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1. INTRODUCTION

The motion of solids in inviscid rotating infinite liquid medium presents many
interesting features. G. I. Taylor's (1922) problem of the motion of a sphere
moving uniformly along the axis of rotation of an infinite mass of liquid first
exposed peculiar difficulties in the way that the motion appeared to remain in-
determinate even when (apparently sufficient) boundary conditions corresponding to
the given motion were completely satisfied. Some light was thrown on this anomaly
when R. R. Long (1953) showed that, when the rotating liquid was contained in a
circular cylinder, if the ratio of peripheral velocity of the liquid to the velocity of
the sphere exceeded a definite limit waves were produced behind the spherical body
and the liquid motion remained indefinite if further condition was not imposed.
This theoretical result on the production of waves was supported by some brilliant
experimental work.

A different type of interesting anomalous situation was shown by K. Stewartson
(1952) to arise for motion in inviscid rotating liquid. If the sphere be supposed to
be set in motion at time ¢t = 0 with a constant velocity V along the axis of the
infinite rotating liquid, Stewartson was able to show that the linearized equations
of motion possessed solution corresponding to this condition in which eventually
(at large time) the original liquid motion broke up into two apparently unconnected
motions in two separate regions. Inside the enveloping cylinder of the sphere, the
motion relative to the sphere was as follows : zero velocity parallel to axis, a swirling
velocity ranging from zero on the axis to infinite value on the inner surface of the
cylinder, and zero normal velocity on the cylinder, while outside the enveloping
cylinder the velocity parallel to the axis of rotation ranged from infinite value
on the cylinder to V at infinity, but the normal velocity on the cylinder vanished.
That inside the cylinder the sphere ultimately pushes the liquid in fromt with
velocity V has been confirmed by observation.

Somewhat similar anomalous situations are found to arise in our present prob-
lem in which the harmonic vibration of a sphere, started at time ¢ = 0, along the axis
of rotation of an infinite inviscid liquid has been studied. Asin the case of Stewart-
son, only linearized motion has been considered, the disturbance caused by vibrating
sphere being supposed small. The solution corresponding to the boundary condi-
tions taken has been exhibited in the form of integrals. The integral enables us to find
a power series expansion, and an asymptotic expansion for the velocity and pressure
force on the sphere in limiting cases. Two cases have been dealt with, namely, when
A( = 20Q/B, i.e. twice the ratio of the circular frequency of the rotating liquid to the
frequency of harmonic vibration of the sphere) < 1, and when X >1. We have
concentrated attention (as in Stewartson’s paper) on the asymptotic expression for
velocity distribution for large time. In the limiting cage 8- 0, i.e. A— o, our
results go over to those of Stewartson. A situation similar to that on the enveloping
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cylinder in Stewartson’s problem arises in our cage on two (double) cones tangent to
the sphere and enveloping it, with apexes on the axis of rotation. On these cones
the tangential components of relative velocity attain infinite values. The normal
flux across the cones is of the order (1/A), and hence is vanishingly small for large A.
The entire space is then divided into eight separate zones by the cones three of
which are within the volume encloged by the two enveloping cones, and five outside
them. This separation into eight zones with no communicating flow in the limiting
case of large ), and infinite velocity components on the cones seem to suggest that,
under the circumstances envisaged, a solution of our problem continuous throughout
the entire region of the liquid is not possible on the basis of a linearized theory.

2. FORMULATION OF THE PROBLEM AND THE SOLUTION AS INTEGRALS

Let us suppose that the liquid unlimited in all directions is rotating about the
axis of z with uniform angular velocity £, and that a sphere of radius a
oscillates along the axis of rotation of the liquid and its velocity at time
t is »(t) = U cos Bt. Further, we assume that at time ¢ = 0, the sphere starts
to move under impulse with a velocity V(0) = U. The perturbation of the
general velocity of rotation of the liquid due to the motion of the sphere is supposed
to be sufficiently small for the squares and products of perturbation velocities to be
neglected.

We choose the origin of co-ordinates to be at the centre of the sphere and
adopt cylindrical co-ordinates; let us take Oz along the axis of rotation, and r, 6
polar co-ordinates in a plane normal to Oz, and let the components of liquid velocity
referred to instantaneously fixed axes along the directions of r, §, and z be u, £r+4v,
and w+ V(?) respectively. We shall take u, v, w and V to be small quantities
whose products and higher powers may be neglected. Then if p be the pressure at
a point of the liquid and p the density, then on putting

P=2 _10%2 O - )
P
the equations of motion, when linearized, take the form
ou oP
E——ZQU:——E: . . . . (22)
ov
E+2.Qu=0.. .. .. . .. (23)
0 opP .
a(w+v)=—5z- e . . .. (2.4)
The continuity equation is
10 ow
;5;(7‘?1«)'{'&—-0, . . . N (2.5)

since the motion is symmetrical about the axis of rotation, and hence independent
of 0.

The boundary conditions to be satisfied are
%u—>0,v—>0, w—> —V() asz— oo for fixed r and t;
ru—+zw = 0 on the sphere r24-22 = a2, for all ¢;
w= —V(0)=—U,u=v=0whent=0{foralls, 2z
satisfying r2+422> a2,

(2.6)
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We shall make use of Laplace transformation to solve this problem, and
introduce the transform functions such as

w=f &"w(r, z, t)dt, ete. .- .. .. 2

the function in the transformed space being denoted by a bar.
The equations of motion and continuity then become

oP

SU—20v = — 5 . . .. .. (2.8)
so4+2Q4 = 0 .. .. .. .o (29)
_ s2U opP
sw+82+ﬁ2———$ (2.10)
10 ow
C e (ri) - —— == 2
Tar(r )+ oz 0 (2.11)
The boundary conditions would be
i—0,9—0, w —ﬂ—asz—n:ofoﬁd
4—>0,9—>0, w— e’ r fixed r,
and rii+2w = 0 on the sphere 72422 = a2, .. .. (212)

Expressing @, %, @ in terms of P by algebraic solution of (2.8), (2.9) and (2.10)
we have

_ s oP _ 20 oP _ 1{oP s2U
u —82+4QZ§;,U—m€;,and w——g(—gz—-l-s‘z—_l_—‘*ﬂz) (2.13)
Substituting these values of % and @ in (2.11) we have an equation for P
oP\ | 24402 2P
r or ( ar)+ s 0z2 0 - (219

with the boundary conditions derived from the two equations in (2.12) as follows :—

%—P, %P—+O as z — oo for fixed 7,
and .. .. (2.15)
s2 aP oP 52 2 1.2 o2
s2+4.QZ FIRAE e -Uzsz-l-ﬂzon ritat=at

Let us introduce a new set of co-ordinates {, p defined by
2Q0a
Vet
Eliminating p from these two equations we have

402208 —2{ s2(r24-22) + 40Q2(r2—a?) } —5%2 = 0; .. (2.17)

A=) 241h .. .. (2.16)

20
z=—?ap.§,r=
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82(r24- -2 2 a2 2422 2

r(r2422—a2)ttaz
72422 ’

r(r2422—a?)t—az

where ¢ = o

§2=

. (2.19)

The other solution of equation (2.17) is not real, when s is real. We shall make
one valued by requiring it to be positive when s is large and positive. When

72422 = g2, { = 2—§, and ¢ — oo with z, for fixed 7.
0P _z0P  r{ oP o
Also Wit Eriar 220
and hence from the second boundary condition in (2.15)
oP 20s s
2 2422 — g2 i = 2
g o apU, when r24-2 a2, ie. 30" (2.21)
Equation (2.14) in terms of u, { becomes
7}
aﬂ{(l p.)a }+ac{(52+1) C} 0 .. (222
The appropriate solution of this equation is
5 L—i 0.)
P—AF@‘*‘B}L (C 10gm +22}, . .. .o (223)

where the constants 4 and B are to be determined by the boundary conditions.

. opP . oFP 2Q0s
Smceéz—»O, as L > o, A = 0; again since %= 82+/32a,uU when { = ~?2
B 2aQUs
oo s—2iQ  4iQs | S22
(62 4+%) {logs+2i9+si+492 f
. o (e 55+)
Hence P= Uz . (2.25)

§—210Q 4i0s
2 2 Py ——
(s%+57) {10g8+2i9+82+492}

The function P in the flow space can be obtained by inverting the transformation
with respect to ¢, and we have

Cie 2 |loght " 21]

P—_Eij - ) [°g;+i+;

— i —9 4i ’
i o248 i §—2i0 182s }

.. (2.26)

g ¥ o0 arage
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where C is a positive constant. Equation (2.13) now gives 4, @, @, from which
expressions for 4, v and w can be obtained as follows

w=— A
T2
CHio
J & 2¢lrzs3 ds
. o\ 3 §—2i0Q 4i8s
G (SBHFRL(L2H1)(r2422)(s2+40%¢,) (s2+4022%;) }(1°g mtﬁrm}
. (2.27)
V= ‘2—77—71 X
Cio
J o 4QUirzs? ds
ok % §—2iQ 4ils
coio (SPHFOULHD(2+22)(2+40%7) (2 +4028) {1"8 m+s”—‘*z+4m}
.. (2.28)
CHim S[IOg C_—/I‘:+% - 2izts? ¥ Q:I
o b L papepon)(seraneg?) (ot 40267

U
w = —U cos ,Bt+—.J‘
2 ; ;
-2
C—ioo (s2452) 3IOg :“*—-_{_ 2Zg+s———2i{izz}
.. (2.29)

(2.26), (2.27), (2.28) and (2.29) constitute the solution of equations (2.8), (2.9),
(2.10) and (2.11), subject to the given boundary conditions.
3. PrESSURE AND VELocITY DISTRIBUTION ON THE SPHERE

The resultant pressure on the sphere is along the axis of rotation and is
given by

=—-J.Jpgd8 e 1

taken over the surface of the sphere. Since { is constant and is equal to §/(20) on
the sphere, on substituting for p from (2.1), we have

§—2i0 4i9]

C+i® 2 {1
$2 |log ———4+—
U st [ §42iQ° s 22
7= [2 ds —dS, . 2
21:4 9—2i0  4i0s } “’P a (3-2)

Cmit0 (82+ﬁ2){10g8+2ig+82+492

as integration over the term £ in (2.1) vanishes. The double integral in (3.2) is
equal to § mpad, and when Qf ts small we may obtain a power series for Z by first
expanding the logarithmic terms in a series of descending powers of s ag

C4i®

2pasU J‘ . & [1 3.2202  12.240¢ 4. 2608
C—iw

Z=— 5 ¢ oype 3t 05~ TRt T 1250 _] ds (3.3)



THE AXIS OF ROTATION OF AN INFINITE ROTATING LIQUID 549

which on integration gives

4 1 { 2 4
Z = g npadU [—§S(t)+ﬁ sin gt {3 — 1%(3) -1z (3'9) ..}

B 175\ B

poeon {12 ()4 4 (29)°) )

g BRI () |
e 1, (3.4)

where 58(t) is Dirac’s delta function which vanishes for ¢ > 0.
If we put A = 2£/B, then in terms of }, (3.4) becomes

4 1 (1 3. 12
Z=§7TP(13U [—‘Qs(t)-l—ﬁ s ﬁt (é-—l—-o,\2—:—l7-5,\4— """ )
12000 4 o ) _BExE[ 4 ) ]
+B (24 (175 At At ) T (T‘2_5"3+ +oo?

. (3.4a)

When Qt is large, the value of Z can be obtained by inserting cuts in the s-
plane from s = +2:2 to infinity along lines on which the imaginary part of s is
constant, and the real part decreases. The path of integration may be replaced by
a path round the infinite semicircle with E(s) < 0 and round the two cuts, together
with the contributions from the poles at s = 448. This change of contour has
been carried out throughout the caleulations of similar integrals in this paper. The
contributions from the two cuts when ¢ is large may be found as follows: We
consider the integral on the upper side of the cut at s = 2if2 and write § = 2i2—a.
Then this part of the integral is

4 7padU

. 20—
~ 5750 exp (23!216)‘[ e % 2—x
¥

(202—a)2 [log a+timr—log (4i2—a)+ 1o ]

g2+ (2i0—a)2} [log o+ im—log (4iQ—a) +4_’5£?L219:_°‘_)]

a{ox—4if2)
(3.5)
2pasUy2 ® (m)z 4o
= A ; ~o 20 Ko, X
= i(,\2—1)exP (2@Qt)J e 1— 2.()2\2 . Q 4
0 —
log x+in—log (4iQ2—a)+ 2@%—%
log a+ir—log (442 —a) - %

® ix\? e .

pove o F (e e

_mexp (Zth)J e—0 [1— 2!/32 - 2 +--12Q (log a+1w)[l+0(aloga)]doc
o -

.. (3.6)

* For the validity of the above expansion in series A should also be small.



550 D. MALLICK: MOTION INDUCED BY A SPHERE VIBRATING ALONG

The contribution from the lower side of the cut at s = 2i02 is similarly

3772 ® fﬁ) o ; .
3%%(2‘% exp (2181) J e'“‘[l_ (29 T35 +] ;—Z(log a—im)[140(x log &) ] do
0

AZ—
. (3.7)
Hence we find that the total contribution from the cut at s = 2i2 is
© .\ 2 .
20a3U )2 . —w (15) +%
mexp (2¢821) J e [1__ 2.&22 Q2 4o a[140(a log a)] da
0 —
_ 2apa3UX log Qt) 1 )] :
——m [1+0( +O ( ( 2—1) exXp (2‘1«.{%), . . (3.8)
ag 2t — o0. Similar contributions also arise from the cut at s = —2:0
The contribution from the poles at s = &g is
. log }—12 +2
- gﬂpa:‘)U,B sin ft X 7Y forA< 1, .. .. (3.9
g Tt 1x
and
2728 A1 A2 2)(2-— /\2) At ] .
2 —
4 - 3E—7 %08 Bt+ [77 +(log ) /\2_1+ ST log gy—i/ sin Bt
— o 7pa 2
3 2t [1 ,\+1 2/\ ]
—1
fora>1 .. (3.10)
Adding all these contributions we have finally
1-2
log — +2A .
4 . 14 A2 sin 2.Qt{ (log .Qt)
—_—— 3 +
= — g mpa U ﬁsmﬁtlo 1_/\+ ) (=t 7t 140 o
ETFA T I—x

1
+0 (*_——Qt(ﬂ—l)} for A < 1,

and
3 —)2
4 /\2”'\ cos Bt+sin ﬂt{w +(logA+1) 5 1+ 2’\(3 A )l A+}}
— s mpadU | B /\ - A 8=
8 2+(10 ’\+1+——2/\ ?
" =1 ae~1

X2 gin 20t log Ot 1 ) ]
"m{l"‘O( )+O(.Qt(/\2—l) }J for A>1... (311)

6B
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We note that when f— 0 (i.e. period of vibration is infinitely large) so that
A— o, the last expression for Z in (3.11) goes over to Stewartson’s result, namely

16 dmpadU log Q¢ ]
= — — 0a8UQ—
V/ 3 PO UQ 3pE B 20t [1+0( o ) . .. (3.12)
We shall now calculate the velocity components %, », w on the sphere. Here
z 8
12422 = g%, §; = §2=E, and { = 35° © that
Otio [logs—zm e 16i2203 ]
st 0 s T slaisiaa0ran
w= —U cos Bt+ EZ—‘J’ st st s S(als?+402%) ds. (3.13)

e (6248%) {logs—,?i{) 4103 }

s+2i[)+s2+492
As before the branch points at s = 2iQ give contributions which tend to zero as
t_li as 3 —»co.  Only the poles at 8 = 18, and at s = & ?_zé?_z give contributions

to w.
Adding up these contributions we find that as Qt — o0,

2A 2)a?
VAL VR T
w= S1=x A Al__;\ z 2; U cos t+
log m-’- T
atz, 2az 202t . 20z
2a2U)2 {loga_—-z-*-az—-zz} cos — = +m sin —~ for A< 1
aZ—\2z2 224 3o a+z+ 2az ylor A<
{ Ea=z az—zZ}
and
4A4(a2—22) 2)3(a2—22) ,\+1] 2)3(a2—22) .
0 cos | i g Tt % A+ pe—1)per—gy) U o P
A1, 22 ]?
2 AT, 24
w24 [log ,\—1+/\2—1]
{log a_-i-z_i______f?.az } cos 2£zt+w sin 2t
222:Ua a—z aZ—z2 a
3 forA>1 .. (3.14)
aZ— \2z2 g {1 a+z, 2az }
™+ a2 Tai_z2
Since on the surface of the sphere r4 = —zw, the variation of « over the sphere

can be obtained by substituting in it the value of w from (3.14) as the case may be.
On the surface of the sphere the variation of v is given by

, — 328Uz sds

2ars

C+iw
s, : (3.15)
coim (s BR)(a%R440%:2) {(sz+492) log 5'—2ﬁ+4ms}
e s+2:iQ
As Ot - o0, the only contributions arise from the poles at 8 = 18, and at s =
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Adding up these contributions we find

"o 2Urz)4 sin Bt alatrz
= 1—a, 22 | (A%2—a?)(a2—27)
2,2 q2)(1 — A2 e
(A222—a?)(1—72) {log 1+A+1—-/\2}
T €08 2—sz—t — {log Z—t—z'i'a“—fj‘_zzz% si ?
% ~ 5 2 forA<1 .. (3.16)
2.4 flog 42, 202 |
ko +{10g a-2+a2_z2
and
ML 2) ) .
4 — LI
_ 2UrzA [n cos Bt (10% =1t ,\2_1) s Bt] axeUarz
A1, 23 \B) (A%2—a?)(a2—27)
(A2—1)(A222—a?) {ﬂ-2+(log /\_—1+'\——2_1) }
T COS 2—92—’: - {108 w'*‘ 22f_z 2} sin %t
x a “_:z a2 ¢ e fora>1 .. (3.17)
2 arz %
m +{1Oga_z+az_z2f

It is clear that on the surface of the sphere u, », w become infinite when z =
+ a/A for the case A > 1.

In the following section the velocity distributions at the ultimate stage, namely
when ¢ -> o0, have been discussed. The distributions have been calculated only on
the axis of rotation and on specific surfaces of importance. The motion automati-
cally falls into two categories defined by A < 1, and A > 1.

4. TaE UrLtmMATE VELOCITY DISTRIBUTION

If we replace the contour of integration of equation (2.29) by an infinite semi-
circle and contours round the branch points at s = +2iQ, s = £2iQf), s = £210Q¢,,
then we may show that the only contribution to w which does not tend to zero as
0t — oo is that from the poles at s = 4-i8. In this section the ultimate velocity
distributions for «, » and w have been studied for the two cases, namely for A < 1
and A > 1. In the latter case, when )\ — oo (i.e. by making B — 0) all of them go
over to Stewartson’s result.

Only two cases for which the results appear in simplified forms have been
discussed, namely (@) on r = 0, i.e. on the axis of rotation of the liquid, and (b) on
r = a, i.e. on the cylinder circumscribing the sphere.

{@) VELOCITY ON 7 = 0 (AXIS OF ROTATION)

In this case §; = €, =a/z, { = _2_%%. The integrals for # and v now are both

identically zero, and so there is only an axial velocity w. The integral for w then
becomes

sz—2iaf)  4iald 16ia8$23
s log ; -
C+iwm 8z+2iaf2 40Q2q2
U z8 (a2+ 3 )
w= —U cos Bt+ 57 PR oo e ? ds. (4.1)
. ’ 5—2i0 _w_}
c-ie (Y {1°gs+2m+sz+4m
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The important contributions to w when Qf is large arise from the poles at s =
2
+ifand at s = % a2,

Hence collecting the residues from the poles we have
(z=—ad)(14+)) 2x(z—a)(z+al2)

N (1 =2\ (z2—q2 2
e CRNO=N) " D=REE=a®) [ o 22Ua2)\22x
o 1__/\+ 2/\ 22-——q2)
LS WL T
(10 Z+Z+ 2az ) 2Qat 20at | %{iﬁat
X — forA<1l .. (42
e z+a+ 2z }2' ora< (+2)
LI B Py
and
(@A +z)(A—-1) . ( az 1 )}
U{1°g(aa—z)(,\+1)+2)‘ aIN—z2  AP_1 AL 2
Al T [wsmﬁt+( g5 1+)\ l)cosﬂt
w24 {logm + A*—2—1§

1 z+a 2az )co 2Qat | . 2Qat
2Ua?)2 ng—a+22—a2 S T sm=
— 5 5 forA>1... (4.3)

7r2+{10 ZL-"11+ 2 }

z —(Z2

For A > 1, w becomes infinite at z = LaA.

(b) VELOCITY ON 7 = a (ENVELOPING CYLINDER)

. . 2az
(i) Calculation of w.—In this case £, = 0, and £ = o § == O now becomes
a branch point of the integrand for w, whose contribution is given below. In the
contour we insert a cut from s = 0 to s = ~0 along the negative real axis of the

s-plane. We first consider the integral, when ¢ 1s large, on the upper side of the
cut at s = 0, and write s = ae’™. Then this part of the integral is

1
V;[ (a2+z2 { « (az _412?3_)*}*_
0z )1 oot 4@+(a2+22)2
22(40Qa?)312
“ 2 »2)52 ) o2 16.(22(1%2}ir _ (_Oti 4a2z2 \V]32
Ueimi2 '. ot g (a24-22) {a +"W(a2+z2)2 2Q+ 4£QZ+__._((12+22)2
2 T (220)
Jo («2+52) ;71/2+ tan~! g b b }

(4-4)

a2+ p2

S 3/2 52

g w\'_ (4 00422) (@), (16 attat 3(02+22)2)(o¢

U (a)}f ot [(2.(2) (; 4az )(29) (772 oz 32a222 20
G e « l

(4.5)
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The contribution from the lower side of the cut is also the same as (4.5).
Hence the total contribution from the cut at ¢ = 0 is

H 2.4 52 3/2 2.4 52 2.4 ,2\2 5/2
o ) (4 a+z)( ) (E a4z _3(a+z))i) .....
20U (a)* st (29) <ﬂ+ o0) T\t Ha ~ s3ame Jag) T
T 24 82
SR S w*+h (4.6)
_Ux(a)| 0w { b (4 ‘12‘*"‘) siey (168, @2+2%  3(a%+22)? 2) 5/2 }
—75(;) J ¢ dz}e 7—1+ 4az + + maz | 32q%:2 —A% )28+ ,
0
forA<l .. (.7
and

naz 32a%z2

4 az4+z ) gy (16 L 3(a2+z2)2)x5,2+.‘..
a,.

1
=43
forA>1 .. .. .. (4.8

When A > 1, to calculate the residues at $ = 418 we observe that when s =

1B, { becomes
— oinfd al4-22\1. 2az) 2 Byd
hi=e \/(2&2)\2)[7'+g(a2+22) —1}

and when s = —1f, { becomes {, = {;* = complex conjugate of {;. Hence caleulat-
ing the sum of the residue at s = £ we have

.é%.: X — {1 /\+11 2A }2 [—-2 (ELZ_A)*{TI (cos (0/2+=/4—pt)

—_ 2—0%—[) cos (30/2+7T/4—}9t))

2
+(log;lg+x2—)‘l)( in (6/24+n/4—Bt) — 1 esm (36/24+n/4— Bt)}

2 z
Z +1+2 \/— sin (6/2+=/4)
+1 (Cosﬁt{log)\+l tx1 = } ta Smﬂt) loga :
5 A 1 2z .
&_ +1-2 = sin (02+7/4)

z
\/—- cos (0/2+=/4)
+tan"12 aA . x{n cosﬁta( §+i + 2'\ )smﬁt}] .. (49)
— —1
ai

where
aZ + 22
2az)

sin § = . (4.10)
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Hence for A > 1,

' 008 (36/2+m/4 — i)
-n'{COS (0/2+=/4—pt)— 2 cos }

2cos 8
A+1 . 2x )3
”2+{1°g,\%1+.\2—1}

¥
w = -—Ucosﬁt—U(gzi\) 2

110 2/aA+ 1424/ 2]ad sin(8/247/4) ( A+l 2) .
210gz/a.\+1—2(z/a/\)?!sm (6/2+/4) gy —itw_i cos Bt+r sin Bt

z 0 =
\/wcos (_+_)
+g,,- Cogﬁt—(logg—;+l\223 l)sinﬁt}taan (:>a/\_12 4

AL 20 1] [eA\d
[”2«"' {log/\tl+/\2-—1}] (7)

. ® 2 (é+a241-22)z3/2+ (l§2+a2+22_3(a2+22)2)x5/2+
e P gy ud ¢ id

maz 320222 o
—'m T .. (4.11)
0 x2+X§
When A— oo (i.e. B— 0), § = 0, and then the third term in (4.11) reduces to
U —1f 0 U
;wtan (:—l) =;E7T'7T= U,

which cancels the first term in (4.11) in the limit 8 — 0.
The second and fourth terms in (4.11) reduce to

. a\V2[ ,__ cos (Bt—m/4)
pm v o) v
1

——— 4 g24-22
,n_zJ o— 28z g, {z—a/z__ (;_'_041-: )x“”2+0(x1/2)}]
0

. U [2Q0\Y2| cos (Bi—m/4) 1 [  da
- Lim -2 (51 [ v “f”/“

\

4_|_a,2+z2 *© doc ®
+-n- 4az J e~ ™ 1—12+0 J‘ e—w’\/& da
200 0 a

0

-2 ol -~ (2 ()
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Hence for § - 0, and large 4, (4.11) reduces to

2U [2Qat\12 1

which is in agreement with Stewartson’s result.

It is clear from (4.11) that w becomes infinite when cos 6 = 0, i.e. at the points
z = +a(A+./A2=1) on the cylinder r = a.

Fcr A < 1, the contribution from the branch point at s = 0 tends to zero for
large Qt, which is obvious from (4.7). In this case when £t is large, collecting the
contributions from the poles at s = +if we have

log k-—1+2+ 222
k+17"k 2a)z \2)12
v - ]|
w= U cos ft -11, (4.13)
log —~1—'\+——2’\
1427 12
where
_ [a?+422 ( 2a)z \2)12]1/2
k_\/m [1+:1— (m) } ] .. (419

(ii) Calculation of w and v. s=10 is a branch point of the integrands for
w and v. Its contribution for large Qf tends to zero when A << 1. In this case non-
zero contributions come only from the poles at s = + #8; these give

"= 2Uaz cos ft
- 20z \2,1/2 1—-2 2
(a2422)k(k2—1) %1— (m) % {log m+"1":“1\2}
A<]) (4.15)
o = 2AUaz sin Bt
- 2adz \2 12 T—=2, 2A
(@2422)k(k2—1) il-—- (a2+z2) % {Iog m+—1—_—/\2}

where k has the same meaning as (4.14).
For A > 1, the branch point s = 0 gives contributions to « and v for large Q:.
Proceeding exactly in the same way as for w, we have

we U ,\/;I—Bcos (Bt—8/2+m/4)—C sin (Bt—0/2+m/4)
T cos 0N X B2y (?

o —20
Y JE J T ot Aa 0@ . (4.16)

w2
™ 2 24 .
o Tt3z

U J{X C sin (Bt—6/2—m/4)— B cos (Bt—0/2—n/4)

¥ s 0 2 B24 (2
- [ -201
+ ~Ué gJ e {2t 4+ A2%240(252) } de .. (4.17)
” 2 2y 1
0 Ttz

A2
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R, a2422 4 z . AL 2A
WhereA--a+ iz (l—asxn0)+ /\cosa(log/\ 1+/\ _1)\(418)

_(1_2 . AL 2) ) w2
C= (1 2 sin 0) (log +/\2 -~ 3 008 o, I
and # having the same meaning as (4.10).

2 ¥
Asd—- o0, u—=>0,v— _;q(g{?gt) . Like w, » and v become infinite on

k2
r = a at the points z = La(Adk /A2=1).

For r >a, r < a, the components of velocity are given by (2.27), (2.28) and
(2.29). The residues at the poles-at s = J-i8 of each of the integrand for %, v and
w will contain the factor (A2£,2—1)"* (,\2522-—1)_*, which becomes infinite only
when ;= 1, Aéy =1, for the case A > 1. In the rz-plane (Aé;—1)(Ao—1) =0
gives the lines on which the velocity components become infinite as follows :—

z24ai 2~aA

———and r= 4+ ———— ..
'\//\2—1 and 7 :];\//\2_1
7o

S . (4.19)

Fra. 1.
Fig. 1 shows these lines for the case A = 2.
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These lines will generate two double cones whose vertices lie on the axis of
symmetry of the motion, namely z-axis at distances z = J-aA from the centre of the
sphere, These two cones with vertices at z = a}, and at 2 = —a) are tangent to
the sphere and enclose it. These cones spht the space of liquid flow into eight
zones ; three of them are confined in the region enclosed by the two enveloping
cones and containing the sphere, and the remaining five are outside this enclosed
region. We shall show that in the limit A — co these eight compartments are
watertight, there being no flow across the boundary of any two of them.

z—a
The normal velocity across the line r = J‘——/\— is given by

F= Lim (~ + \//\; u)
r—

z—ad \A
|
{—1  2is
1 =
[8 BT
2izs® {2 ({241)+7 \/)@_1;2}]
C+im T e 2.1 22)(s2 2£2\1/2( oo 2:2\1/2
_ UcosBt . . [3(2+1)(r2422)(s2+402283) ¥(s24 40226)
z—a 9— 2 iOs
T == —iw 2 2
Ja—iv ¢ (s2+52) {10 s+2z9+32+4.(22}
When £ is large the only contribution to F arises from the poles at s = 418.
z—aA
Adding up these contributions we have finally on the line r = o1

A1 22
U coni U[(l et )cosﬁt+-n-sm5t]

) +(’\_2)(;:\)1/2{"2+( A+1+ 2) )2}

z
w7 sin 8t 4 log /\+1 2A +"J a

&1 =1 Jz
+cos B ( /\+1 2)\) J“l \/a)\ e

aA
A+1 0 20 \2
“{"2+(1°gat—1+x7:1) }

It is clear from (4.20) that ¥ = O (1/)), which becomes vanishingly small for
large values of \. When A — oo, the envelopmg cones become the enveloping cylinder
of the moving sphere in Stewartson problem and consequently the vanishing of the
normal veloecity across the enveloping cones is in agreement with Stewartson’s
result. We now have a complete picture of the peculiarities of the motion men-
tioned in the introduction.

Other features of the secondary motion (%, v, w) given by the solution may be
deislcnbed thus. All such motion is referred to axes at the centre of the vibrating
sphere,

F=—

-U

(4.20)
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The secondary motion at & point of the axis consists of a synchronous vibration
in the same phase as of the sphere (but of different amplitude), together with

another vibration represented by the term cos (%iit) = co8 /\(—1) fBt, which originates
z

from a sort of interaction between the rotational frequency of the entire liquid and
the vibration frequency of the sphere.

The components %, » of the secondary motion worked out show exactly similar
feature, namely, of vibration in two frequencies, namely, the frequency of the
vibrating sphere and a second one of the interaction type mentioned above. But
now one notices a difference according as the vibrational frequency of the sphere is
dominant (A < 1), or the rotational frequency is dominant (A > 1).

In the first case vibration in the frequency of the sphere has the same phase as
that of the sphere, while in the second the phase of this vibration is altered.
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ABSTRACT

K. Stewartson has investigated the linearized motion in an infinite inviscid liquid rotating
about an axis when a sphere is get in uniform motion along the axis of rotation at time ¢ = 0,
The ultimate motion that would be set up under this condition was shown to be discontinuous
by Stewartson. In the present paper a similar problem, namely that of a sphere set vibrating
at time ¢ = ( along the axis of rotation of an infinite invisecid liquid, has been considered. The
linearized equations have been used in the study of the problem. Asin Stewartson’s case dis-
continuities appear in the ultimate motion. In a limiting cage our results reduce to those of
Stewartson,
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