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1. INTRODUCTION

The Internal Ballistics of a Tapered-Bore Gun were first discussed by Gehrilich
(1929), Schmitz (1935) and Justrow (1936). Recently Corner (1950) has discussed
the modifications in the equations of Internal Ballistics due to the variation of the
bore cross-section area. By simple substitutions in the equations of Internal
Ballistics for a tapered-bore gun for an Isothermal Model, he is able to eliminate
the varying cross-section area from four of the five equations and to show that
these equations remain of the same form. From this he deduces that the solution
of the equations of Internal Ballistics for a gun for which the bore cross-section
area varies in any manner corresponds, point by point, with the solution for the
orthodox problem differing only by having a constant bore area, and further that
the velocities, fractions burnt and pressures are equal when the volumes behind the
projectile are equal. He concludes that the tapered-bore gun introduces nothing
new into the central problem of Internal Ballistics except, of course, many interesting
theoretical problems connected with the rapid deformation of the projectile, as
well as the almost unexplored hydrodynamical problem of Lagrange’s correction and
cf the strong bore resistance—problems which are not well understood even for the
orthodox gun.

We find, however, that since the varying cross-section area cannot be altogether
eliminated from the equations of Internal Ballistics by any transformation, the
conclusions drawn by Corner need thorough reconsideration. To deduce the solution
of the tapered-bore gun from that for the orthodox gun, the law of burning for
the tapered-bore gun would have to be modified from point to point and the velo-
cities, fractions burnt and pressures for the two cases would not be equal, but would
just correspond when the volumes behind the projectiles are equal. Moreover,
the modification in the law of burning from point to point would imply that the
analytic solutions of the equations of Internal Ballistics for the orthodox gun cannot
be used for the tapered-bore gun. Accordingly, it is necessary to search for new
solutions. ~

In the present paper, two methods of solving the equations for the tapered-
bore gun are proposed. The methods are of general application, as they have been
developed for the non-isothermal model and for the pressure-index law [B(p) = Bp*]
or the linear law [B(p) = B(p+p,)]. As usual, however, we neglect the covolume-
correction terms.

The case of an orthodox gun follows as a particular case. In this case our
methods yield two new methods for solving the equations of Internal Ballistics for
each of the two laws of burning for an orthodox gun.

In the still more particular case when the pressure-index o« is unity or when
P, is zero, i.e. when the rate of burning is proportional to pressure, we get two new
methods of solving the equations of Internal Ballistics for an orthodox gun, How-

ever, the new methods are not very much simpler than the many standard methods
available for this case.
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In the most general case, our solutions are expressed in terms of the solutions
of ordinary non-linear differential equations of the second order. The integration
of these equations requires elaborate calculations and is likely to be a time-consuming
process. Therefore, in order to study the effect of variation of bore crcss-section
area on Internal Ballistics, we study here an Isothermal Mcdel for the specific case
of a constant burning surface for three different tapered-bore guns including the
conical-bore gun. The level of accuracy is the same as that of Crow’s method of
Internal Ballistics for the orthodox gun or of the Corner’s theory (1948, 1950) for
the High-Low pressure gun. The equations of this model can be integrated in
finite terms, or for guns with moderate tapering, as series solutions and in each case
the results can be usefully compared with the results for the corresponding orthodox

In particular we have made the following three comparisons:—
{(a) We compare the position, pressure and velocity at all-burnt for two
guns—one of constant bore area and the other tapered but with same
charge, chamber capacity, and same initial area of cross-section of

the bore.

(b) In this case the tapered-bore gun has a larger initial area of cross-section
and a smaller bore length and the emergent calibres are equal.

(¢) In the third case we modify the web-size or the central ballistic parameter
so that the maximum pressure remains the same and then compare the
muzzle velocities for the orthodox and the tapered-bore gun.

We also extend the theory developed for a single charge to the case of the use
of composite charges in a tapered-bore gun.

2. Basic EQUATIONS oF ISoTHERMAL MODEL

The basic equations of Internal Ballistics for the Isothermal Model, for constant
cross-section area of the bore and for linear law of burning are

dv Ayp
WV —— =
&=, C (1)
2w
C C
P [K0+Aa:— ~8—] = OAz (1 + Eu—)) .. @
2= (1=f) (1+6f) @ ( A
af _
DE = —f8p . .. o4
dr x
=" .. .. . .. (B)
Making substitutions,
X=K0+A0x-—g .. .. .. .. {(6)

5
T = Agt R ¢ 4
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these become

dv P
WV = —— ..
dX 1+§Q_
w

z = (1—f) (1 +6f)
af _ Bp
Dap=~ 4,

dX

E‘T—’U

For varying cross-section area (1) and (2) are modified to

wlv%=A(x)Op
145~
2w

s=cali+g)
p[K0+ fAdx— E]—-OZ/\ 1+€1}; .

\ /

Making the substitutions

»

K0+J Adx— _SQ = L(z)

r=fAdt

the equations for the varying cross-section area are:

dv
YL T po
145
pL = O (1+—6%)
z= (1—f)(1+6f)
af _ Bp
D&““Z
aL _
i =

(18)
(19)

(20)

(21)

(B]

(15)

(16)

(€]

Comparing systems (B) and (C), we find that in the two sets, four of the five

eqyations are the same, but (11) and (20) differ, since in (11), 4, is constant and in (20)
4 is varying with shot-travel. If we leave (20) out of account, then from (17), (18)

>

3
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(19) and (21), we cannot solve even theoretically for p, v, 2, f as functions of L, and
thus Corner’s conclusion needs modification.
The same result is seen more effectively by writing the set (C) as

v p
MG T
5w
C
pL = CA1=f)(1+6f) (1+%)
af __ Bp
DaE= "

From these three equations, we can solve for », p, f as functions of L, but not
independently of A; and thus velocity, pressure and fraction burnt are not equal for
the tapered-bore and the orthodox gun when the volumes behind the shot are equal
in the two cases.

If we do not make the transformation for time, the two sets of equations are:

wpP o P _dv_wd% :
v = =g g A, 2D
M4y
c
pX = CzA (1+@) . .. .. (23)

‘ (D]
z= (1—f)(146f) .. . . @
df _

Do=—fp .. . . . .. (25)
dX
%-—-210’[/ (26)/
and
, P _ﬂﬁ%_@é(l@)
MU= T T T A G T AdG\A (27)
14+
2w
pL=Oz/\(l+é%) .. . .. .. (28)
(E]
2= (1—)14+6) .. .. . .. (29)
af _ _ 30
D%— Bp . . .. e .. ( )
b _ 4, e

dt

Again we note that (26) and (31) are different. If we leave these two equations
out of account, we get in each case only 4 equations to connect 6 quantities, viz.

v, %, p, % f,torv, L, p, 2 f, t and so the relation between » and z is not the same
as that between » and L, a conclusion implied in Corner’s statement.



442 J. N. KAPUR: THE INTERNAL BALLISTIOCS OF A TAPERED-BORE GUN

3. SoLUTION OF THE EQUATIONS OF INTERNAL BALLISTICS FOR A TAPERED-
Bore Gux ror THE NoN-IsoTHERMAL MODEL

Let V be the volume of the air-space behind the projectile at any instant, then
the equations of Internal Ballistics are:

FCz = pV+3y—Dwpe? .. .- .. . (32)
d d dV
w13§=wlv£=p{(m)=p—d—z .. .. .. (33)
a _
D= = —fp* e 3
z = (1—f)(1+6f) R £: ;3

Let V, be the initial air-space at shot-start and let 4, be the corresponding area
of cross-section. Also let

Vo = Al R -

To reduce equations (32)-(35) in terms of non-dimensional variables and con-
stants, we make the substitutions:

g_—— C e A ¥ )
0
ziol - V()
{=55P = 7oP (38)
AoD (FO\'™%
1= 05 L) )
Agpz PO\
The transformed equations are:
2
Tt 1)
njg—Ml .. .. . .. o (42)
1 G-t 43)
z= (1= (1+6f) .- . .. o (44

If A4 is constant, these reduce to the corresponding equations of Clemmow (1951)
for the orthodox gun.
From (41) and (42)

dz = ¢774Y or -_.5" -1, . . (45)

where

Y =, .. .. .. .. .. (46)
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go that
1
g:(%)v LW
and
i 1 gy
IiE—'"W(C_Yﬁ)"' L @8

From (42) and (43)

dz d 4o d¢ dzjl _ MA -
T & [ CZa= 4" (49
Again from (44)
d
d—;= —/ 1=z . o)
where
v=146 .. .. .. .. .. (bla)
46
= 51b
(L40)2 (515)
Substituting from (45), (46), (48) and (50) in (49), we get
(48
Y=
d|A4 dY MA
Wisgd [ dopl _AY iTg ] =T
or

y-1 MAy 1 o
(1—qz)(§) ;%;[%c“(c—yc] % LU= = L (62

where dashes denote differentiation with respect to ¥
To find z we eliminate » from (41) and (43)

z—§§+’} M AO gm(((iii) (df)

1
¥ 142 .1
"C(c) Vo ol s - YU —go)
or
1,1
1— Y'Yz Y
4 L (83)

- YD)

Yt
!

]
fl

YIA

Finally substituting in (52) we get

1 Y\ 4 4 y—1
(a3 () A [ e aern) =107

x |10 1)

A2
T T Y:’)Z]

MA’)’ 1- o(] (54)
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This is the fundamental differential equation of this method. For a tapered-
bore gun of known shape, A is a known function of z or of v or of £ or of

1
(“{)7 Substituting this funetion in (54), we get the non-linear differential

equaticn with { as dependent and Y as independent variable, the numerical

integration «f which will give the solution of the system of equations of Internal
Ballistics.

Particular Cases

We examine now the following cases:—

(1) Conical bore gun :

Here

A _mP_ (y)z__ 11—”)2
A, ma®  \a _( b
s 4
V=Kot J ny? d = Ko+ 50 (b= (b—2)]
[¢]

3
)
3
=14pu—pn (1—%)

where p is the ratio of the volume of the ‘complete’ cone to the volume of the

chamber

174

A=(1+“—f)§=[1+#_1(1)’] L (55)
Ay \ n 3 p\l/

Also

(ii) Orthodox gun of constant bore area :
Here A = 4, and (54) gives

[1—qvr 3] o (2= Y0)] = [1+%y—7§1qv2c2“‘4<c— Yc'>2] X

-My Cl—d]

X [%qc“‘z(c—- YO +05 (56)

(iti) Constant burning surface area: conical bore:

Hero 2
g=0, v=1, 2140= [l%ﬁ_i(?)y]s
(%)H afl? [(IT” - ,{ (%)W)—Z/gzd-Z(C— Y;')]

p

- Myl [l—iﬁl(z)m]ws O (1)
K p\l
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(iv) Constant burning surface area : orthodox gun :
Here

g = 0, V= 1, A = Ao
Y\"'d .
(f) ay [Tyl =m0 o (8)

(v) Linear law : constant burning surface area: isothermal model : conical bore :

In (57) put ¥ = 1, « = 1 and replace M by its modified value M

Y -2/3 Y 213
14+pu—~ , 1+p— =
d ¢ Y¢ . 4
4 [(._F ) (1- C)}:M{——” ] . (59)

Initial Conditions

We represent the initial conditions of band engraving by means of a shot-start
pressure p, so that initially

£=1, £¥€o=%96—€,»),,, Y=1¢, .. . .. (60a)
at _ L4 _ a
G £+ g dvdt,
Initially » = 0,
diilg,=1 ce e oo .. (60DB)

Solution of the Main Problems of Internal Ballistics

By sclving (54) or any of its particular cases, subject to initial conditions (6),

d
we get { and ﬁ, as tabulated functions of Y, so that, let

{=LY) .. .. .. .. .. (6]
ac .
=70 . . .. .. .. (62)
then
1 1
_(ryY_[ ¥ |_ . (63
= () =i = xor .
From (45)
dz—-ﬂ— ay
NG
Y
dY
—zp = — =L .. .. ..
. [ TG (64)
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From (41), then

y= o (e 1f)
= 2 ot L)~ (DK (Y)]
= [M(Y)® .. e .. .. .. (65)
At shot-start
z0=:0=FA—ép0 (68

This determines z; in terms of the shot-start pressure.

Now for any given value of f, (3) determines 2, (64) determines ¥, (63) and (37)
determine shot-travel, (38) and (61) determine pressure, (39) and (65) determine
velocity.

Mazimum pressure :

. ¢ . . . . .
For maximum pressure — must vanish and since Y is a monotonic increasing

ayY

variable (% should change sign from positive to negative.

Let Y be the solution of J(¥) = 0, then from (38) and (61) maximum pressure
is given by

Al

FoPr=0 =1(Y) .. .. . .. (67)
§1=%¥=K(Y1) .. .. .. .. (68)

0
determine ¥, and therefore shot-travel up to the instant of maximum pressure.
Again from (39) and (65)
2 n2
s 4D (F

2-200
=g 0) =[xy’ .. .. .. (69

]
All-burnt position :
Let suffix 2 correspond to this position, then
L (Y;) = 12z, determines Y, and

v J.A dx
=l Y0
b=yl = “H— = K(T) (70
Agl
em=1 =I(Ty) (71)
and
.A.2 D2 FC 2-20 5
2 0 2
Mg FO ﬁg (‘Z'O‘l) Ty = [M( Y2)] (72)

determine shot-travel, pressure and velocity at all-burnt.
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Motion after all-burnt : muzzle velocity :
After all-burnt z2 =1, dz =0.
from (45), dY =0 or d((&) = 0.

Let suffix 3 denove the muzzle-position.
L&Y =87, Y £
where
vy
£y = v,

(73) determines the pressure at the muzzle.
From (41)

2M
772 =51 [1—Lsé5]
2 -
= %[1—@5;5; 4 R 2

(74) determines the muzzle velocity.

4. SecoND METHOD OF SoLViNG THE EQUATIONS

In this method, we use ¢ as dependent and Y as independent variables.

From (49)
— oy d {4y (Y df yo1 _MA(Y 1-a
VT=ed " 5 |35 v =T (5
or
y-1 @ [Ao % y-1-ay } . [14_0 o y-1-ay } _MA L a,vpeg
(1~=g)¢"" 75 Y*¢ ¢ G V¢ ¢ =T Yo :
From (53)
— 1-¥
l—gz = 1 qY¢
l+% M AZ 2y21§27 2~ 2&7&2

Substituting, we get
[1—g¥e"]er d [fio yongy—l—owg,} - [MA ylerar Ly qu Y1 owf}

')'—].Ao -2~ '
x [1+§-—~M L A 2] (76)
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Particular Cases
(i) Orthodox gun :

Puatting 4 = 4, , we get

[1—g¥ & 7} [Yée" +(r~1—an) FE24att ] = [1+¥—}; quYS“f"”‘z‘Wf'z]

% [_g Y2'2“§27“’37+3+%quz"'g’] (76)
(i1) Orthodox gun: constant-burning surface :
Here ¢ = 0, v = 1, and (76) gives
Ve +(v—1—ay) V&2 paét = MYP 2248

(B31) Orthodox gun : isothermal model : constant-burning surface :
Putting ¥ = 1 and replacing M by adjuster M, we have

Vet —aYE bl = MY2 2™ . .. (78)
Substituting in (77)

E= U7 .. . .. .. (79a)
(14+n)V .
Y_W_n)M . (79b)
a=%(3—%> . .. .. .. (79c)

We geb after some simplificaticn, Clemmow’s (1951) equation

2UV d2U 2n(y—1) V(dU)2+UdU

ive~ Q4n)y—m) \dV av

1+ndV2  (1+n)(y—n) =1 .. .. (80

(iv) Conical-bore gun :

¢\t
The equation is obtained by replacing ;14- by <1+'u'———§) in (75).
] g
Initial Conditions

The initial conditions for the integration of (75) or (76) are easily seen to be

E=1, Y=2¢, &=0.. .. .. .. (8

Solution of the Equations

Subject to initial conditions (81), (75) can be integrated numerically and let the
solution be

E=PY) .. .. .. .. .8
E=QY¥) .. .. .. .. .. (83
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then
g=§zy=Y[P(Y)]-Y__—:R(Y) LY
From (45) .
z—zo=J [PV 7dY = 8(Y) .. . .. (85)
then (41) gives ¥
7= 2 kSN =P(DRY) = (MDE .. .. (80

Mazximum Pressure

. d
For maximum pressure 9t = 0.

aY
.. from (84)
1 P(Y)
7 "Ry =°
or
1 Q1Y)

Let Y, be solution of (87) at which g%

ative, then P(Y,), B(Y,), T(Y,) determine the shot-travel, pressure and velocity
at the instant of maximum pressure.

changes its sign from positive to neg-

All-Burnt Position

Let Y, be the solution of (85) when z = 1, then P(Y,), B(Y,), T(Y ;) determine
the shot-travel, pressure and velocity at all-burnt position.

Motion after All-Burnt. Muzzle Velocity

These are discussed in exactly the same way as in Method L.

5. SorurioN rorR THE LiNnEArR Law oF BURNING

We have given above the solution ¢f the equations of Internal Ballistics for the
pressure-index law of burning. Another law of burning, which has been found
more plausible both as theoretical and experimental grounds, is the Linear Law
[Mansell (1907), Murour (1931), Dederick (1947), Corner (1950), pages 42, 72, 206).

d;
Da‘l;: —B(p+p1) .. .. .. .. (88)

where 8 and p, are positive constants, depending on the composition of the pro-
pellant and the initial temperature of firing. The solution of the equations of
Internal Ballistics for law (88) for the orthodox gun has been discussed by Kapur
(1956d). In the present section we show how the methods developed in the last two
sections can be adapted to this law.
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The equation (43) in this case is replaced by
af Ao

3¢ = C+&) .. .. .. .. (89
where
l
From (42) and (89)
dz d df dz M4 L
Substituting from (45), (46), (48) and (50) in (91), we get
d€
{— Y
=g & M4 L
vvl—gzg;% R LA %-Ao e
or
"l a 4y M4 ,
- (3) it Y@)} el (O A )
To find 2z, we eliminate » from (41) and (£9)}
d¢
o= il o Gty (dz) (df)
1 o
4 T
=t (F) + B SR - vopea—p
or
—gYrr Y
l—gz = ! ‘*’Y{{{) 3
+
Wt RS D
Substituting in (92), we get
sy (XY 4 [+ L)E—TY )]
e () [
147 (202
= [1+zYTW“ZqV2( Iz (=Y
MA
x[lqi1 €-é-2§1 =Y+ v: {f{lil .o (99)
If ({+¢y) in (94) is replaced by {*, it reduces to equation (54).
For the law of burning
Diif= —Blp+p)* .. . . .. (95)

dt
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the fundamental equation becomes

1 Y'}’ 1 Xy ’
g 3] () [ b= rt]

—142 o
- [H'%ZIITI Dot Y@')?]

Ao C+L)* o MAY }
X[‘”A p YO IE e

The law (95) has the advantage that it includes both the pressure-index law
and the linear law as particular cases. Thus when « =1, it gives the linear
law and (96) reduces to (94). When {; = 0, it gives the pressure-index law and
(96) reduces to (54). When « = 1, £ = 0 it gives the standard law when the rate
of burning is proportional to pressure.

If A = A,, (94) reduces to the equation (25) for the orthodox gun deduced by
Kapur (19564).

As a matter of fact our present approach enables us to obtain the fundamental
equation for any law of burning. Thus for both tapered-bore and orthodox guns,
for the law of burning,

(96)

D%f= —pP(p), .. .. .. .o (97)

the fundamental equation is

e ) s

14 1o
=[1+%7M 20 20 (C—YC’)]
Ay DY) M/i_c#]
x[‘z A )R 4,0 (88)
Second Method
From (91)
— oy d [A45 (Y dé y_1 ] ___A_ Y,‘
v/ T=g —d—{—g—(?ﬂl)d—f,f ”‘/l‘qz]‘MAo—_‘yngy
or
d o (Y o] o [ ,]_ MA Y
- g [F (o) |G FRALGAIES St
From (93)
1—gz = 1—g¥e
1 A)

e N
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the fundamental equation becomes

y1y-1 4 [4 - 14
-qre 167 & [ (e 6] - [1+%——-A~qu<y+m e

MA Y 4 Ao(
At Yy e

Y+0,8)¢ f} - (99)

For the law (95) it becomes

[1-ave 70 g | 7 (o) €]

[ Y
M4 4, ( Y1 ]
= 102 7 st (th) €74
lAO (§;+§1) & }
—1 4 o
x[1+%yMlZ—§qv2(§y+cl) f“"&] .. (100)

This reduces to (99) when « = 1, to (75) when {; = 0 and to equation (64) of
Kapur (1956d) when « =1, 4 = 4,.

For the most general law of burning (97), the fundamental equation of this
method is

Y
[1—gye-r]e 2 [A"‘P(gy)fy | =1 A e (g;)fy‘lf']
[ ‘b(g”) J

14 Y\\?
X [l+2yM1A2qv ( (—?)) 5”'25'2] .. (101)

(98) and (101) are the most general equations, for they apply tc (i) all laws of
burning, (i1} all types of tapering.

6. Discussiox oF THE ISOTHERMAL MODEL

In this section, we discuss the Internal Ballistics of a tapered-bore gun under
the following assumptions:—

(i) We adopt the Isothermal approximation in which a mean temperature
of the propellant gases is assumed throughout the period of burning of
the charge. Also we represent the initial resistance to the motion of
the shot by a change of effective rate of burning. Let M be the
adjusted central ballistic parameter.

(ii) We assume the rate of burning proportional to pressure, i.e. we take & = 1,
Ly =0.

(iii) We assume the form-function z = 1—f, i.e. we take § = 0. The common
shapes, tube, ribbon and multitube have effective form-factors 8 suffi-
ciently close to zero to make a successful practical analysis possible
with 8 = 0.

9B
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We may point out that these are precisely the assumptions under which Corner
(1948, 1950) discussed his theory of the H/L: gun and thus our thecry is of the same
level of accuracy as his in that case.

The equation for this case is obtained from (75) or (99) or (100) by putting {; = 0,
a=1,¢=0,v=1,y=1and replacing M by M, so that we get

d [dy ¢ A
ﬁ[jyg}—ME e . e ..(102)
Since ;14- is a known function of £, this equation can always be integrated
0

numerically to give £ as a function ¢f Y. In this case, ¥ is, of course, the same as z
and so we can write (102) as

df &4, A

E[Zfz]—ﬂzo .. .- . ..(103)

The initial conditions for the integration of (103) are:
2=0, ¢=1, &¢=M .. . .. .. (104)

We shall now discuss the integration of (103) for a gun for which
A4 1
— = .. .. . .. .. (105
N (105)
In this case (103) becomes
d .. M
ZE1=F . (106)
or
d | dX 1
2 = . .. - o1
& [ dz] X (107)
where
e=VIX.. .. .. .. ..(108)
The initial conditions for the integration of (107) are:
e=0, X=X,=-—, ‘f‘%:\/ﬁ S .. (109)
Vi 4

Fortunately, equation (107) is the same equation as was cbtained by Corner
(1948) for the H/L gun, when in his equation, we put b = 0, » = 0. He integrated
his equation numerically for X, < 5, i.e. for M > ;. Thus his numerical solution
covers all the cases of interest to us.

Now
2 P
¢ Vux

Corner found in the ccurse of the calculation that % generally decreased steadily as 2

€=

approached unity. The maximum pressure, therefore, occurs at all-burnt or 8o
near it that the value of the pressure at burnt is a sufficiently good approximation.
We are_therefore, interested in the pressure, velocity and shot-travel at all-burnt
only and these can be obtained easily from Corner’s (1948) tables for the H/L gun.
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Making use of his solution, we get for the volume behind the projectile at all-
burnt

TABLE 1
M 0-49 1 1-96 2.89 4
¢5 1-51 1-83 2:47 2:97 35

However, if the bore area is constant and equal to 4, we get by putting

;11—— =1 in (103) and integrating subject tc (104)
0
£ = M, . . . .. (110
80 that at all-burnt
= oM
£ =eb,
and we get
Tasre II
M 0-49 1 1-96 2-89 ¢
§B 1-6323 2-7180 7-0094 17-9922 54-60

Thus we see that if the charge and chamber capacity are the same, the volume
behind the shot at burnt is much smaller in a tapered-bore gun than in an orthodox gun
of constant bore area A,.

For finding the pressure at burnt, we note that { = g, for both the models
and therefore at burnt, we get:
TasLe IIT
M 0-49 1 1-96 2-89 4

ég [Tapered-bore] 0-5525 0:5464 0-4049 0-3367 0-2857

¢y [Constant-bore 0-6126 0-3679 0-1409 0-0556 0-0183
area A,]

Thus we see that for same charge and chamber capacily, the pressure at burnt is
much higher in this tapered-bore gun than in an orthodox gun cf cross-seckion A of the
bore.

For finding the velocity, (43} gives

= Ao g“ii_f
K 4 ° df
In our case
4 1
z=1—f, =1, ——==
L. .+
& dz = 2z
.. at all-burnt
@\ (dX
nB—.(d_z)B—\/M \YJE)B R S 81
For a gun of constant cross-section area bore
_ dé _ ,df =z d¢
n=-Uu=l"tz
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.. at all-burnt, using (110)
1 .
= —A:{Me-‘f=M .. . . .. (112)

n
B e

Equations (111) and (112) give, on making use of Corner’s tables:

Tapre IV
M 0-49 1 1-96 239 4
ny; [Tapered-bore] 0-394 0715 1-212 1-698 1-848
5g [Constant-bore 0-490 1-000 1-960 2-890 4-000

cross-section area 4]

Thus for same charge and chamber capacity, the velocity at burnt is smaller in the
case of this tapered-bore gun than in the case of an orthodox gun with same Ay and the
difference becomes more pronounced as M increases.

From Tables IT and III, we find that if we use the same M for both the guns,
the volume behind the projectile is very much smaller and pressure very much
larger for the tapered-bore gun. A more useful comparison between two types of
guns can be made if we adjust M for the tapered-bore gun, so that the maximum
pressure is the same for both the guns and then compare the ballistics of the two
guns.

For an orthodox gun with parameter # ',

c — ze—l\—f'z

1 ) =,
{ is maximum when 2z = — , provided M’ > 1, and then

Y TR

1 ‘3679
Imax. = —= = — . (113)
eM’ M
If ' < 1. the maximum pressure occurs at all-burnt and is given by
Lo =l T S 0 § 3
max. eﬁl

From (113), (114) and Table IT1, we get for same maximum pressure

TABLE V
M 0-49 1 1-96 2-89 4 625 8
ar 0-365 060 091 11 1-3 1-68 1-91

and then for the position at all-burnt, we have

TaBLE VI

M 0-49 1 1-96 280 4 62 8

£, [The present 1-51 1-83 2:47 297 3-50 448 519

tapered-bore
gun]

€p [Orthodox with 1-51 1-82 2-48 2-99 3-67
adjusted M‘]

6-74

Tt
@2
(=]
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For M < 2-718, the maximum pressure occurs at all-burnt and thus {; (and
therefore £;) would be the same in both the cases. After that we find ¢, greater for
the orthodox gun. Thus on using adjusted central ballistic parameter, we find that
for same mazimwm pressure and for same chamber volume, the tapered-bore would give
slightly better external ballistics.

Now

2n2 2202
S e TOE L, _FOR T,
FOp*w: A2D? 1 M FC

= . (115)
In our above discussion, we have taken same chamber-capacity, same force-
constant and same charge mass for both the tapered-bore and the orthodox gun,

sc that _C_ has the same value for hoth. Therefore the most convenient way of
D

adjusting M is to adjust the web-size and obviously we have to use a larger
web-size for the tapered-bore gun to get the same maximum pressure.
Now for motion after all-burnt, we get for the muzzle velocity

FCn 2 PO, [tg\7-1
2 — B 2 71— (=B .. ..
vt = I [1 (53) J (116)

Thus if we take same 'fa’ gince fB is in general smaller for the tapered-bore gun,
the muzzle velocity will be slightly larger for it.

In practice, however, while ¥, may be the same for tapered-bore and orthedox
gun, 4, would in general be larger for the tapered-bore gun so that the barrel may
not have to be too long. Actually A, is so adjusted that the emergent calibres of
the tapered-bore and the orthodox gun are the same and then the ballistic size D

is adjusted to adjust for M. In this way we can have £; for the tapered-bore gun
even larger than that for the corresponding orthodox gun and this would imply a
further increase in muzzle velocity.

Another way to keep the same maximum pressure in the two guns is to use a
smaller ¥, and a smaller charge ¢ in the tapered-bore gun, but this would mean a
smaller muzzle velocity.

The tapered-bore gun we have discussed in this section is a steeply tapered one
and the reasons for discussing it here are:

(i) availability of the solution of the corresponding equation;

(ii) this gun exaggerates the effects of tapering and though in other tapered-
bore guns the effects may be quantitatively less pronounced, yet
qualitatively they are likely to present the same trend.

In the next section, we discuss the Isothermal Model for a moderately tapered-
bore gun. The discussion of this case is important, as it contains the solution for
the conical-bore gun as a particular case.

7. THE IsoTHERMAL MODEL FOR A MODERATELY TAPERED-BORE GUN

In this section, we discuss the particular tapered-bore gun for which
A
Z—:a-—-bf e .. .. . {117)
o .

Since, however, when ¢ = 1, g— = 1, this can be written as
0

4

o= 10—t N A 8 1))
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We shall see that when b is small, this gun would be a good approximation to a

conical bore gun. Also b, in practice, would lie between 0-02 and 0-1, and thus, as an

approximation, we shall be justified in neglecting squares and higher powers of b.
For this gun (103) becomes

d i & 1 =
or
26(1+b—bE)E" —2(14b—2b6)E 24 £8 (L 4b—bf) — M E2(1+b—DE)3 = 0 .. (120)
When b = 0, it gives
2EE" — 2 EE M2 = 0 .. .. ..o (121
of which the solution subject to initial conditiong (104) is
£ = eM2 = P(2) . . . .. (122)
Let the solution of (120) be
£ = PR)+bV ()40 V@) + ...+ V() + . ... .. (123)
where
V. 0)=0, V) 0=0 [r=12,...] . .. .. (124)

Substituting from (123) in (120) and equating the coefficients of the various
powers of b, we get

2PP"—2P'24+ PP ~D}[P2=0 . . .. (125)
¢PV,"4+ V| [P—2P2]+V,[P"z+P —2PM]
= —2(1—=P)PP"+2(1—2P)P'¢—PP'(1—P)+3MP¥1—P)

2PV 4V [P—2P2)+ V,[P'2+ P —2PH])
= (,'67(2, P, P,, P”, VI! VQ, PP Vfﬁl)

Here ¢, is some function of the variables indicated. (125) is the same as
(121) and its solution has already been found. To solve (126), we note that if D

denotes the operator gg , (126) becomes

(D24 (1—202) D+ (M — M)V = ¢ 7 M[ 22" —2Me¥:
or i _
[zD——ﬂz][zD—-ﬂz]VI = MzeM: [2—6M5(2+Mz)] .. .. (128)

Let .
[zD—Mz1V,= Wy, .. .. .. .. (129)

then

(%%V—l _ MW, = Ml [2— 26 — Hze |
2
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or

- _ 9,Mz — Mz s\
Wi = B [2— 2 _F (%%~ %} |+const.
i b3

Whenz =0, W, = 0.

W, = MeM: [2z~é(em—1)—zﬂz] .. .. (130)
n
From (129) and (130)
- — o _ oM
iV, ~HMV, = MeMs [2_61»1:_"1 - 1]

dz Mz
v 'z\—-ﬂ; ] 131
V2= <z ’ﬂ B‘—I Z+Ti2—+“*3-’§-‘+‘--- - )

Similarly to solve (127), we get on substituting for P(z)

(zD—Mz)(zD—Mz)V, = ze ¥:¢.(z, P, P, P"V,Vy,....,V,.1) .. (132)

Since from the integration of the earlier equations P, P', P", V,, V,, ..., V,_,

are known functions of z, the R.H.S. of (132) is a known function of 2, ¢.(z) (say)
then (132) can be integrated to give

I S v %
Wo(z) = eMs J AL
0
and
_[F oF (F o
V.(z) = eM= . ” d.(z)dz .. .. .. {133)
0 0

Thus we see that we can find the coefficients of the various powers of b in (123).
In the rest of the section, we neglect squares and higher powers of b, so that
we get

i < (& 2)"n+1
§=eM’f——b[ g————m—] .. .. .. (134
n =2 IZL n )
Thus we see that up to this order of approximation, for any given z, the volume
behind the projectile for this tapered-bore gun 1s less than that for the corresponding gun
of same Ay. In particular this holds for the all-burnt position.
Again up to the first power of b,

|n
=2 [1+be“Mz Z(Ez)" ”+1] (138
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Thus up to this order of approximation, for any given z, the pressure in this tapered-
bore gun 18 greater than in the corresponding orthodcx gun. In particular the pressure at
all-burnt is greater for the tapered-bore gun.

Again
i3
n=1{~
< (Mz) o ) 1
__* 7 z)"n+1 (Mz)* 'n+1
= —— - Mz N A il
oMz [1+be =, int+l n ]{ Z [n—1 n ]

@ n .
=ﬂz{1_be—ﬁz[znn — “1_‘1@\:'} - . . (136)

Thus, 1n general, to this approximation for any given z, the velocity is less than the
velocity in the corresponding orthodox gun. Ia particular the velocity at all-burnt is
smaller for the tapered-bore gun.

Before proceeding further, we note that the infinite series

(Mz)* (ﬂ 2)" < (7=2)" -
Mzt 2|2 3[_3 T onin (137)
L= T i
occurring in the expression for V,(z) in the eqnation (131) is the expression for the
definite integral
z Mz —_— M: £
Je 1dz=J ““lau .. .. .. (asg)
z t
0 0

Fortunately, this integral is available as a tabulated function. In fact, the
exponential integral is defined by

Ejz) = log,'yx+[——————dt .. .. .. (139)
Yo

where ¥ is a constant defined by

e o]

1
1—et et '
log, v = ~5 at — 7 dt = 0-577215665 .. .. (140)
0 1

From (131), (137), (13R) and (139), we find that

iz
ef—1

Vi) = oMz— (M5 —1)— J -~ dt
0

or

Vi(z) = 2Mz— (e —1) — E,(Mz) +log, ¥ +log, {Mz) .o (141)
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Making use of the tables of &; (z) (Jahmke and Emde (1945)), we get the follow-
ing table:—
TasrLe VII

M=1 M=2

z Pl2) —Vil2) Pz2) — Vi)

1-1052 0-0078 1-2214 0-0319

2-4600 0-8110 6-0503 4-5253
2-7180 1-0359 7-3875 6-0714

0-1
0-2 1.2214 0-0319 1-4918 0-1357
0-3 1-3499 0-0738 1-8220 0-3255
0-4 1-4918 0-1357 22260 0-6194
05 1-6487 0-2289 2-7180 1-0359
-6 1-8220 9-32565 3-3198 1-6014
0-7 2-0140 0-4584 4-0537 2-3475
0-8
10

Similar tables can easily be prepared for M = 3 and M = 4. We note that
both P(z) and V,(z) are functions of Mz. This will considerably reduce the number

of calculations.
The table shows that the power series solution will have greater accuracy for

small values of z; and for moderate values of 2, it should give satisfactory results
even up to all-burnt, provided b is small. If M and b are larger, we may have to
take the contribution by the coefficient of 42 into account. This would mean mcre
calculations, but even then the labour would be much less than for numerical inte-

gration.
We can, therefore, regard Vy(z) as a known function of z and we can express

the equations (134), (135), (136) in the following alternative form, without the use of
an infinite series

&= P(2)+bV(z) = eM24bV,4(2) .. .. .. (142)
=;M§;[1—be“"7"V1(Z)] i co L. (143)
7=z B4 [me—m_ﬂ_ 1:672‘—‘— _m-mvl(z)] [ as

. 2 . .
Now { = <, and, therefore, { is maximum when

3
d¢
C—-Z Eé =0
or
ML bV (2)—Mze % —p [2Mz— Mo — (M ~1)] =0 .. (145)
Let the solution of (145) be
1
2= —+bK .. S eo .. (146)
M

Substituting in (146) and neglecting squares and higher powers of b, we get

e (1+bKH)+bV, (%)—(1+26Kﬂ) e—b(3—2¢) = 0
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or

[ =

K=
e

[2e—3+v1 (%)] S L )

|~ =

From (141), we find that V4 (

find its value to be —1:0359, so that

. 2 . ] B
0 5i5 and  z = 1+0E_526
M

Thus up to a Jirst approximation, the effect of tapering is that maximum pressure
occurs when relatively more charge has been and burnt and the ratio of this charge to that
for the corresponding untapered gun is independent of M.

Also

) is independent of M and from Table VII we

=

K =

. (148)

—_— 1 » |
e}’(fi+()li)+bV1(] +bk)

eM M
035951
= Z%ﬁ [1 L 052399' . (149)

Thus the maximum pressure is greater for the tapered-bore gun and the ratio of this
maximum pressure to that for the untapered gun is independent of M.

If M’ is the adjusted ballistic parameter for the orthodox gun to give the same
maxirum pressure

_.1:/ - ,_1___ 1+1'03a9b]
eM  eM e
or
— - .035 —
M=M [1.|.1 0?;"%] = M'[140-38115] s .. (180)
Thus the ballistic parameter for the tapered-bore gun is greater.
If
5152
+0 5-1:)_17 =1,

the maximum pressure occurs at all-burnt. In this case

1
fwax =g o (18D

In this case also, since £, is smaller for the tapered-bore gun, the maximum

pressure would be larger for it.
For b = 0-05, (150} gives

M = M'[1+00191]
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TasLe VIII

M o049 1 196 289 4
M 048 098 192 284 392

For the volume behind the projectile at ali-burnt, we get, for the same maximum
pressure:

TaBLE IX
M 049 1 1-96  2:89
¢p [Tapered-bore] 1-62 2-66 6-79 17-056
¢y [Orthodox] 1-62 2-66 6-82 17-11

Table IX confirms the result of Table VI.

Thus we find that all the results for the moderately tapered-bore gun of this
section are consistent with and present the same trend as the results for the more
steeply tapered gun of the previous section.

It is also interesting to observe that the effect of tapering with same 4, is of
the same type as of using the law

Y~ _gptpy,

instead of the law

ﬁ —pBp

with same B (Kapur (19564)).
8. (CONICAL-BORED GUN

This is the most important shape from the practical point of view. For this
from (55)

A
yn (+_~-Q N 0 53]

For most practical tapered-bore guns ;L< 0'1. If we neglect squares and
higher powers of "—1; , (152) gives

A 2
i~ 1+ 5‘;{1 .. .. .. .. (183)
(153) is the same as (118), provided b = —2— .

Thus up to a first approximation, all the results of the last sub-section are
applicable for & conical bore gun. Tf, however, we want to keep up to rth power of b,
we expand Aé in powers of 1 up to (1) and substitute this in (106) and the using

0
a solution of the form (123), we can proceed as in the last sub-section. In practice,
keeping terms up to b2 should give quite satisfactory results.

For more accurate results, the equation

& -3 . 1 1 \#
@[§(+“*’g ]=M@+;—;Q o .. (154)
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can be integrated numerically subject to initial conditicns (108), and since £ > 1 and
1 . . . . .
1+ T lf > 0, no singularity should arise. When ¢ is small, the steps of integra-

tion can be taken as large, but near the position of burnt, the steps will have to be
smaller.

9. ExTENSION TO CoMPOSITE CHARGES

Let F,, (; Dy, 0;, z;, f; vefer to the ith component charge and let F, C, D,
ﬁ 0.z f reicr to the equwalent charge which is defined as the charcre which would
give the same ballistic equations as the composite charge both dumng and after
burning.

We shall assume that the pressure-index « in the pressure-index law and the
constant p, in the linesr law have the same value for each component charge.
In particular this condition will be satisfied in the praetically important case when
all the component charges have the same composition, Then if

Bi>8,>....>B, .. .. .. .. (15

there are n distinct stages of burning and the form-function for the rth stage of
burning is (Kapur (1956a)):

" z=Ad,+B.(1-f)-E (1~-f)2, .. .. .. (156)
when

where

t=1
.B,, == /\ki(gi+l' (159\
i=17
B, = > M6 G . (160)
=7
p = G (161)
2 FC;
fe=1
B,
Also for the equivalent charge
C=0C1+0C;+....+C, .. .. .. .. (163)
D D
S=t . (164
BB 169

(7VF=(,71F1+02F2+.... +O"F,, .. . ‘s (165)
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From (156), during the rth stage

Zz? -V 1=gz, .. . . .. (166)
where
ve=VB+44,E .. .. .. .. (167
E
g,=——2—~4——*-— .. .. . .. (168)
B +44,E,

From (50) and (156), we see that the fundamental equation for either of the
two methods for the equivalent charge for the rth stage is obtained from the corres-
ponding differential equation (54) or (75) cr (94) or (96) or (98) or (99) or (100) cr
(101) for a single charge by replacing » and ¢ by v, and g, respectively.

Assuming that the shot starts moving in the first stage, the initial conditions
for this stage would be obtained in the same way as the initial conditions for a single
charge. Next we determine the initial conditions for the rth stage for each of the
methods presented here.

Initial Conditions for the rth Stage

(i) First Method. Pressure-index law
Since ¥ = £&

or (_Z‘E.—.iy[u-ﬁgﬁi}.. L. (169)

dz . .
—d‘.—'fISln

general discontinuous unless 6,.; = 1. Accordingly in writing the initial condi-

In crossing from (r—1)th stage to rth, £, 3, {, 4 are continuous, but

tions for the rth stage, we should write the value of % at the beginning of the rth

stage and not at the end of the previous stage. Thus the initial conditions for the
rth stage are:

Y=(Y)-1, (=01

a 1 V) r-1(0)r-1 (4)r-1 1
= 1+ . (170
dY (&))" © A _pg +2E,} (170)

(i) Second Method. Pressure-index law :

d¢ _ df _dédf &2 _n A1
T = fhan g“Aodzg ... a7

af
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Remembering the possible discontinuity in dj, the initial conditions for the

daf
rth stage are:
f = (f)r—l’ Y= (Y)r‘l
dé (n)r-1 1-y (4),- 1
Tv = o (f r—
¥~ g, T _py 2
kr—l
_ +2E1-—l
=__:Llf;h(§§) L
_B.+ 2B, \dY/,,;
kf—l

(iii) Linear law:

[

The initial conditions for the two methods of this law are obtained from (170)
and (172) by replacing [({),1]* by (£),—1+:.

Maximum Pressure

If 4 =4y {;=0or «a =1, we can easily show that maximum pressure is
unique (Kapur (19560, ¢)).
From (169), we have during the rth stage:

’

¢ 1 ¢ A 1
d—f‘?(l'kc_alﬂm))” e L))

A pressure maximum would arise during the rth stage if

Y(n)r -1 (£)r-1(A4),-1 1

1+ —_— >0 .. .. (174
{1} 4, 2E, (174)
—-Br+
k_y
and
Y(n). (D). (4). 1
14 <0 .. . .. (175
(@ 4 28, 7o)
Br+ I
k,
Again at the end of the rth stage, i receives, in general, a positive increment
and therefore %’ receives a negative increment. It is possible, therefore, for
@

54 to change from positive to negative in crossing from one stage to another and

thus a pressure maximum can arise at the end of a stage.
A pressure maximum would arise at the end of the rth stage if
either

(i)

147

()0 (4), 1 0
e Ll = . .. .. (176)
[0 4o _p 4 ‘

oK,
kr+1
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or
. r(n)0), (4), 1 ~
(i1) 14 ~ >0 .. .. .. (77
(0. 4o _p 2B, am
’ kr+1
and
Y(n)(8), (4) 1
1 = .. i ..
+ [(C)’] AO —B,+1+%El41'_1< 0 (178)
or
()0, (4), 1
(ii) 1+ T =0 .. . .. {179)
(0.1 Ao _ B,+1+2,0E’j1]

For the linear law, the corresponding conditions are obtained from (173) to
(179) by replacing {* by {+¢;.

The all-burnt position and conditions at this instant are determined by the
position and the ccnditions at the end of the nth stage of burning. The muzzle
velocity is determined as fcr a single charge.

The case when some of the component charges burn out simultaneously needs
no separate discussion as in this case these charges behave in all respects as a single
charge (Kapur, 1957a).
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SUMMARY

After showing that the variation of cross-soection arew of the bore of a gun introduces new
problems for the solution of the equations of Internal Ballistics, two methods for solving them
for the pressure-index law and for the linear law for a tapered-bore have bcen given. When
the area of cross-section is constant these give two new inethods for the orthodox gun for each
of the laws. The Isothermal Model has been studied in details for three different types of
tapered-bore guns and in each case the internal ballistics for a tapered-bore gun have been
compared with tho% of the orthodox gun. In the final section the theory has been extended
to composite charges?
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