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1. INTRODUOTION

Recently Miss G. Gjellestad (1954) discussed the equilibrium configurations of
gravitating incompressible fluid spheroids (homogeneous, non-rotating, inviscid, and
infinitely conducting) subject to a uniform magnetic field H inside and a dipole field
outside. However, because of an error in the evaluation of the external magnetic
energy (e.g. the sign of the first integral in equation (65) of her paper should be
negative and not positive), the final results obtained in the paper need a revision,
This is done in the present paper.

Under the influence of an internal uniform magnetic field and external dipole
field it is shown in this paper that a sequence of oblate spheroids of equilibrium
exists. Further we shall show that for values of magnetic field greater than that given
by

H
4mpRA/G
(where p, R, G denote the density, the radius of a sphere of volume equal to that
of the spheroid, and the gravitational constant), the oblate spheroid is not a
possible form of equilibrium. On the other hand there are two spheroidal forms
possible, one more eccentric than the other, corresponding to every value of mag-
netic field H less than the critical magnetic field given by the equation (1).

The spheroids are assumed to be homogeneous, inviscid, incompressible, in-

finitely conducting and non-rotating.

= (188 . .. .. oo ()

2. FORMULATION OF THE PROBLEM

The method adopted is similar to Gjellestad’s. We investigate the stability
of an oblate spheroid of boundary given by

(=E .. .. o . ..®

b§' subjecting it to a general P,-deformation, so that its boundary changes to one
given by

14 E2
E24p2

where e is a non-dimensional constant. The change, Am, in the magnetic energy
and the change, AR, in the gravitational potential energy are evaluated. The
condition, Am+ AQ = 0, is then used to define the equilibrium spheroids for a
P,-deformation. The change in the total magnetic energy, A m, consists of two
parts, (i) the change, A m ©, in the internal magnetic energy of the spheroid and the
change, Am(, in the external magnetic energy. The change in the gravitational

{=E+e Pup) >0 .. .. .. (3
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potential energy, AQ, and the change in the internal magnetic energy, Am®,
have been quoted here as calculated by G. Gjellestad.

3. CuANGE IN THE ToraL MaaNeETIO ENERGY, AN

The components °H(£') and °Hy & of the uniform field H in the z-direction inside the

spheroid are
ot — (122!
Hﬁ;_H(m) P . . c4)

oH(’)__H( —p ) ¢

and

ot

The change in the internal magnetic energy, A m, as calculated by Gjellestad,
is given by

AMD =0 (n odd)
and
Am® H2C3E (14 E2)%2
mZn = e— len (iE) €2n .. . . (5)

The external magnetic field H(®), corresponding to equations (4), must satisfy the
equations

curl 4 =0, and div. H® =0 .. .. .o (6)
The boundary condition to be satisfied is
H":Hg)a’t§=E .. .. .. (D

The components °H (g) and °H g ) of H® satisfying equations (6) and (7) are

oo _ H+ED 1 ;
HY = él(m)) ELEmG P @
1
and o\
g = ~ZUTEN 1 o 1) P! ().

Q, GE) (E+u?)
The functions @; (¢{) denote the Legendre functions of second kind, so that
Q1 (¢8) = L cot=1 {—1

dQl (ZZ) — 2\ % [ -1 Z
—ar = 1+ fcot z_ﬁ__cz @
where the function cot~1 { is defined in the range 0 < cot=1¢ < =.

The change, 6 H(9), in the external magnetic field due to the P,-deformation,
must satisfy a set of equations similar to equation (6), and hence can be written
down as

Q) (1Y) = (142t

S = et 2)*21)10, G Pi() - .. .. (10)

and

S = — 2)*21):@1(@5)1’ ()
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The constants, D;, are determined from the continuity of the normal com-
ponent of the magnetic field at the deformed boundary (3). Since the normal
component 4y, of a vector 4 at the boundary (3) in the meridian plane, is given by

_ 1—p2\' 8 [ 1452
AN_A;+A9(1+£2)a_F[E::WeP,,(p)], . ..oay

correct to the first order of e, the boundary condition for the normal component
therefore gives

@ @ @ _ g0 1—#2"*_3-[1'4-1‘32 ] ( (e)) _
[H —H ]C+[H Hy ] (1+E2) op E2+;L2€P"( B |+ 28 —3H E—O

(12)
. (1+E2)€Pn(y)} .
where {’ is used for [E + T 2 for convenience.
Substituting the respective expressions and simplifying we get
' +1
2m+1 1 mm+1) [ Ppoa ()=Ppis ()
= L P
D, (n) 2 Q,l" GE) Q} GE) g 2mt1 JL B2y p2 w (1) dp
(1+ E2)Q! (iE)" i
i  (L+E%4Q, (i
—Fen Z @+1)P] (iB) J B P ) § .. a9

nl

where z denotes the summation over ! starting from ! = (rn—1), and going

through the values (n—3), (n—>5)....and ending with [ = 1, or 0, depending upon
whether n is even or odd. It can be shown that the 1ntegra,1 in the first part of
equation (13) vanishes if (m~+n) is even.

The change, A m ), in the external magnetic energy can be written as

1
(&) = M (&) —0m (¢) = .
an 8 J;z J

+1 am

+1 2m

J ; [H(;)]Z.l.[f[g)]z; 3({24pu2) df du d
0

-1

' 1 ® ()12 )12
—gj J J BT +[ ] }c3<zz+w> dLdpdg .. (14)
. EY-1"Y0
where g) (‘)-i-SH @
(¢) {e) (e)
and : HY =°HJ+sHY .. .. .. .. (15

Substituting equations (15) into equations (14), we obtain
S B

Am(°)=_.81—" J J J {[°H§’]2+[°H§”]2}c3(€?+y2)dcdyd¢
E 1 0

+ij [ }A [OH‘{’SH‘Z’ +0H 8H91c3(§2+p2)dCdpd¢ . (16)
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Using equations (8) and (10) we get
{1

i~ I T T

+eH2(1+E2)ic3j f“ (

2068 2 ) yz DiQ}(i0)Piu)

+Q1 ()P} (w) ZDIQHL')P () gdldﬂ R - (17)
iz

1

Because of the orthogonality property of Legendre functions in the interval
—1 to 41, the first integral in equation (17) simplifies to, (after some reductions),

+1

Pﬂ
(20,6E)+ 1+E2)'1}J EzJ(rI:zzd

H2(14-E?)%c3¢
SUAUIy
and the second integral in equation (17) vanishes for all values of [ except [ = 1.
The second integral reduces to, (after some simplifications),

A pwewim) . . (19

(18)

Thus substitution of expressions (18) and (19) into equation (17) gives for the change
in the external magnetic energy,

+1
o HA14E2)%c3 : 1 Po(p)
AmE = dlelanT {2Q1“E)+1+E2H B
-1

H2ec®

Dy(n) 1+E2) Q,(E) co o (20)

Now the mtegra.ls in the first part of equation (20) and that in the equation (13)
can be shown to vanish for n odd.

Hence AM®) =0 (nodd) .. .. . .. 21
and for a general Pj,-deformation
+1
o _HEO+EDecd ) o o 1 Py, (1),
AMe = " Tor I @ CE) 1 gm B
— P pom (k- B0QuGE) . @)

By putting m =1in equation (13), for a general P,,-deformation one can write

+1 1.
§ P2n (#) d 3Q1 (E) .. (23)
E2+}L T plim)

ey
Daom) = coTGmT
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Substituting equation (23) into equation (22), we get

Am® =0 (rodd)
and

amg = ‘ ——
Mo 4[Q, GE)T 21+E2 _ e # P, (iE)

The total change, Am , in magnetic energy is, by equations (5) and (24),
given by .

+1 . .
ta)_52€2n03(1+E2)"( 1 J' Po, (p) 4 4Q, (zE)Ql(@E)g 1)

am = AmMO+AM©
=0 (nodd) .. .. .. .. (25)

+1
H2e3(1 + E2)es, 1 1 Pos(p) Z
= - d 26
amg QNiE) 3 P)GE) 4[QIGE)) J_l Eifp? (26)

where equation (9) is made use of in simplification.

and

4, THE CHANGE IN THE GRAVITATIONAL POTENTIAL ENERGY, AR

The change in the gravitational potential energy, correct to the first orderin e,
for a spheroid has been worked out by Gjellestad, and the result is as follows,

_ 3 MG [3E*41 | o
AQ__TG-—C 2[ 7 cot E—3],forn_h
and
=0 fornz2 .. .. .. .. .. Lo2n
where M denotes the mass of the spheroid,
M=%—rpc3E’(1+E2). .. . . . .. .. (28

5. THE CONDITION FOR STABILITY AND EQUILIBRIUM SPHEROIDS

Thus while the change in the gravitational potential energy, A, of the
spheroid is of the first order in ¢ only for a P,-deformation, and of higher order
for all higher order deformations ; the change in the magnetic energy, Am , is of
the order ¢ for all even P,-deformations.

For equilibrium the total change in energy, AE must satisfy the equation
AE=Am+-AQ=0. .. .. .. ..o (29)
Thus using equations (26) and (27), equation (29) becomes

2 2 208 2
AE = — 3 M*G [3E +1 cot—1 E—3]—H——~——~—C 1+52) €2n 3 :
n=1

¢ 2| & Q. (E) P. (iB)

+1
-1 Py (p)
Q[ 6B) J Ty

=0 (for equilibrium) .. .. .. .. (30)
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On introducing e, the eccentricity of the spheroid defined by

e= (1+E2)-% .. . .. .o (8])
and the radius B, of a sphere of volume equal to that of the sphermd defined by
R3 = g3 (1—c2)} .. . .. .. (32)

(where @ is the major half-axis of the spheroid), the equation (30) can be put as

8 (1 €
AE = — P pen2B5G - f() o+ H2R3 , I—e z Faule) egn

n=1
=0 (for equilibrium) .. . .. .. {33)
where f(e) = [-3.“_262% cot-1 (l;ez)i —3] 39
and ‘
L S R Y
F = — N h . 2n .
) [Pé,,. (EQLGE) ~ 4[¢ BT J‘ bk ] a

Since for equilibrium the total change in the energy due to deformation must
vanish, and for a single deformation higher than P, the expression for the change
in the gravitational potential energy does not contain (to the first order in ¢) any
term to balance the magnetic term in expression for AE, the spheroid shall, there-
fore, in general, not be stable for higher order deformations (2n > 2). We shall
discuss the equilibrium spheroids for a Pj-deformation in the eccentricity interval
0<e<gl

For a Py-deformation, the total change in energy can be written from
equation (33) as

sy= [ Eprre L= g Lot poe
=0 (for equilibrium) .. . .. .. (36)
Thus the condition for a stable configuration under a P,-deformation is
H flo T}
— =1 | L .. . .. (37
ey A [30 e%(e)] 37

where f (e) is as defined by equation (34), and

+1
: 1 Py(w)
F —_ — _

e2 1 3—~2¢2
= .4 83— cob-E
3(1—e2)t - QI(iE) + 4[QIGET 3 e(l—eBt g
e2

= .. .. .. (38)
3(1—eB}- QIGE)  4[Q)( (E)T Je

“The function H/4mpR+/@ is plotted against e in Figure 1. We find that if
H/47pR+/G > 0-188, the oblate spheroid is not a possible form of equilibrium, but
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if H/4mpR\/G < 0-188, there are two spheroidal forms of equilibrium possible, for
there are two values e¢; and e, of the abscissa corresponding to every value
of the ordinate less than 0-188. When there are two real values e;, ¢ of the
eccentricit)j,_ one is greater and the other less than 0-97. Let ez > e;, then as
H/4npR+/@ is diminished, we find from the figure that e, decreases and e, increases.
As the ratio of the major to minor axis of the spheroid is given by (1—e2)~%, the
larger value ( = ¢;) of the eccentricity always represents a much flattened (disc-like)
spheroid. The smaller we take H/4mpR\/G, the flatter does the equilibrium
spheroid become that corresponds to the value e;. On the other hand with decrease
of H/4wpR+/ @, the value ( = e;) corresponding to the lower value of the eccentricity
of the equilibrium spheroid shall decrease. Further for each value of the eccen-
tricity, there is a unique and finite value of the ordinate (i.e. magnetic field)
required to make the spheroid a stable configuration for Py-deformation.

200 r

/5o

o
Tkl

so

o

Thus we conclude that under the influence of an internal uniform magnetic
field and external dipole field—
(i) Every oblate spheroid is a possible form of equilibrium provided the
magnetic field is of proper value.
(ii) The maximum possible value of the uniform magnetic field is given by
H/[4mpR+/@ = 0-188 and occurs for e = 097, and the ratio of major
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to minor axis being 4:12. For values of magnetic field greater than
this, no oblate spheroidal forms shall exist.

(iii) For each value of magnetic field less than that given by equation (1),
there are two spheroidal forms possible, one more eccentric than the other.

{iv) Each spheroid requires a unique and finite magnetic field to make it a
stable configuration for P,-deformation.

The problem of the stability of spheroids under a uniform external magnetic

field is deferred to a later paper.

The author is deeply indebted to Professor D. S. Kothari and Professor F. C.
Auluck for stimulating discussions.

SUMMARY

The equilibrium configurations of gravitating, incompressible oblate fluid spheroids
(homogeneous, inviscid, infinitely conducting and non-rotating) subject to a uniform magnetic
field inside and dipole field outside are discussed. It is shown that a sequence of oblate
spheroids of equilibrium exists. Further the maximum possible value of the uniform magnetic
field inside for the spheroidal form to exist is given by { ——=] = 0-188. For every value of

47pR\G
field less than this maximum, it is shown that there are two spheroids of equilibrium paossible,
one more eccentric than the other.
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