those particular electrons under
consideration, as all the other terms will contribute nothing to the energy.
(3) All permutations involving more than one interchange of electrons for any
;— will not contribute anything to the energy term. Hence the energy of the
¥,
molecule in the ground state (singlet) is given by

2B \+2B3+2E3+ Y11+ Yo+ Y83+ 4V 10+ 4713+ 4V 03— 2812 —2013—2853. .. (14)

The expression is same for the three molecules Furan, Pyrrole and Thiophene,
but while evaluating the actual energy value of that level the proper MO’s and the
energies K, ... Eg should be introduced.

Ezxcited State

The molecular eigen function when an electron from the occupied MO ¢3 jumps
into the unoccupied MO ¢, resulting in longest wavelength transition, is given by

¥, = $1(1)$1(2)$2(3)$2(4)45(5)$e(6). .. .. .. (15)

Here, two cases must be distinguished; the spins of electrons 5 and 6, the only
ones which are unpaired, may be parallel or anti-parallel. In case of anti-parallel

2B
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spins, the spin functions must be made antisymmetric giving rise to a singlet state,
ie.

X = J2 18P (x586 —Bste)- e e .. (16)

The second case where they are parallel spins for the electrons 5 and 6 can be
represented in three ways giving rise to triplets in each case.

63
X7 = a)BasBasas,

182384856, S O V4]
:/1—2— o1 B8203B4 {586+ Bste)

Since the perturbing potential H’ is independent of spin, the spin states singlet
and triplet will not interact. The energy for the latter three states is the same. In
the present calculations the spin function for the singlet is taken as

1
] o1B205B4(o5Be — Bote) T 0 )
and for the triplet state
xit) = dlﬁﬂ3ﬁ4a5mﬁ .o . . . (19)

The antisymmetrised molecular wave function for the excited state (triplet) is
given by (when the electronic transition is from ¢z —> f4)

¥ = \/6!2( 1)7pd1(1)$1(2)$2(3)$a(4)65(5)$aB)asBrasBuatsas - (20)
and for the smglet state

P = ﬁ \/6 ' Z (—=1)Ppd1(1)$1(2)s(3)Po(4)ba(5)ba(6) 1 BosPa(esPe—Bsxe)  (21)

The energy due to the electronic interaction term for the excited triplet state
is given by

j PO PO, T )
and that for the singlet state is given by

.[ PORYO: .. . . .. (23

The following permutations need be considered for the triplet state.
(1) The identity permutation P = 0, the expression for the Coulomb inte-
grals is given by
Y11+ Ve +47V1242723+2Y 134 2714+ 2Y24 + V54 .. .o (24)
(2) Permutations involving interchange of electrons having same spin such
as P(13), P(15), P(16), P(35), P(36), P(56) and P(24). The expres-
sion for the exchange integrals is then given by

~2819—819 =143 —8p¢—3s. .. .. .. (25)
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The total energy of the triplet excited state is

W, (triplet) = 2B, 425+ Bg+ By 4711+ Yog + 4715+ 2V 13+ 228
+2714+274+ V34~ 2819 — 13— 814893 —85y ~Bgy. .. (26)

Consider singlet state.—
The integral in equation (23) is split into the following four integrals :—

+% J $1(1)h1(2)$a(3)ba(4)hs(5)$4(6) o1 BactaBacts B

e2
Ty "

z (—=1)?pd1(1)b1(2)d2(3)P(4)$3(5)ha(6) 1 foxsBacsPe dr .. @D

+%J¢1(1)951(2)¢2(3)¢2(4)¢3(5)¢4(6)¢1I32¢sﬁ435¢6.

o2
Pon
> (—1Pp$i(1)$1(2a(B)be(H)bs(5)pu(O)arBrosBuboa dr .. (28)
P
- % j 451(1)¢1(2)¢2(3)952(4)9'53(5)¢4(6)°C132¢354°‘5/3;
62
on
> (=1 (V120 (B)boW)bs(5)pa(6)asfroaBibsra dr .. (29)
P

-3 j $1(1)6h )31 015h5)ha(6) 1Bt aBafcts

e2

Tou )
Z (—1)Ppd;(1)$1(2)a(3)b2(4)Ps(5)d4(6)a1 BasPsasBs dr .. (30

The following permutations are considered for the integrals (27) and (28):—
- The values of the integrals in expressions (27) and (28) are just the same.
(1) The identity permutation gives rise to Coulomb integrals

Y11+ Yes+4Y12+ 2V 15+ 2V 03+ 2V 14+ 2Y2s+ Ve

(2) The permutations having interchange of electrons with same spin such
as P(13), P(15), P(35), P(24), P(26) and P(46) give rise to exchange
integrals '—2812—813—823—814—-824. While dealmg with the mtegrals
in (29) and (30) identity permutations involving one interchange
(interchanges of electrons having same spins) will not contribute
anything to the energy term. In this case only permutation that
results in an exchange energy term is P(56) and the integral is
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designated by +83;. Hence the energy of the excited singlet state of
the molecule is

W, (singlet) = 2B, +2E,+Es+ Ey+ 711+ Y92 +4V19+2Y13+2Y55
+2714 42794+ V34 —28 15— 813 —Bpg— 814 —Bgq +834.

Similar expressions are derived for the electronic transition when the electron
from the occupied MO ¢35 is excited to the unoccupied MO ¢;. In all these cases
the difference between the singlet ground state and singlet and triplet excited
states correspond to the transition energies of the molecules Furan, Pyrrole and
Thiophene.

The energy expressions for the ground state and two excited states in each of
the transitions ¢3-> ¢, and ¢3— ¢ are given in Table 1, the contribution of the
electronic term being measured in terms of ¥y§ and 88, ie. Coulomb and
exchange energies.

TABLE 1
Ground state .. ¢12¢.2¢s2  Singlet 2E;+2H;+2E3+711+ Yoo+ Yas+4712+
+4713+4Y23—2015—2813— 2083
Excited state .. ¢12¢2dady Singlet E+E +Vau+2Y24+2Y14—814—824+ 834
($s = b4) .. Triplet E+E4+734+2Y94+2Y14~ 814824 — 034
(3 — ¢5) oo 2o dads  Singlet E+Eg4-Vss+2ves+2Y15—0815—25+835

Triplet E+4Ey+7Yss+2Ves-+2Y15—815—025—035

Where E is the energy factor common to all excited states and is given by
2E14-2Es + Es+711+Vas+4Y12+2713+ 223 —2815—813— 823

REepucrioN oF THE INTEGRALS TO0 AQ ForMms

All the Coulomb integrals ¥w and the exchange integrals &y in Table 1
over the molecular orbitals are now to be expressed in terms of atomic integrals
over the atomic eigen functions pi’s. The reduction of these integrals to the various
types of the atomic integrals is carried out as follows.

Let ¢; and ¢ be the two MO’s the form of which is given in equation (2).
The Coulomb energy of the type ¥i given in equation (10) is written as

* e2
Y= JJ 7 (ap1+bpe+ops+dpsteps)*(v)
i (@'p1+b'petc'pstd'pytepe)(p) dry dr, .. (31)
. where a, b, ¢, d, e are the coefficients of p,, ps, ps, P4 and ps respectively occurring

in the MO ¢;. Similarly the primes refer to those of ¢. The exchange integral
as given in expression (11) is

2
8y = JJ 7 (@p1+bps+opg+dpyteps)(v)
o (@p1+bpato'pstd'pate'ps)(p)
(ap1+bpa+cps+dpsteps) (1)
(@'p1+b'patc'ps+d pyte'ps)(v) dr, dr, .. (32)

where v and p refer to electrons. In the process of reduction of these integrals to
the atomic integrals the following types are considered. These were first adopted
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by Sklar (1938) in the ASMO treatment of the Benzene molecule and also by Rama-
murty (1954) in the calculation of the energy levels of Indene. These are—

(1) Integrals of Coulomb type between electrons on the same and different
atoms designated by

A=”fipf.(ﬂ1’f(#) drydr, .. .. .. (33
"

where m and n refer to atoms (Fig. 1, for the position of the atoms in all the
three molecules).

Fia. 1.

X = O, Furan
8, Thiophene
NH, Pyrrole.
m=11t08 n=1to5.
*The coefficients a,....e" are used instead of Cj’s for convenience only.
These are further classified into six types, 4,, A;,, Ay, A;, Ay and A;, the primes

refer to the integrals in which the pm wave function on the hetero atom, which
is different from the p# wave function on the carbon atom, is involved

e 5 3

Ao = || —p,0p, W) dr,d7, P 7))
Tou

where m=nzl, m=2 to 5.

4y = | | — p;0)p}(p) d7, d7, ee .. .. (35)
7‘,“
2

Az=”f PL)P(p) dr, dr,, e .. .. (36)
vp

where m#n 1. m takes the values from 2 to 5. 7 is then the immediate
neighbour to m. For example whenm = 2, n = 3 ; when m = 3, n takes two values
2 or 4 and so on.

.

4 —_~.J j%pf(-f)pfm) dr, dr, N 1
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where n takes either 2 or 5 only.

Az—_-” L pwpiwinds, .. . .. @)
iz

Here also m %~ n 7 1, but » refers to an atom always a second neighbour to m,
ie.if m = 2, n is either 4 or 5 and g0 on.

’

2
A2=” Z—pr(v)pz(p.)df,df" .. .. .. (39)

where n is the second neighbour to atom 1, i.e. n = 3 or 4 only.

(2) Mixed exchange and Coulomb integral, the interaction between an electron
on one atom with one that is shared between the same and the neighbouring atom
designated by B where

B €2 o dr. d 4
= E‘—‘pm(")l’n(l‘)l’u(ﬂ) Ty Ty. . . t (0)

In this case the interaction between electrons which are partially on atoms which
are not nearest neighbours is neglected. This is further classified into three types,
namely B, B’ and B”, as follows :—

B= J\J‘ ‘:—2 pi(”)?-(ll)?n(l") drv d/rp. .. .. < (41
ru

m # n#1, n being immediate neighbour to m. For example when m = 2, 2 =3
only and when m = 3, » is either 2 or 4 and so on.

, e o
B' = r—pl(")Pl(F-)Pn(F) d‘r' dTp, o .- . (42)
vy
where n is immediate neighbour to atom 1, i.e. either 2 or 5 only.
2
e [[Ertoniminn, .
v

where m = 2 or 5.
(3) The exchange integral between electrons on neighbouring atoms and is
designated by C where

C=J J 2 D pan ) drydr, L 4)
v

In this case also the interaction between electrons which are partially on atoms
which are not nearest neighbours is neglected. The exchange integral C is further
classified into two types € and C”. The first type

.
C= J?—Z’a(”)pn(u)p.(ﬂ)pn(v) dr,dr, .. .. (4D)
J v

where m 3 n 4 1 but # is immediate neighbour to m, i.e. whenm =2, =23 and
when m =3, n =2 or 4. In the second case

.
0= J:lpl(V)Pu(F)pl(P)pn(”) dr,dr, .. .. (46)
J Ve
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where n is 2 or 5 only. This classification is done by fixing a value to m. The
same holds good if the value for » is first fixed. Such types of integrals are also
considered.

With the help of the above integrals, ¥; is written as a linear combination,
of A’s, B’s and (s, the coefficients of each type of atomic integral is given below
in Tables 2 and 3.

TABLE 2 »
Atomic integrals. Coefficients.
A; aZa’'?
A, b2b'2 4-c2¢'2 - d2d'2 4 02¢'2
Al b2¢'2 4-c2b'2 +c2d'2 4 d2¢'2 f-d2e'2 0242
A’l - a2b’24-b%'24-q2e'2 +e2a’2
4, bzd'2+d2b'z+b2e'2+e2b'2+cze’2 +e2c'2
A'2 a2¢'2 4 c2a'2-a2d'2+d2a'2
B 2(b'c'b24-b"¢’ 2+ c2c'd’ +d2c’d’ +d2d e’e?d’e’ +
+-beb'2+-bee'2+cde'®+cdd 2+ ded’2+dee’?)
B 2(a2a’b’ +a2a’e’ +aba'2+acea’?)
B 2(b%a’b’ +abb'2+c2a’e’ +ace'2)
¢ 4(beb’c’ +ede’d’ +-ded’e’)
c’ 4(aba’b’ +aea’e’)

Similar procedure is adopted for the reduction of 8;’s also. The coefficients
are the various atomic integrals occurring in this case are given below.

TaBLE 3
Atomic integrals. Cocflicients.
Ay b2b'24-¢2¢'2 - d2d'2 4-e2¢"2
4, aa'2
4,4 2(bb'cc’ Fcc’dd’ +dd'ee’
A'l 2(aa’bb’ +-aa’ee’) .
A, 2(bb'dd’ +bb'ee’ 4-cc'ee’)
A'2 2(aa’cc’ +aa'dd’)
B 2{(be’ 4-cb’)(ce’ +bb" )+ (cd’ +¢'d) (cc’ +-dd’) +
. (de’ +ed’)(dd’ +ee') }
B 2{aa’(ab’+ba')+aa'(ae’ +ea’) }
B 2{bb'(ab’4-a'b)+ee'(ae’+e'a) }
% (B¢’ +eb')2+ (od +c'd)2+ (ce'+c'e)?
¢ (ad’+ba’)2+-(ae’ +ea’)?

If any particular ¥y or &y is to be written in terms of atomic integrals, the
coefficients of the latter, given in Tables 2 and 3, are to be evaluated. Further
work on this problem involving the evaluation of all the integrals is in progress
and will be presented in a subsequent communication.
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ABSTRACT

The contribution of the electronic repulsion to the energy of the ground and two of the
excited states in case of Furan, Pyrrole and Thiophene is evaluated in terms of the atomic
integrals using the method of the antisymmetrised molecular orbitals.
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