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I. INTRODUCTION

An accurate estimate of the size of a cascade shower produced by a photon
of known energy in passing through materials of given thickness is of great importance
in the interpretation of many observed results. In recent years several events
have been recorded in*photographic emulsion plates, many of which may possibly
be explained as a w0—2Y decay, but the possibilities of obtaining large photon
multiplicities from a single event in the high energy region is also not ruled out,
Thus to examine the various possibilities it is necessary to obtain a correct estimate
of the average number of particles at the different stages of the cascade, having
energies greater than a given minimum, depending on the mode of observation,
and not the average number of particles. The frequency of large bursts produced
by mesons also depends critically on the size of the photon excited shower. A
comparison of the theoretical estimates of the frequency of bursts with those recorded
under large thickness of material gives important informations on the nature of the
mesons and particularly on the spin of the meson. Christy and Kusaka (1941), Chakra-
barty (1942a), and Chakrabarty and Majumdar (1944) have obtained results which
are widely different. Apart from the difference in the form of fluctuation assumed,
the size of the shower associated with a photon of given energy assumed by these
authors are different. In a recent paper (Chakrabarty and Gupta, 1956, henceforth
denoted as A) we have derived an expression giving the average number of particles
with energies greater than any given energy ¥ (say) produced by a primary electron
of energy g and also have deduced the form of the energy spectrum of the shower
particles. In the present paper we propose to derive the size as well as the spectrum
of the particles in a cascade shower produced by a photon of known energy in tra-
versing material of given thickness. A comparison of these results with similar
results in the case of electron-initiated showers gives some interesting information
on the materialisation of photons through pair production. In previous papers
Chakrabarty (1942b), Snyder (1949) and Scott (1950) have studied this problem.
While Chakrabarty derived the average number of particles neglecting ionization
loss, the values derived by Snyder are much too low for non-zero values of E, the
energy of the shower particles, and even for values of ¥ near the critical energy of

the material in which the shower is produced (O > Iog,% > —2) it gives absurd

results. In a later section we have also compared the results relating to -2y decay
derived from the analysis of the present paper with those based on observations.
II. MATHEMATICAL SOLUTION

Following the notations used in A and denoting by P (E, t) dE the mean
number of electrons positive and negative in the energy range (£, E+dE), to be
found in a cascade at depth ¢ in radiation units and by @ (Z, ¢) the corresponding
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expression for the number of photons, the basic equations of cascade theory are
(Bhabha and Chakrabarty, 1948; henceforth denoted as B)

OPE, ) 0PED [ orr e o B —E
i B g =| P& ORW,E—E) = %
E
E ld 7 ® nld
x dE'— P, t)J R, B ECE 42 J QE R, Y W
0 E
IQE ) EdE : dE
(B, 8 _ s oo BAE o AE .
E 0
Applying Mellin transform in E, the above equations are transformed into
a t . >
_l’ia"t:_) = —A.p(s, )+ Bgls, ) =Ple=Lpe=1,6 .. .. .. (3a)
a_q(.a‘ft’_‘) = O, )=Da6,t) - .. e .. (3

where the A, B, (s, D are functions of 8 and have been defined in B.

Equations (3a, b) are the same as in the case of electron-initiated shower. But
for a cascade shower initiated by a photon of energy E,, the boundary conditions
are different; they are given by

PE,0)=0; QE,0)=58Ey~E) .. .. .. @
giving
p8,0)=0; g0 =E "

(6)
%[p(ai t)]‘=0 = BSE;-I

Following B, we define a set of functions (s, ¢) satisfying the following differ-
ential equations

22 7
{3.[2-+(A,+D) ‘92+AsD—BSOS} '/"0(87 t) = 0.

(6)
a2 2 d
{’a—t‘2‘+(A:+nD—Bs+nOs+n) 5t+As+nD—Bx+nUs+n} \l‘,.(s, t) = (“a't'*'D) '/’"*l(ar t)

(where % is a -+ve integer) together with the boundary conditions

, 0
'l‘(a; 0)=0; ‘a—tlﬁo(s, t)]‘zo = Bs.

5 )
Pa(8,0)=0; 5#/"(8’ t)] o= 0

t=
From (6) and (7) we find

Yo(s, ti = ;-jé—_'x(e")‘“—e‘"“) . . .. (8)

1B
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The differential slectron spectrum is then given by

st 8" () 30 e o

as may be seen directly by eliminating @ (%, t) from (1) and (2) Jand substituting
for P (E, t) in the resulting equation. The boundary conditions (7) imposed on §’s
correspond to (4).

Now, let (Chakrabarty, 1946)

x

Ya(s, 1) = f e~ (8, B)dt
0

Then
1 Pt
— rt
(8, t) = 2‘”"J et (s, ridr .. .. .. (10)
p=1x
where n = ¢ or any integer. Evidently for » = 0 we get from (8)
Pols, r) = D-;-r¢°(s’ ryo.. .. - .. (1Y
where
D+r
¢0(8> T) =

(r+A) (r+u)

Combining (10) with the second equation of (6) we get for integral values of n, the
following recurrence relation

*n('ga T) = ¢0 S+7l r)‘/’n—l(s: )‘)

Bs .
D+r’H¢os+zr S ¢ B!

As a generalisation of (12) for any p real or complex. we now define as in A

B Al dols+1,7)
= s A 1 b+1 H 0
Pgla. 7) Dir A hm [dol8+N+1.7)] 0950(.9+p+1+1 m

satisfying a similar recurrence relation

bels, 1) = dols+, hp-1ls. 1)
By applying the transform (10) in ¢. P(Z.¢) is reduced to

. ] . P+
1 EQ s-1 ﬁ s ? E)" F(S+7l) ' _-J‘ §
P(E~ t) = "‘"_2"‘5 ds (‘B") (E,) Z (" E F(S) Im et 5[’,;(3, I‘)dr
Cs n=4 p-wx

the above infinite series can be transformed into an integral over p taken along a
contour C, running parallel to the imaginary axis and with — 1< RBe(p)<0, viz.

_ 1 AN ,(E)”"F(«s+p)1‘(—p)
PE, ‘)“(2m')TpL.d8(F) Lﬂd” B e

p+ioL
I‘(p+l)" dretty(s,r) .. (14)

v op-ta

(13)
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Evaluating the integral over » in terms of the residues at r = —)sim 7 = =~ psim,
we get

i 2 s-1 s+p
PEO=> PuB = > 47513[ ds(%’) Bsfdp (_g) x
m= C.

0 m=10
I'(s+p)I'(—p) 1 “Apmt ~Hs 4 m
X X g e, e = Fole, ple ] (15)
where
N
Guls, p) = F(p+1)Nlim [fo(s+N+1, =) """ .1_70 Bo(8+5, =24, X
*m
m L 16)
R Wy SR
Av'
F,(s,p) = [(p41) \}im [$o(s+N+1, _F_s+m)]f’+1 .1_70 Fo(5+t, ~po, ) X
; =0,
N
: ()

o :
®ile $o(s+p+i+l, ~p..)

Integrating P(E, t) over the energy from E to infinity we get the integral electron
spectrum N(E, t), given by

w© 4] s=-1 s+p~1
N(E, 1) = Z N (B, t) = ;_.2% z J ds (%0) BSJ dp (%) X
m=0 m=04J C; C’p

Ls+p—1)I'(—p) 1 , “Appmb_ by ot
X 0 X#Hm_,\yrm [G,,,(s, ple St F.(s,p)e "5t 1 .. as)

where C; will as usual run parallel to the imaginary axis with Re(p) <0 and Re(s+p)

> 1. Except for small thickness, the contribution of the term containing ¢~ #s+ ¢ is

not significant and further almost the entire contribution to N (X, t) will come
from the first term of the series with m = 0. Consequently we may write

s=1 S+p-~1
NE, 1) ~ No(E, ) = iflfz J ds (%9) B J' dp (%) x
U

yLletp—1) I(—p) e=M*
I'(s) Hs—As

A similar conclusion holds true for the energy spectrum. Except for notations
(18) is exactly the same as the solution given by Snyder. He has, however, evaluated
the p-integral in terms of the residues at the poles at p=1—s~k (k=0,1,2,..). The
expansion for N(E, t) obtained by Snyder can be used when F = 0, in which case
it reduces to the first term of the series obtained by him. For other values of (8> F
> 0) the inclusion of the second term in Ny(E, t) gives absurd results as in the case
of an electron-initiated shower discussed in A.

The right hand side of (19) can be evaluated by the saddle-point method. The

asymptotic value (E — 0) of the integral spectrum Ny(¥, {) can, however, be deter-
mined by making p — 1 —as.

Go(s,p) .. (19)
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If we assume that

(s+p—1)I"(—p)
I(s) )

B r
wo(s, p) = (s—l)yo——(8+p—l)y-;\st+1og# _As+10g

where
E E
= log=2; = log -
Yo g B Y gﬁ

then, for any given value of y,, y and ¢, the saddle-points sy, p, are given by

ow, 0 d

0 — log I’ N+ ———-log'—py) =0 ..

Ere y+8p0 og I'(so+po )+d(—p0) og I'(—po)

awO d d d Bs() ’

%o _ oyt —2  Joo I (—p)— —log T’ =1 —xt=0 ..
680 y+d( '—PO) og ( pO) d'go og (80)+d80 og p’so_'\so s A

We then have

BS
eXp [(eo—l)yo-—(80+po-l)y—ksot+log 2 ]

1 Prg—A,
NO(Eat)=§—' 373 0 0 X
™ asz a2w0 _ 32w0
683 ' apﬁ 9500p0
T'(so+po—1) I'(—po)
x To0) Go(30, Po)
where
0%y 02 d2
— = —log I'(s -1t —-rrlog ' (—
apz apg g 1'(85+p0 )+d(-—p)2 g I'(—po)
R, 02 . de By  d®
—F = log I' —~D4A_ t4+—1 — —logI'(s
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ang 82
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(20)

(24)

In deriving (21) and (22) we have neglected the variation of G, with s and p, since
it is a slowly varying function of s and p at least in the domain of the saddle-points.

- As

For p — 1—s, the variation of the function

than Gy(s, 1—8) as is evident from Table I.

P's""/\s

Tasre I

s
\ 1-5 1-8 2:0 2:2 25 2-8

Gy(s, 1 —5) | 1-8089 | 2-1091 | 2-2865 2:4752 | 2-8100 | 3-2787

D ::Go(s, 1—s) | 9523 | 1-0071 | -9904 | -9492 | 8811 | 7720
pe—

Go(s, 1—s) with s is even smaller

From (21) it is easily seen that lim (sp+po—1)y = —1 so that from (23),

Po—+1l—35g

the value of No(0,t) can be obtained by making so+pe—1—>0. As discussed
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above, in this particular case it will be more justified to neglect the variation of

D_is also in equations (22) and (24). Consequently,
Hs—As

(25)

) B,
eXp [(8o—l)yo-/\stA +log —o,\] 1
Hs0 = Asp )

1
No(0,t) = — . .Gy(sg. 1—5¢)
L B B |RTTT
(so—1)2 s074 (18(2) gi‘so"‘/\so
where
1 d By,
tqg = v _1+d-°_"010gl"3‘0"'/\50
A= . .
’\sﬂ

ITI. DiscussioNs

The values of Ny(¥, t) as determined from (23) and (23) for different values
of yo and y are given in Table IT. In the numerical computation the values of the
function Gy(s, p) for different s and p are taken from A, For y, = 6, log1gNo(¥, )

The curve for

has been plotted against ¢ for ¥ = —oc0, —4 and —2 in Fig. 1.

-

log,, N(E,t)

10/

4

|5 t— 110

F1a. 1. Plot of log,(N(E, t) againsttforyy =6;(4) >y = —0 (B)>y= —4; Oy = —2.
Dashed curve corresponds to electron-initiated shower with yo = 6. Dagh-dot
one is Arley’s curve for photon.induced shower with same y,.



223

ANALYSIS OF CASCADE SHOWERS INDUCED BY PHOTONS

GUPTA:

M. R.

. m.uo_ I3 mh»uo_ B
q

b

2 ‘g % jo sen|BA JuUOIemIp o3 (7

_of

‘@) N Jo son[BA

L0-99 8-186 0001 ¢601 ¢1138 co61 9181 g6l 9-9¢¥ 0-991 29-€% 8188 @0 -
Mm.bﬂ c061 L-Q%9 9ry1 0991 (2441 £-168 £-69¢ #-882 2-¢ll #8-8¢ 920-9 ¥— | 01
¥8-8¢C 8-831 1-LG¥ L¥OL c0e1 Ge11 R-169 G-98¥ 6-6€3¢ | 8169 88-1¢ Le-y (e
6L-F1 26-¢9 8-8I¢C ¢ 118 8-0¢¢€ $-88¢C 1:682 [i241 £9-6L 0¥-82 01€-9 0 —
ag 11 12-C% 6-LP1 |]:81¢ 0-89¢ 8-L1¢ 6-L97 6-0L1 $4- LY 68802 LIG¥ ¥— |8
0216 98-%E 0-001 6-FG1 8-GH I GCLT ¥-£€1 01-88 GI-CF 8¢:L1 894-€ [
ae0-8 FI1-C1T L6-8€ LL-9F £8-¥¢ 62-1¢ 69-1% ¥9-Lé 96:€1 086-€ o~
680-C 6<-01 68-0¢ ¥0-7¢ 89-1% L3:0% 11-88 ¢9-3c [4AN 391-€ ¥— 19
676 1 866-9 6c-¥1 66-€T £6-1¢ 06-0¢ 00-9¢ 6381 031-6 0L9-8 g—
N SLL-1 RGL-E 866-9 ¥I¥-8 €768 87€-8 $60-9 0Le-2 91281 ® —
[ GFp-1 1¢6-¢ 0LE-¢ L€9-9 838€-L 816-9 LIV¥ %02 6011 ¥ 1 ¥
1480 g08-1 EEL-E 818-% 6660 80%-¢ L1g-¥% G06-1 £20-1 NI
866-9 gg0- 1 621 %991 eI%-1 2101 00— &
£ Ok
(114 91 41 111 8 9 < 12 3 4 I G- ,
11 WLV,




224 M. R. GUPTA: ANALYSIS OF CASCADE SHOWERS INDUCED BY PHOTONS

log10N (0, ¢) giving the total integral spectrum for an electron-initiated shower with
9o = 6 is also shown in the same figure from which it is clear that the nature of a
photon-initiated shower is nearly similar to that of an electron-initiated one. There
is however the following difference. In each case the maximum of the photon-
initiated shower as given by N(0, ¢} is shifted towards larger depths by nearly one
unit as compared to that of an electron-initiated shower. This characteristic holds
good for other values of y, as well and can be seen analytically from equation (26)
which shows that for the same y, and s, the value of ¢, for a photon-initiated shower

differs from that of an electron-initiated one by the amount —%~ - log Bu .
Ay dso ~ pso—Asp
At the maximum of the shower which occurs near s, = 2, independently of the value

of y,, —IT da—i log lis_o,\ ~ -8 and this is what we actually find in our figure.
A 0 Bso=As0) o — 2

s0
For comparison we have plotted (Fig. 2) N(0, t) against ¢t for a shower induced

15 t— 110 113

Fia. 2. Complete curve — logyoNy(0, t) against ¢ for a photon-induced shower with K, = fef,
Dashed curve — sum of the contributions ftom two electron-initiated showers
with Eq = Peb-95 and Be2-98, Points & — sum of contributions from two
electron-initiated showers with E, = §8eS.

by a photon of energy E, = Be® and the combined contribution of two electron-
initiated showers with energies fe59 and Be® 9 respectively, the latter curve
being shifted one unit to the right. The two curves agree satisfactorily except
at the early beginning and at the tail end of the shower. The discrepancy will,
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however, be reduced to some extent, if we remember that the contribution to Ny(0, t)
from the second term involving e-#4Equ*18) is negative for a photon-induced
shower, while the same is positive for a shower started by an electron. Thus it
appears that within one radiation length, the incident photon creates a pair of
electrons one of which has a very low energy, while the energy of the other is nearly
equal to that of the initial photon. The contribution from the low energy electron
will come only at the early beginning of the shower, while from and after the maxi-
mum, it is only the high energy electron which will be important. This is also
suggested by the fact that for the same y,, the maximum value of Ny(0, ?) is slightly
less than that of N (0, £).

We have also compared the integral spectrum No(0, f) of a shower started by
a photon and that due to a pair of electrons of equal energy Eq/2. It is found that the
agreement in the previous case is everywhere much better than here. This is what
is expected from the expression for the cross-section for pair creation given by Bethe
and Heitler and assumed in the present analysis.

The results derived in the present paper have been compared to the experi-
mental results of Bender (1955) where he has analysed the cascade showers started
by two photons which result from the decay of a n® meson in flight. Bender has
plotted N .., the number of particles at the maximum of the shower against E,
the energy of the shower producing photon and according to him there is good agree-
ment between his experimental results and the theoretical curve Ko = 874 N ax mev.

.20
.15
D

g

3
=z,
10
- 5

100 5004 Eg— 1000

F16. 8. Nmar against By (A)—> Bender’s observational curve. B—>y = —2;
Cy=0; Do>y=-—c0.
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given by the Monte Carlo calculations (carried out by R. R. Wilson) when cut off
at about 8 mev. while the theoretical expressions for N,,. as given by Rossi and
Greisen give values which are considerably higher than the data indicate. In Fig. 3
we have plotted N,..(E, t) against ¥ for different values of X, viz. £ = 0, fe-2, B.
Since the showers are observed in lead chambers (y = —2 corresponds to F a 2mc2
for lead), it is not possible to observe particles with energies less than a certain
minimum which is of the order 2me2 as pointed out previously in A. This at once
explains why the results of Rossi and Greisen as well as ours with £ = 0 give values
much higher than that observed. Further since particles with energies less than
8 mev. (8 mev, is greater than the critical energy in lead) can be observed, it appears
that at the above cut off the Monte Carlo calculations give values which are rather
high. Thus for comparison with experimental results it seems to be more justified
to use theoretical values of N,.,.. (£, t) when cut off at about ¥ a 2mec? ( as Be—2 for
lead) and from Fig. 3 it is found that the best agreement with the observational
curve derived by Bender is obtained when E = Be-Z% as it should be.

As regards the dependence of the frequency of burst production by mesons on
the size of showers initiated by photons it iz seen, following the analysis of Chakrabarty
(1942a), that the same is decreased to about two-thirds its value, if for N,, the maxi-
mum of the average number of particles in the showers, we consider the values at
y = —2instead of at y = —co. Apart from the question of fluctuation, this modifica-
tion alone will influence the results of Christy and Kusaka in a manner which supports
the } spin theory of the u-meson instead of zero spin which they suggested.

IV. EXNERGY SPECTRUM

The electron energy spectrum P(Z, {) is obtained in a similar manner from (15)
by applying the saddle-point method. We get

1 exp [(s,=1)yo— (5, +Po)y—As;t]
[aioé.azw;_(a%; )r
as: 6])02 9s,0p,

B(s)  T(sy+po) I(—py)

BP(E: t) NBPQ(E t) =

2 ; Golsy. 2)) .. (27
psy=As, I(s,)
. ’ ’ . . . aw(/) aw(;
The saddle-points s, p, being determined from the equation — = 0 anda——; =0,
S P
0 0

where w:](s, p) is exactly the same as w(s, p) except that the two terms (s4p—1)y
and I'(s4p—1) are to be replaced by (s+p)y and I'(s+p). The expression SP(¥, t)
ig valid for all energies and goes to infinity logarithmically as % — 0(s+4p — 0).
For large values of £ which can be obtained by making —p — 0, so that y(—p) - 1
(27) merges to the expression for P(Z, t) neglecting collision loss (Chakrabarty,
1942b) as shown below

exp |(%—1)go—sy—2As t+1 :
P(E, t) &~ Po(E, t)=~2-—1—ﬁ~ [ o) ¥ }]‘ ]?(30)’
v v, d2 Bgo 7 "‘As
=Xt log ——"— 0™ A%
o ds

o Hsy,=—

=~_.e_“. ! (ﬂ))s B(s"‘) .e=Mdg,
\V2n 2mBy | \E ] ps—)ps
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For y, = 6 and t = 6 and 11, we have plotted in Fig. 4, the values of log,,8P (£, ?)

.20

]
-y
[+]

tog 43 P(E,t)

1
o

-4 -2 Y- O |2

Fia. 4. log;oBP(E, t) againsty fort = 6and ¢ = 11. Points & correspond to values of
logBPa(E, t) for ¢t =3 and ¢ = 10 respectively.

against y. These curves are similar to those of the energy spectra for an electron-
initiated shower and almost coincides with the corresponding curves for gP, (£, t)
with ¢ =5 and 10 respectively, a fact which supports our previous contention
as regards the connection between an electron-initiated and a photon-initiated shower.
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SUMMARY

In the present paper the solution of the diffusion equations for a cascade shower initiatod
by a photon has been obtained and numerical values for both the differential and integral electron
spectra have been calculated through saddle-point integration. On the basis of the results
obtained, the connection between a photon and an electron-initiated shower has been investigated
and comparison with experimental results is also made,
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