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1. INTRODUCTION

The equations of Internal Ballistics for the power law of burning were first solved
for a single charge by Clemmow (1928, 1951). His method was recently extended to
a composite chargs consisting of two component charges by Patni {1955) for the
general case and by Aggarwal and Mehta (1955) for the particular case of tubular
component charges by using the ‘Direct Method’. In this paper we have extended
Clemmow’s method to a composite charge consisting of n component charges by the
use of a generalisation by the present author (Kapur, 1956«¢) of the equivalent charge
method of Corner (i359) aud Clemmow (1951).

As usual, the following assumptions are made in the present investigation :

(i) Co-volume correction terms have been neglected.

) Vi=Yy=....=Y,—1=Y,=7. However, we shall show in the last but

one section how our theory can be adapted to the case when 7;, 7,
... ., Y, are unequal.
(iii) The pressure index is the same for all component charges.

The last is the only serious restriction, as most of the propellants in everyday
use have different pressure indices. As a matter of fact only three pairs of propel-
lants have the same pressure indices and in these tiree cases, the theory for n=2 can
be strictly applied. Nevertheiess if the composite charge has three or four component
charges with different, though very nearly equal, pressure indices, it would be better
to adjust the rates of burning constants of all of them to a common pressure index
rather than to approximate the pressure index laws for all of them by the linear law.
In this case our theory for general n would be useful. As a more practical example,
the theory would be strictly applicable to the case when the n component charges
have the same composition, and in particular the same pressure index. Another rea-
son for our discussing the theory for general n is that, by the equivalent charge
method, the discussion for a general = is in no way more complicated than for the
particular case n = 2.

We shall, however, discuss in detail only the case » = 2 and compare the results
obtained here with those obtained by Patni (1955) by the Direct Method.

2. THE Basic EQUATIONS

Under the assumptions, the basic equations of Internal Ballistics for the com-
posite charge, when all the component charges are burning, are the following :

F101z14+-Folozo+t - . . .. +F,Crpzy = Aple+l)+Hr—Dwre?, .. (1)

where

_ Oy, Ce Cu ;
w1—105w+—§—+—3—+ +3 .o .e . (2)
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and

g =(—f)A+0,f) i =1,2,.... 7] e (B)

If; .
])i%=—,8,.p°‘[z=l,2,....,n] .. .. .. (6)
t
where F;, C;, D;, B, 2;, fi, 0:, 8; refer to the ith charge.
Without loss of generality, we can assume
-D'l DZ -Dn

et S .. (T
B < B <5 "

We shall call * as the ‘effecfive ballistic size’ of the ith component charge, so

2
that we have numbered the charges serially according to increasing effective ballistic
sizes.
(7) can also be written as

B=f>....28 .. .. .. .. (8
where
r_ B
)

B; may be defined as the “effective rate of burning constant’ for the ith com-
ponent charge.

3. Tue EQUIVALENT CHARGE AND 178 FORM-FUNCTION

The equivalent charge is detined as that charge which would give the same
ballistic equations as the composite charge both during and after burning. TLet
F. (', D, B,z f, 8 refer to the equivaleut charge. Then the following results. which
will be used later in the present investigation, have been established by the present
author (Kapur, 1956a)

(1) O=C’1+C‘2+....+Oﬂ . . .« .. . .. (IO)
(ll) OF = 01F1+02Fg+ s +C71F” . . .. . . (11)
(iii) %:% or B=§ .. .. .. .. - .. (12
. C _ 0 Cy C, .

{iv) g——8—1+76;+...-+-g; (13)

(v) 1f %[z’ =1,2,....n] are all distinct, the charge ', burns out first, then

charge ('3, and the last charge to burn out is the nth, i.e. the charge with the
largest effective web size. The burning consists of n distinct stages, and during the
rth stage only rth, (r41)th, .... and nth charges burn, the first (r—1) charges
having been burnt out earlier.

2
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(vi) During the rth stage of burning the form-function for the equivalent
charge is

= Ar+Br(1 "'f)—Or(l —f)2>}
1 (14)
when l—kr—1>f>1_17,.
where
k=t (15)
FL; ,
=" (16)
r~1
A'. = /\.'
i=1
Bﬁ=:SMAu+a) (17)
1=7
Cr= > S,

(vii) The form-function for the equivalent charge is always continuous, but %E

would, in general, be discontinuous in crossing from rth stage to (r<4-1)th stage. It
. 3 . . . . d

will be continuous here if and only if 8, =1. If §, << 1, the increment in % at the

i
end of the rth stage is positive.

(viii) If p component charges have the same effective ballistic sizes, the number
of distinet stages of burning is n—p+-1 and these p charges behave as a single charge
with mass equal to the sumn of the masses of the p component charges ; force constant
equal to the weighted average of the force constants of the component charges, the
weights being the corresponding charge masses; the effective ballistic size equal to the
common effective ballistic size, and the form-factor equal to the weighted average of
the form-factors of the component charges, the weights being the available energies
in the component charges.

4. TaE FUNDAMENTAL DIFFERENTIAL EQUATION

From sections 2 and 3, the basic equations to be integrated for the rth stage of
burning are

FCr = Ap(x+l)+% (¥ —1)wo2 .. .. .. (18)

WI%’:AP .. . . . .. .. (19)
z2=A,+B.(1—f)—C.(1-f)2 .. .. .. (20)
d

D£=—@“ O 1§

28
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Making the substitutions

§=1+ylf e @
(1o "
FOB\ 4l (23)
Al
E=aP (24)
A2DE (FC\?-2 )
¥ = o (41) (25)
the basic equations become

1 2 .
2=+ 00— 3 (26)

d
nd-’§7=M£ N ¢-)
z=A,+B,(1—f)— )2 I )

)
7)3£=—-£°‘ .. .. .. .. .. .29

1t is easily seen that £, 5, { are dimensionless variables corresponding respec-
tively to shot-travel, velocity, and pressure and M is the modified dimensionless
central ballistic parameter,

Using (27) and (29)

d _ d _ cx(ig
an(”’“d"f( ¢ df)
or
(1 (Xdé: — ] = R
ch( a}-)_Mg .. .. . o (30
From (2%)
d~}= —B,+2C,(1—f)
==,V 1—qz .. .. .. .. (31)
where
v, = N/Bf-l-am,c,]
40, P (32)
& = B*444,0, J
From (3v) and (31)
(l—q,z)g (i"‘ dg) ,£“d§ M - e .. (33)
Now let -
Y =q.28 .. .. . .. .. (34)

be taken as dependent variable, and

Z=gqgz .. .. e e .. (35)
be taken as independent variable.
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From (26) and (27)
de = £7d(L£")

dZ = -7y .. .. .. .. .o (36)
or
b N & 1))
Now, on using Z instead of z as independent variable in {33) we get
¢y _1_ Mg .
1-2) a5 45| — 5 = 5 (38)
D-2) [« 7] PR
Also from (34), (35) and (37)
Y/ 5/ gl .
—=Y>4%, 39
v ; + 7 (39)
and
YII §/
S =-1= . . .. .. (40
7 == (40)
Also
1
P =1 Y
f= (VY =y
q(X")7"?
¢_Y_ v ¥
=Y Tyl Y (41)
From (40)
g_&_r' Y
fl f - Y” YI
Substituting in (38) and simplifying, we get
y Y ¥ Y oY l 1
) il Dol R [ o4 AN — —
12} ;“ FIyty [ y=1 H—V—l]} 2
M y—1 Yi-2a
= qz—vé . ol L1 (42)
rr qi-2n{(yr)‘y_1 y-1
or
Yy dY, 1 Q'(Y;)Q—zm
- R T PO O Tt EUR, 1.1 Sl P
[l Z] [ Y/r + YI (m ")+ Y ] 2 Y”Yza'—l ¥ . (43)
on setting
_Y(i—e)
m=T0= (44)
and
(r—1HM
Qr="_3':ﬁ;§' .. .. . .. (4b)
r 14

(43) 1s a non-linear differential equation of the third order which can, in general,
be integrated only numerically. With proper values of ¢, and appropriate initial
conditions, it holds equally for any stage of burning.
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We may here also note the important fact that the definitions of the variables ¥
and Z are different in the various stages in view of the constant ¢, occurring in (34)
and (35) and consequently dashes do not denote differentiation with respect to the
same independent variable, If we want the same variables for all the stages, we can
use

Y=(& Z=:
and then (43) becomes
171// )—,n 37/ Q q2(1—71 22

1—q, 721 =+ (m=2) =; = ..
[ q 7] Y ) Y +d. Y ”Yll(qu)Zx—]

Tt will be better. however. to use (43) and adjust the initial conditions.

(46)

5. Intrian CONDITIONS FOR THE FIRST AND THE #TH STAGES. THE STAGE IN WHICH
THE SHOT MOVES

The initial circumstance of band engraving will be representcd by a finite shot-
start pressure pg, so that assuming that the shot starts moving in the first stage of
motion, the initial conditions are

x=0, r=0, p=pp
Al
E=1, n =0, §=“F’6P0=§0
Y=¢l Y =1 Y'=0
Al (47)
20 =1{o Z=(11ZO=Q1CO=Q1F—C}JO}
The first stage terminates when
B, O
f=1-=, 2-—‘41+E—E
i.e. when
_ B, ¢
Z=q (AI+E—E) .. 48
if
1B Oy
Al+_]::; - ;C—f < zp(= {p)

the shot will not start moving in the first stage of burning. Tn fact, the shot will
start moving in the rth stage if

B,- C,. B, C,
A,._1_|_k 1]—-](:2 1<§0<A,+F—k2 .. o (49
" =1 r >

. To determine the initial conditions for the rth stage, we note that during this
stage

@ Y =4q0&
(i) ¥ =¢"



(iii) y"=(y-—1)y"% [from (40)]
= (7—1)5”"22—; %gf [using (37)]
= (y—=1)&* <_Z_°‘ lz ql [using (29) and (55)]
af
or
_ &% 1
.Y = — (v=1) Eom (50)

af

Y .
Now ¢, 5, { and hence ~ and Y’ are continuous variables even at the end of

r

a stage. However ¢, Y”, on account of the discontinuity in %while crossing from

the (r—1)th stage to the rth, changes abruptly in doing so unless 8,.; = 1,i.e. unless
the (r—1th charge is a cord. Accordingly in calculating the value of g, Y at the
dz
af
and not its value at the end of the previous stage.

’

Let &1, Moty Lomas Your, ¥, Y:—15 Z _q denote the values of the corres-

ponding variables at the end of the (r—I)th stage. Then the initial conditions for
the rth stage are

beginning of any stage, we should take the value of — at the beginning of that stage

1 B, C,
f=lmg o =AY T
. 4
Z=g.z= Y/ .. . .. ‘e .. (6la)
qr—l
Y=gl& =Lv,., .. .. .. . )
9r-1
Y=§£ =Y., A 3 1)
S § 4t 1
T T e "B
kr—l k2_1
Br-—l 20"—1
Q-1 - kr—1+ k2 1
L Lt U et S .. .. .. (51d
or y & B, 20 Y, (51d)
kr—l kf_n

In case 6,.1 = 1, (51d) reduces to

yr=t-1y

. - .. (5le)
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6. ArrL-BumrNT PositioN. MuzzLe VELOOITY

For any given value of f in the rth stage, i.e. for any value of f lying between

1 kl and 1— i we can tind 2, v, and p as follows :
r—1 r
(i) We find z from (28), then Z from (35), remembering that
g, = 4C,
T B444,0,

and using (17) for calculating 4,, B,, C,.

(ii) We find Y, ¥Y’, ' by solving numerically equation (43) subject to initial
conditions (51).

(iii) We find £ from (37), { from (34) and 7 from (26).

(iv) Finally we find from (22), p from (24) and » from (23).

Thus the complete solution can be tabulated against f.

The shot-travel 3, the velocity v and the pressure py at all-burnt are respec-
tively given by z,, v, and p,, the shot-travel, velocity, and pressure at the end of the
nth stage of burning.

For the motion of the shot, after all-burnt, z = 1 and from (36)

dzg") =0
or
w =18
If suffix 3 denotes the muzzle position
[ & = [ .. - . .. (62)
Where
o

§§ = 1+_ii

{52) determines the pressure at the muzzle.
From (26), on putting z =1

the muzzle velocity is given by

A2D2 (FO)“"‘

2 2M —y
Feoege Vs \ T =ng=y———_1(1—§§§’;§‘§ Y o (B3)

7. MAXIMUM PRESSURE

Substituting for ¥, ¥’, ¥ from (34), (37) and (50) in (41) and simplifying, we
get
a1 1= 1
iz qu[ ot }

af
a1 a1
Feal: 147 a"l@jl
df |
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al _1|dz
and = - .. .. R
=] o4
Using (27) and (29), this can also be written as
dz 1ldz Y d
iU oo QLA SO 55
af f[df :ZMdf(n )] . .. .. .. (D5)
From (54) Z i and heuce Tf will be continuous at the end of the rth stage if and
o dz
onlyit 8, =1. Iff.<1, 7 f and hence 7} receives a positive increment at the end
of this stage.
Therefore at the end of a stago df can change sign from negative to positive,

but not vice versa.
Now for a linear law (¢ = 1), from (54) and (14).

d ~
—J{p-—-[ —B,+20,(1—f)+71] . .. .. (06)
But iu this case from (27) and (29)
= M(fo—f)
where f, is the value of f at the shot-start. Substituting in (56)
d 1 .
a _ [ B (M 420, )1 —f)—vM(1—fo)] . .. (BT

i~

Throughout the rth qtage, [ goes on decreasing and consequently

(i) if YM+42C, >0, - can change sign from negative to positive, but not vice

H df
versa.
(i) if vM+20, <0, d 7 15 negative throughout the rth stage (except in the case
when fg =1, YM+42C, =0 and each 6, = —1, when d is zero throughout

af
the rth stage. This possibility we neglect. In all other cases it can easily be
shown that B,>0) and again it cannot change sign from positive to negative.

d
Thus we see that for linear law, once E‘% becomes positive, it cannot change to

negative in any stage or at the end of any stage. The umqueness of maximum pres-
sure for linear law is thus established and we can talk of ‘the Maximum Pressure’.

For the power law of burning when « 7 1, the increment in ! at the end of a

af
. ‘ d . .
stage is still positive or zero and, therefore, ! can change sign from negative to

positive and pressure maximum can occur here. During the rth stage, if €, is posi-

dt

to pressure and is always positive. In this case so long as { is increasing 7 f-{-'}’?]{l"“

dz
tive, 3 f goes on increasing as f decreases. 7 also increases since 2 s proportional
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; d . . -
goes on increasing andd_f” can change sign from negative to positive and not vice

versa. After the pressure has reached maximum, { decreases. If, however, n{l’a
continues to increase till all-burnt position, the pressure cannot become a minimum

at any instant. If, however, 7741“" decreases, d_f may change sign from positive to

negative and a pressure minimum may arise. The above arguments have to be
modified if ', is negative.

Since 7 and { cannot be expressed as simple funetions of f, it is not easy to estab-
lish the uniqueness of maximum pressure analytically as we could do in the case of
linearlaw of burning. The problem can, however, besolved numerically in certain typi-
cal cases and this will be the subject of subsequent investigations. [f, however. « is
very near unity, as is the case in most modern gun propellants, the power law can be
approximated very nearly by the linear law and therefore, for this case, we may, with
some justification, speak of the maximum pressure. Tt will still be safer to talk of
‘a pressure maximum’,

We can investigate the conditions for the occurrence of a pressure maximum in
any stage in two alternative ways.

In the First Method, we prepare a table of values of the function

PZy=%—-1oo .. .. .. .69

from the tables of Y, Y’, Y already prepared. Wherever P(Z) changes sign from
positive to negative a pressure maximum oceurs. If it changes sign from positive to
negative only once and does not change sign from negative to positive, the maximum
pressure is unique.

Let Z be the value of Z for which this change of sign occurs. Then a pressure
maximum occurs in the rth stage, if

B, 0, Z

B, C
A, - — < A= =7 59
+kr—1 kf_l qr + Ir : ( )
Tt will occur at the end of the rth stage if
_ B '
Z=q. (4, +L~) .. .. . .. {60
! ( 0 kf) (%0

and will occur at all-burnt if

Z = Qn(An‘I'Bn"Cn) =q, .. .. .. e (61)

It may be noted that for a pressure maximum to occur at the end of a stage or at
all-burnt, it is not necessary that P(Z) should vanish at these instants. All that is
required is that P(Z) should change sign from positive to negative.

In the Second Method, we use (54).

g . . .
A pressure maximum can occur in the 7th stage if é is negative at the beginning

and positive at the end of this stage, i.e. if

2
_Br+k

C -

Lt I3 <0 L. L L. (82a)
r—1

and

2f'+yn,zi-°‘>o., cr .. .. (82D)

'_Br+
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A pressure maximum can occur at the end of the rth stage if

cither (i) %{-is negative at the end of the rth stage and positive
at the beginning of the (r41)th

or IS zero at the end of the rth stage,

(i) 5
. O oo
or  (iii) f is zero at the beginning of the (r+1)th stage.

The corresponding conditions are :

either (i) —B,+2—qf+yn,§1‘°‘<o . .. .. .. (63a)
and ~B, 414> '”+7 LY >0 0 .0 L .. (63b)

or (il —B,+ =0 .. . . .. (63c)
or (i) — ,+1+2(;c'*1+y L% =0 0 .. L. L. (63d)

For a pressure maximum to occur at all-burnt
—B,+2C,+v, 1% <0. . .. .. (64)

8. ParTicunLAaR Cas®E orF Two CoMPONENT CHARGES

In this section, we consider the case n = 2 on account of its importance in prac-
tical use. This case has been discussed also by Patni (1955) by the Direct Method.
We shall compare the results of our present investigation with his and shall try to
explain why in some cases our results are different from his. To make the comparison
easier, in the first sub-section, we explain the connections between his notation and
ours. .

8.1. Notations

The following constants oceur in Patni’s investigations:

Bi1+86,0
A—p_ll-::ﬁi9; p=1—A .. .. .. .. .. (65)
401 492
. K, =302 66
T (1462’ 2T (146, %)
FiC1 K , .
N = F:O; ,_I(__i , Kop' = (L—pu2—2A2)A .. .. .. .. (67)
v = 1422), @ =Ny Kopy .. L L. (89)
_ K, , _ K, »_ FoCo+F,01K,
b==2, b ="2, @ = (69)
4Dy (Fy05) > _Mav=D) L Myly—1)
My = — 2 |22 s = 9, 13200, T T e A -2 (70)
Fy0:P%0 (1+65)2ab (1+865)2a'b
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He also writes

Al ADy  (Fyly\!
b= Fol’y P2 = anzﬂz? (

The variables used for the first stage are

Y =08, Z= b( ﬁlﬁlzl)
‘2

and for the second stage

7 o B Y 7 — kR 101\
Y = bL¢, A_b(2+F202)

Since from (12) Té = 1—)—2 ., we easily see that

B:
o L Foly N, N Mg
0 Zz FC : M2 2 ¢ 53
M (P 0N\ R
( ) 7‘[2 ( 11%02) = (’\2)20C !

(i) @ = A2V2(1—X)2 (14 A2N)24[1 =22 — (1 —Q)2](1 +-A2)")

B 146, F,0,\*
= (142 ={14+— 1-1

(iv) v = \/Bf+4f'1101 = By = Mk1(1468;) +Ask5(14-65)

FC4 31 146,
Fy(z g 140,

= Ag(1405) [1+
= Ap(1485)(14+AX")

() o=/ BytadsCy = \ /XFo(1+62+42 k36

Ag(14-65) \/1'*'"2 o Ao(14+-65) V' ..

6 et _ 4(A1kfol+,\2k§02)
VTBR4A,0 N(146)21 402
Fi0, By 6
_ 46, 1 FyCy 322 6>
462 (142
_ Ky 142 Ky b
A T2~ X2 A
(vii) gg = 202 _ ekrfy Ky _ ¥

Bi+4dsCy  N(I+6%° 0% Xy

()

(78)

(79)

(80)
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(viii) In the first stage
. b
V=g = A—z/\zczgy= h& .. . . . .. (81

by 10121+ Fyllsz, ( F,0y )
Z = 1Z = — —‘&f’_‘—‘ = b Z _—“Y— z e .. 82
q A‘Z FC 2+F2(2 1 ( )

(ix) Tn the second stage

b
Y=q2(§"=/\—;h2§2§y=b’§2§y . .. .. .. (83)
b P+ Fy( FC
Z=q2:=1:_}~11'ﬁ72ﬂ=1,f(z2+ﬁ> . (84
M(y—1) Mr-1)
(x) Q1= 3-20 2 = b\ o2
G (—) (146221 +M))2
Ag
_ Mz(y_l)(Az)—l+21(/\2)3—21
B> N2 4-65)2a
My(v—1
= =b o L e
ab* ™ 21 4-8,)2
. M(y—1) My~1)
(xi) @2 = R = B\
2 "2 (x) X(140,)%a
My-—1 ,
=Y ___qg .. . s

T A (1 10,2

From (81), (82), (83), and (84), we find that the variables used by Patni are the
same as ours and using (85), (86) we see that the differential equations for the two
stages are also the same in the two investigations.

In the succeeding sub-section, we examine the results which are different. In
some cases the present treatment gives results which are simpler or more general or
physically more significant ; in other cases the differences are more fundamental.

8.2, (‘onditions for the simultaneous and non-simultaneous burning out of component

charges
From (6) Dy df = Dy dfy . Integrating and remembering that when ignition
B dt B dt
starts fy = 1, fo = 1, we get
li,ﬁ=1:,f2 .. N (1))
B B,

i) If Bl > B;; f1 < [e: charge C; burns out first.
(i) If Bl = B;; f1=fs: both the charges burn out simultaneously.
(i) If ,B1 < ,Bé, fe << fy: charge Uy burns out first,
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The corresponding conditions used by Patni (1955) and first deduced by Venka-
tesan and Patni (1953) are
@y If B; foo > /32 f10, charge (' burns out first.
(iiy If B; Jeo = B;fm, charges ('; and (' burn out simultaneously.

(i) If ﬁ; Jfoo < ﬂ.;fm, charge Uy burns out first. Where f1g, fao are the values
of f1, fo when motion starts.
Now from (87)

1—fio _ 1—.f20
B B,
or Bfeo—Bof1o=B,—B, .. . .. .. (88)

Hence Venkatesan and Patni’s conditions reduce to our conditious and the latter
are simpler in the sense that they involve only the parameters of the component

charges and not fyg, fo9 Which are functions of the shot-start pressure.

8.3. Initial conditions for the first and the second stages

The initial value of Z given by Patni for the first stage is
F 0,
Z = b (z20+F10 "10)

91)\

(F101z10+F262z20) [using (79)]

= 129 = ¢1{o

Al
=0 j,-ro‘]’o

which is the same as the value obtained by us in (47).

It is obvious that the initial conditions should be expressed in terms of the shot-
start pressure, which in practice we are likely to be given rather than in terms of
210, 299 wWhich have to be later determined in terms of py and, therefore, Patni’s
conditions should be replaced by

Al
Z=7)F_';C_';p0 .. . .. . (89)

Again from (51), the initial conditions for the second stage are

7 QZZ qo(F1C14 FolsZy. 1) =0 F101+Z2.21)
F202 T

0 FC
Y=§—:Y1=92Z2;1f;§ 1=b'52;2,1§2,f,
Y= Y, =£" =&
_ B, 20 _ B, 26,
— 3
Y = g_! kl kl Y = gl kl kl y
P §_2+202 72 §_2+%J_2 !
iR by © g2

where we denote the end of the first stage by suffix 1 and Patni denotes it by (2, 1).
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Comparison with Patni’s conditions [Z= Z5,1;Y=Y5,1; Y = Y2' Y= Y; 1]
shows that the tirst, second and fourth conditions differ. In all the three, one
cause of diserepancy is the overlooking of the fact that Y and Z do not represent
the same variables in the two stages.
In the first stage

N
— 24 — 1-1
V=0, =6 (ZZ+F20221)

aud in the second stage

T A T F1O1)
Y—blzf,Z—b(22+m

and 5o although =y, =4, Ly, £ are continuous at the end of the first stage, Y and Z arc
not.

In the fourth condition, an additional source of discrepancy when 6; 3 1 is that

. Z
while 3
their derivatives are not necessarily continuous at this instant. Thus in the first

stage, from (), (6), (29), (66), (72) and (87)

VA
at the end of the first stage is equal to 7 at the beginning of the second stage,

¢ = d§¢ 1 dé
Tdz bdze Fi0y dzy
dfs +5—7 =+ 4,
&, ¥ 70y a,
__ldg 1
T bdf P, B, _
(1465) V1 —K2z2+F;C; E% (14+0:)VI1—Kz
2
~Lla 1
Y P B S
(1+62) VI=Epatgiar = (14+0) V=K
2Lz B,
Simiarly in the second stage
N 1

1
¢ =5 ——
b (1405) V1— Koz
£ is discontinuous at the end of the first stage. But from (37) and (40)
YI ’ _ ,
¥ = =) L = =18

Since & is discontinuous at the end of the first stage, its value should be taken at

the beginning of the second stage. .
Therefore, the first, second and fourth conditions for the second stage given by

Patni should be replaced by

Z  Zyy Fi0y %
_7=_—6——_F202+22;2,1 . .. . . .. ( (l)
Y_ Ya._ v C e oL (90b)

y-21 Y21 !

iy ool L (00
bt C;; g1 (1+02) VI1-Kgs; 21
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&

can be replaced by

[

v _Y,

e

8.4. The conditions for a pressure mawimum in the first stage

31

U]
as from (74) at any instant % =2 When tirst charge is cord, the last condition

(90d)

At the beginning of the first stage z = 24 = {o, and at the end of the first stage

o B, ¢
A121tAoRg =2 = A1+']E L‘f
Bo B,
=/\1+/\2-? 1+02—“?02
B B

Since at the end of the first stage z; = 1

Z9;9,1 = 62' (1+02'—ﬁ~?92> .
B B
At the end of the second stage
Zy=zg=1;2z=1.
A pressure maximum will occur in the first stage if

g2 << /\1+/\2%(1+02—- %02)

1 1

(1)

(92)

(93)

It the shot starts in the first stage, Z > z, as the argument in owr tables starts

from zp. If the shot does not start in the first stage, z > At+Agzz; 2,1 and the
possibility of a pressure maximum in the first stage does not arise.

Assuming that the shot starts moving in the first stage, the condition becomes

Z 8 B,
— <A —{140,— =0
o 1+/\2'91( 402 B 2

Instead of (94), Patni gives the following two conditions :

VAW —\/I—Z] [""W VIZZ| <2k
[ Va Va o a

Vo _ 127 [P VTR <V
[wa ]L Va'© < R

Since from (76) a > 0, (95) gives -

v'z-—(/\/\’,u,—— Va \/1—-2)2 <v'2K,
VIZ—V’2(1—K222) << VlzK2
Kozo < Ky ..

(94)

(97)
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Similarly (96) gives
v'z—(,u.-l—-)\ Va '\/1—-Z)2 < V2K,

or
Ve2—(w' +v AV 1—Kgz)® < v2K,
or
1-(V1-E&) < K,
or

Kizy< K, .. .. .. .. .. (98)

(95) is equivalent to the condition 2, < 1 if and only if K, > 0, i.e. if 0, > ).
1f 65 can be negative also (95) should be replaced by

[v'-i-/\X[J. _ \/‘1—_—2‘] [u’—-/\i\’ +\/1 ] < Az)

Va Va | (99)
according as 0y Z 0. )
Similarly (96) can be replaced by
~V1-7 A][”+*5+x/1 Z]<”%K5
[A'\/a > Na S (100)

according as 6, Z 0. .

Now (95) and (96) (or (99) and (100)) have been deduced from the consideration
that z;, 2 should be both less than univy, if maximum pressure is to occur in the
first stage. In other words both f; and f, should be greater than zero.

Now from (87), if B; > B;, fe < f1 so that if f; >0, fo would be automatically
greater than zero and, therefore, condition (100) would imply (99). Similarly, if
B; < /3; (99) would imply (100), and if /3; = B:_, (99) and (100) would become identical.

Thus (99) and (100) improve the condition of Patni in as much as they hold for
progressively burning surfaces as well. Further, only one of the conditions is
independent. Besides, condition (94) is simpler than (99) or (100).

8.5. The condition for a pressure maximum to occur in the second stage

From (59), the condition for a pressure maximum to occur in the sccond stage is

A+ 2 <Z < dpp2 -2
et ky k2 92 2 + kf
This simplifies to
M+%(LW2 )<z<1
P, 1
or ,
B, B ;
Mt 140~ =205 ) < Mi+deZe < |
Bl \ :31
or ,
&G+%-E%)<@<1 .. .. .. (lol)
B, B
or

22; 2,1 < 22 < 1 e .o .. (102)
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Patni gives the following three conditions for a pressure maximum to occur in
the second stage

B;fgo > ﬁ;fm .. .. . .. . (103@)
pHAV 1=Ky, < A/1-K; .. .. . . .. (103b)

and
FoCy(Z)—F\Cy

VEc, <l (1030

The first condition simply implies that charge C'; burns out first. The second
condition expresses the same fact if 6;, 8; > 0. 1If, however, these can be negative,
this should be replaced by

orif 6,0,<0

|
L .. (104)
pAAVI—Ks > AV1=K,, if 6;,>0,0,<0!

orif 6, <0, 02>O’
The third condition is equivalent to
Zp <1
But this is not sufficient to ensure a pressure maximum in the second stage.

The complete condition is (102) which is expressed as (101).
Hence Patni’s condition for this case should be replaced by

Bol1po,Peg | L FaCZ=F:Cy g
B, B, b Fol'y
8.6. The conditions for a pressure mazimum to occur at the end of the first stage or at
all-burnt

We have seen that %Cc receives a positive or zero increment at the end of the first
stage and, therefore, it can change sign from negative to positive here and a pressure
maximum can occur at this instant. The condition for this is obtained from (60) and

. (63) by putting r = 1. This possibility has not been considered in the earlier papers
and so no corresponding conditions exist there.

A pressure maximum can also occur at all-burnt. The conditions are obtained
from (61) or (64) by putting » = 2. This possibility was also not considered earlier
except for the case when the charges burn out simultaneously. This case we deal in
the next sub-section,

8.7, The case when both the component charges burn out simultaneously

If ﬁl = B;, it has been proved (Kapur, 1956a) that the composite charge behaves
as a single charge with mass
C1+Cq,
force constant
C\Fi+CF,
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form factor
C1F16,+CoF 90,
C1F+CoF,
effective ballistic size
Dy _ D,

BI—BZ

C1+C%
Ty Cy

5 15,

This case, therefore, needs no separate treatment.

and propellant density

9. Some FurTHER EXTENSIONS OF EARLIER RESULTS

In this section we shall consider two further generalisations :

(i) So far the form-function for the ith component charge has been taken in the
standard form

z; = (1=fa(l +9.'f¢)

In sub-section 9.1, we consider the case when the ith component charge can have
more general form-function

=¢f) -+ .o .. .o .. (108)
and in particular when it has the cubic form-function

2z = (L=f)(L+0,fc+ ) .. .. .. (107)

(i) In sub-section 9.2, we consider the case when %, 7, . ..., ¥, are not neces-

sarily equal,

9.1. Qeneral form-function for component charges

When (106) gives the form-function for the ith component charge, the form-
function for the rth stage for the equivalent charge is (Kapur, 1956a)

p=dtdt o Hhat D Abll—k(d=N)] .. .. (108)
= P.(f) [say].. . .. .. . . .. (109)

Now we take, for this section,
Y=¢t¢& .. .. .. .. .. .. .. .. (110)

as dependent variable and f as independent variable.
From (109) and (36)

P.(f)df = dz = £7d(L &)
or
P(f)df = £77dY
or
Y'=P, (fig"}
3B
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or
Y’ = Y’ 71
- -1
§= [m]y ' [;,]7 .. ..oan
From (110)
£=Y§’7=Y(—II;,) =1 1)
Substituting from (111), (112) in (30)
Y 1 yu o’ =
d N Y’ _‘)Tal 1 Z }T:i"]P'} -—YP, __Myl—oc Y’ _ysaf)
s(7(7) T T ()
or
| 4 _va-y+2  ya-y MYl'“(Y’)—ﬂ;:—la)
&y Y-1 S y=1 o "y
71 d_f[y Y P (P,Y —P'Y)] = ST (113)
®) "

(113) is a non-linear differential equation of the third order between Y and f
and by integrating it we can tabulate Y, Y’, Y” as functions of f.

In the particular case, when (107) represents the form-function for the ith compo-
nent charge

P(f)=A4+B(1=f)—C.(1=f2+D,1—fF .. .. (114)
where
r—1
A= > x .. .. . . . .. (115a)
r=1
B;=z)\,~k,-(1+€,.+¢,.) Y § § 17}
Cl= > AEGA24) .. . .. .. .. (1150
D= >\ .. .. .. . .. .. (115d)

Substituting from (114) in (113) we get the fundamental differential equation.
During the rth stage

Y=1(¢&, Y =PH&
Y" = P/(HE = (y=1DP)(f) c% [using (29)]

Unless 8, = 1, P;( /) and hence Y’ is discontinuous at the end of the rth stage,
and unless 6, = i), = 1 Y” will also be discontinuous at the end of the rth stage.
Therefore in writing initial conditions for any stage, the values of P (f)and P (f)

should be taken at the beginning of that stage and not at the end of the previous
stage, while the values of £, %, { can be taken at the end of the previous stage.
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Making use of (110), (111), (112) and (29)

Fauls G I P (Ho)
and
= é[P;H’nZ"“] L am

A pressure maximum occurs when {’ changes sign from negative to positive.

The solution corresponding to f= 0 determines the shot-travel, pressure and
velocity at all-burnt and then (52), (53) determines the corresponding quantities for
the muzzle.

Two recent papers by Aggarwal (1955 ; another in press) are entirely devoted
to a discussion of the solution for the general form-function discussed by us in
section 9.1. He, however, uses z as independent variable and later solves for f in
terms of z either from a cubic equation of the more general form-function z = ¢(f).
This is not necessary in our method, as we make a direct use of f as the independent

variable.
9.2. The case when ¥y, Yo, . - . . ¥, are not necessarily equal

In this case (Kapur, 19564, b), the only important change would be that in all our
previous discussions, ); would be replaced by /\;, where

CiF,;
, —1 .
’\i=be i=1,2,..,n] o)
y—1
and
CF C.F;
= —t . . - .. .. (119a
=1 2, 7—1 (119a)
with
- m;C’iz,
7,—1
! = i=1 - .. .. . .. (119d)
'y__l n

where m,; denotes the number of gram molecules per gram of the gases produced by
the burning of the ith component charge. But from (1198), ¥ is not necessarily
constant. A satisfactory average value of ¥ can however be found, following the
method of Corner as illustrated in Kapur (1956¢), and this average value has to be
used in (119a). After all-burnt, however, ¥ is a constant and is given by

c m,C;
1 vi—l1

= (119¢)
y—17= 7

m;C;
1=1

In this case, we can solve for F and ¥ from (1195) and (119¢).
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10. ParTIOULAR CASE oF CONSTANT BURNING SURFACES

When all the component charges are tubular (§; =8,=....=10,=0), the
form-function for the rth stage, from (16) and (18) is
z=A,+B.(1-f).. .. .. . .. (120)
where .
A4, = A, B,= Ak . . .o (121)
2 P2
In this case (30) becomes
d oL df _ M 1-a D
E(g Ez') =0T L)
From (121), for a single charge B, = 1 and (122) reduces to
i(;“‘i‘f_) =M L ... oax)
dz 2

From (122) and (123), we see that the differential equation for the rth stage for
M

the composite charge is obtained from that of a single charge by replacing M by B

and therefore proceeding as in Clemmow (1951, page 119), the fundamental differen-
tial equation is

9 2 ) — 2
2X2 X | 2m(y=1)2 d—X—) x93 a2
14m dZ2 " (1 +m)(y—m) \dZ dz
with
Y-2m 1
g Pm g_my—m) M o] >
X=e7, =T ) =gy (126)
It ky, ks, . ..., k, = 1, 1.e. for the case of simultaneous burning out of all compo-

nent charges, we see from (121) that

B1=i/\i=l

iz1
and the fundamental differential equation is the same as that for a single charge with
form-factor zero.
For non-simultaneous burning out, making use of (29), (36), (120), (125) we get
for the rth stage
dX dX d¢df de) d(L€)

dZ = dé df dz g(¢g") dIZ)

_rem )-5) porlm B o
- ¢ (— 2‘2 (_ B, Y—m M

Y+m
1 B, "o -
=—;¢7?E"’§ L L a2e)

From (125) and (126), we see that in crossing from (r—1)th stage to the rth,

while X remains continuous, Z and % do not, due to the presence of the constant
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1 ax

B, dZ

) are the values at the end of the (r—1)th
r—1

B, in their expressions. In fact X, BfZ and remain continuous in this

aX
dz
stage, the initial conditions for the rth stage are

process. Accordingly if X, 4, Z,._,, (

X=Xp1 .. oo e .. .. (127a)
B2

Z=1;_;1Z"1 .. .. .. .. (127)

dX B, (dX
d_Z B Br—l (d_Z)r—l ' (1270)

Initial conditions, for the first stage, obviously are
1

x=1, z==m M m dX_, .. (128)

Tim ngo’ iz

assuming that the shot start moving in the first stage. Subject to initial conditions
(127) and (128), equation (124) can be integrated numerically, and then maximum
pressure, all-burnt position, and muzzle velocity can be found as for a single charge.
Alternatively, for the special case of tubular component charges (46) reduces to
117 " et J

Y Y y-nym (Y
?+(m—2) ?+a? = B‘f Y"(Y)Z“—l . .o (129)
which reduces to the corresponding Clemmow’s equation for a single charge when
B, =1. Thisequation does not contain the independent variable explicitly and can,
therefore, be integrated as a second order equation with ¥’ as dependent and Y as
independent variable.

For the particular case n = 2, in the light of our discussion above for general 6,,

0y ; the following remarks supplement Patni’s treatment of this special case :

(i) The last condition [Y'=(Y"), 1] of his conditions (96) giving the initial con-
ditions for the second stage should be modified to take into account the
discontinuity in ¥”, which is definitely present as 6; 3 1. This condition
should, therefore, be replaced by using (51)

r =3t

)2—2m

Sy, o (130)

(ii) The two conditions given in his (100) are not independent. If /31 > ﬁ;, the
second implies the first; if ,B1 < ﬁ;, the two are identical (since in this case

J10 = f20, 210 = 229, p* = 0) and if B; < ,B; the first would imply the second.
These conclusions can be verified directly also.
(iii) From (105), we see that his conditions (101) can be modified to

B, F,C FyC
42 < (2), < 145222 (131)
B, FoC FyCy

(iv) . In his (102), since /31 = ﬂ;, p* = 0, (102) simplifies to

F,0,
(Z)l i 1+F202
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It is not necessary, however, for

’

|~
'~<I[ 4

_ 7
y—1
to vanish at all-burnt. It should simply change sign from positive to negative.

SUMMARY

In this paper the equivalent charge method has been used for discussing the Internal Ballistics
of composite charges consisting of n component charges with the same pressure index. In the
particular case n = 2, the results have been compared with Patni (1955) and his (i) conditions for
simultaneous and non-simultaneous burning out, (ii) initial conditions for the first and second
stages, (iii) conditions for a pressure maximum to occur in the first or second stage, have been
improved. It has also been shown here that a pressure maximum can occur at the end of & stage
or at all-burnt. The uniqueness of maximum pressure has also been examined. In the last but
one section, possible generalisations to the cagse when ¥1» Ygs - - -+ ¥, BTE DOt Necessarily equal and

to the case when component charges can have general form-function have been discussed.
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