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ABSTRACT

Clemmow (1928, 1951) has given a method of solving the equations of Internal Ballistics
for the power law of burning., In the present paper, three alternative methods have been
given, and a series solution for the Isothermal Model for the specific case of a tubular propellent
has been obtained.

1. INTRODUCTION

The Law of burning most commonly used in Internal Ballistics of guns and
rockets is Vielles Law (1893).

Law1: B(p) = Bp* .. . .. .. (1)

where the pressure index « lies between 0-9 and 1 for the high pressure in guns and
between 0-3 and 0-8 for the comparatively lower pressures in rocket motors.
Accordingly for convenience in analytic solutions of the equations of Internal
Ballistics of guns, Law I is replaced by

Law II: B(p) = f'p, .. .. .. . (2

with p'=ﬁ-§ﬁ(10a+9)(1—a). B

Solutions for Law II have been given by Crow (1922), Sugot (1928), Hunt and
Hinds (1929), Coppock (1942), Goldie (1945) and are described in detail in the H.M.
8.0. publications, ‘Internal Ballistics’ (1951) and in Corner (1950).

It is necessary, however, to obtain the solutions for Law I, which is found more
plausible on the basis of observations in order to check the accuracy of the results
obtained with Law II, and to see what special alterations should be made if one
wishes to use the simplified Law II instead of Law I. The study of the solutions
for the power law would also be useful in the study of the Internal Ballistics of
solid-fuel rockets, recoil-less guns and high-low guns where Law Il would not be
even a good approximation.

Clemmow (1928, 1951) solved the system of equations of Internal Ballistics for
Law I in terms of the solution of an ordinary non-linear differential equation of
order three, in the general case, and of order two, in the special cage of a tubular
charge. In the present paper, we obtain the solution in terms of a solution of a
non-linear differential equation of order two, even in the general case. This is
achieved by a suitable choice of the variables. In fact, the system admits of a
number of such choices and we have worked them out completely.

In the final two sections, we have given the solution of the resulting differen-
tial equations under the appropriate initial conditions, for the isothermal model,
for the specific case of a tubular propellent. The solution is obtained for the case
of guns in the form of a geries in powers of 1—«. ‘This is warranted, because for
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most of propellents, 1—a lies between —O0-1 and +0-1, as will be seen from the

following table :

Propellent w MD WM SC HSC A AN ASN N NQ NFQ NH

1—a 003 009 —0-05—0-04 003 —0-11 —0-06 —0-05 0-07 0-11 009 0-01
2. EquaTtioNs or INTERNAL BaLristics ¥OrR THE POWER Law or BurNING

Neglecting co-volume correction terms, the fundamental equations are
(Clemmow (1951), page 117) :

z=;§+?}(y_1)'£ R 7
dn
2= (1—=HA+6) .. .. .. .. (8
df o

ngp=—1 & )

where the dimensionless variables £, 7, { corresponding to shot-travel velocity and
pressure respectively, and the central Ballistic parameter M are given by

§=1+7 .. .. .. e (8)
AD (FC\*™*
"= F0p (E) ®)
{= I‘%p (10)
A2Dz (FO\2-*
= s () )
Using (5) and (7) P ” M .
P = — (2 (=2 = M-, .. ..o(12
#|cu]=-(5) (-5) = a
and from (8),
‘%: —VI=gz .. .. .. ..o(13
whore v=1460 .. . .. . .. (14a)
=4 146
q= (1+0)2 . (148)
From (12) and (13)
a (adf 1 odé M, o
(- (%) - jard=Bo= . . w9
Differentiating (4) and substituting from (5)
dz = ¢77dY, ee ee e .. (16a)
80 that
aY _ -1
—=£ ce e e e .. (18D)
where )

Y=10, .. .. .. .. .. 17
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Before proceeding further, we note the importance of variable ¥ introduced in
(17). Since z is a monotonic increasing variable, it follows from (16a) that Y is
also monotonic increasing variable throughout burning. (16b) shows that not only
Y increases as 2 increages, but it does so at an increasing rate, since # and there-
fore £ goes on increasing throughout the motion. After all-burnt, the equation of
energy is obtained from (4), by putting z = 1; and therefore from (16a), Y = {£” is
constant after all-burnt. These conclusions about Y can also be obtained from its
physical interpretation as being proportional to e, where § is the entropy of the
gystem which goes on increasing throughout the burning period and becomes

constant after all-burnt.

3. Fmst METHOD. FUNDAMENTAL DIFFERENTIAL EQUATION

In this method, we take { as dependent and Y as independent variable.

From (17) L
A
e=(7)
and it )
Zi;:;'fz(z—yl')' . . . . (18)
Hence from (15), on simplification, we have
y-1
(- (F) " =Yt +e—a) Y- @matr ettt — Y11 = 2 g g
On eliminating n between (4) and (7), we get ‘
1
-u(7)
l—gqz = — .. .. .. (19a)

so that (19) becomes

Lyt 5
‘ [l—ql”z ’] [(Z) ][—YZC”+(2—-u)YZ’2—(2—u)€C’]

My - -1 qv? 20
= | B e - <1+ 25122 ‘e-re] oo

This. is the Fundamental differential equation of the second order, the numeri-
cal solution of which under suitable initial conditions will give the solutions of the
main IFroblemys of Internal Ballistics.

we set

1 1
, X=Y=0¢Y=X" .. .. .. .. .. (21
in (20), we get, &

L.?’ . -
7~ oxl Lxtr+ a2y x0e+ 0—vatmir] + (27 e 4y qyorp—xan)|

x[1+§q§%fc““‘*<yc—xc')2]=o, P ]

in which only the integral powers of the independent variable X occur.

2
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Particular Cases :
(i) Constani-burning surface: Here 6 =0,v=1,¢=0 . . .o (23)
so that (22) becomes .
X+ (a=2) X (I ~Vat ML = —My3 7. (24
If we substitute
Z=MX, .. .. .. .. .. (25
(24) reduces to
a2y 4% I S
ZL 57 +a—2)Z (EZ) +(1—ratN 5 = —78 4 ¥ .. (26)

an equation which does not contain M, and the parameters concerning the gun can
enter through the boundary conditions only.

(ii) Standard form-fuhction. Simplified energy equation on isothermal model :

In this case, we neglect the kinetic energy term from the energy equation and
compensate for this loss by adjusting the force constant ¥. We can deduce the

equations for this case by putting ¥ = 1 in (22) and replacing M by adjusted M
L ! ﬂ —
[ —gX]1[X + (@—2) X +@- il + [—; 0+ %qc(c—c'X)] =0 (27)

(i) Constant-burning surface. Simplified energy equation on ssothermal model.
Hereg=0,v=1, ¥ =1, and we get from (24) and (26)

X +(a—2) X2+ @~ a)il = —H ™ o (28)
and
a ot te2a (%) te-atit =0

4, SoLuTiON OF THE MAIN PROBLEMS OF INTERNAL BALLISTICS

We represent the circumstance of band engraving by a finite noen-zero shot-
start pressure, so that initially

2=0,v=0,p=p5,¢=19=0,{= OP0=C0- . (30)
But ngﬁ

s sas 1
mltmlly X = ;07 .

From (4), initia].lyg—-é == (), gince 5 = 0 at shot-start.

_ This gives from (17) and (21), initially

- 7=1
% = 'ch—';’_ .

Thus the initial conditions for the integration of (22) are:

=l n=0,{=ly, X=1 H=ity7. .. .. @)

2B
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If we take Z = M X as independent variable, the initial conditions are:
a€a_r
iz~ M
Thus we see that while by using Z instead of X, M disappears from the differential
equation, it reappears in the initial conditions.

For isothermal model ¥ = 1, the initial conditions are :

— —0 % _o7_
£=1,7=0,{=0,X=0232=02Z=0

1 Y-1
Z = MLy, L7 O .

i1

,E—Z‘—Eo- (33)

SoLUTION OF THE FUNDAMENTAL EQUATION

Integrating the equation (22) or any of its particular cases, we obtain { and

ng as functions of X.

dX
Let E=I(X) .. .. oo e .. (38)
d{
=& L (3)
then I(X) and J(X) can be tabulated as functions of X.
From (21) .
¢=X[1(X)]7 = K(X), .. . . .. (36)
and from (16) and (21)
dx 1,27
-a-{=’-,§?’ .. .. .- .. .o (37
X y-1
2z = yJ X7 dX = L(X) S .. (38)
Loy
Using (34), (36) and (38) in (4), we have
ot = ’?TMI {0+ LX) —IX)EX)}. .. .. .. (39)
Al
At shot-start Zg={o= F-—'——Gpo . . . .. (40)

(40) determines 2, in terms of the shot-start pressure.

Now for any given value of f, (6) determines z; then (38) determines X, (8)
and (36) determine shot-travel, (10) and (34) determine pressure and finally (9) and
(39) determine the velocity.

Incidentally we note that when ¥ = 1 (38) gives

X
smto= [ aX =21
o

which with (21) verifies (40).
MaxmmoM PRESSURE

a{

For maximum pressure ix should vanish and since X is monotonic increasing,

d
% should change sign from positive to negative.
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Lot X; be the solution of J (X) = 0, then from (10) and (34), maximum pres-
sure p, is given by

ﬁépl—I(Xl) N (9§
Now
1+-._ =KXy .. .. .. .. 42

determines the shot-travel z; up to the instant of maximum pressure.
Again from (9) and (41), the velocity up to this instant is given by
42D o (PC\*™* oM
Fz—C—Zﬁ_zvl (—A_l) =,_1 2o+ L(X,)—K(X)I(X)) .. (43)

ArrL-BusNT Positions

Let suffix 2 correspond to this position, then from (38), L (X,) = 1—z, deter-
mines z; and

42— =KX) .. .. . .. (@)
l
Mm=L=IX) .. .. .. .. 4
and
A2p2 4 (FO\*"% oM
FeCepe 2(Al) =T 1[20+L( 2)— K(Xz)I(Xz)] .. (46)

determine shot-travel, pressure and velocity up to all-burnt.

MoTioN APTER ALL-BUrNT MUuzzLE VELOCITY
After all-burnt 2 = 1,dz =0
*. from (16) dY = 0 or d({£”) = 0

.o Cf” = £2§27. .. .o . . (47)
If suffix 3 denotes the muzzle position
Cafs” = (o657, .. .. - .. (48)
where
§3=1+? N 2T

(48) determines the pressure at the muzzie. From (1), the muzzle velocity Vg is
determined from

2-2%
A2D2 2(1?0) et

i AT = [1 Lsbs] = [1 —Lofs7E51 7] (50)

5. SecoNp MxrTHOD OF SoLviNg THE EQUATIONS

In this method, we use £ as dependent and ¥ as independent variables.
¥rom (15)

(1...qz)gy—1';iy [Yaf—a‘}‘d_yf')’-l] _iqyag-ar%gr—l = % Yl-2g-(-ay
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which on simplification gives
M
(1@ Y& +(v— 1—ay) Y2ttt = = EYa-I Y22 4 L YRV (51)

From (19a)
1—g¥g-Y
1—q2 = ‘)’—1 ’
1+% i Qe Y 2§y -2-2avgre

so that (51) reduces to
[1—g¥& V[ YEe" + (v —1—a¥) Y2+ adt']

= [1+£%quymgﬂ-2—%7512]

x [—f—: YZ""“em-msﬂqygz*’e']. T ()
Particular Cases :
(i) Constant-burning surface: Here g = 0, v=1 and (52) reduces to
YE& +(V—1—ay) YE24aft’ = MY2- 22248 (53)

(ii) Isothermal model. Constant-burning surface :
Putting ¥ = 1 and replacing M by M’ we, have

Yet —aYE2 att = M'YE 262 N 15 7))
Substituting in (53)

_2_1
E=0""" .. . .. .. .. (55a)

_ (14m)V
Y—m .. . .. - a (55b)

1
a=%(3—7—b), ce e e .. (8B0)

we get, after some simplification, Clemmow’s equation

2
2uV du  2m(y—1)V (dU) +Ug% =1 .o .. (88)

1+ndVE ™ (I4n)(y—n) \dV
Thus our equation (52) covers up the particular case of a constant-burning
surface discussed by Clemmow and is more general than his equation in that it
covers other cases as well.
It may be easily verified that the initial conditions for the integration of (52)
or (63) are
€=1,Y=1{,¢=0. .. .. . .. (87

SoLuTION OF THE EQUATIONS

Subject to initial conditions (57), equation (52) can be integrated numnerically,
and Jet the solution be
g=PY) .. .. .. .. .. (88

¢ =QT). O
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then g=§= YIPOY "= R(T). .. .. .. (80)
From (16)
@_Z__ y-1
=
Y
z2—zo= | [P(Y)]'7dY = 8(Y) U (1))
2
and then (4) gives ;
o = % 2o+ 8(Y)—P(Y)R(Y)] = [T(D)]2. (62

MaxmMom PRESSURE

. di
For maximum pressure, ar = 0

from (60)

1 P’(Y)__

?—y—ﬁﬁ—_o .. . .. .. (63)
or '

1 QYY) _

T 7Pm =0

Let Y; be the solution of (63) at whichg%changes its sign from positive to
negative and then P(Y,), R(Y,), T(Y,) determine the shot-travel pressure and

velocity up to the instant of maximum pressure.
ArL-BUBNT PosITIOoN
Let Y, be the solution of (61) when z = 1 then P(Y,), B(Y3) and T(Y,) deter-
mine the shot-travel pressure and velocity up to the all-burnt position.
MoTioN A¥TER ALL-BurNT. MUZZLE VELOCITY

This is discussed in exactly the same way as in Method 1.

6. GeENERAL ForM-FUuNoTION

The two methods developed above, as well as Clemmow's method, apply when
the charge has the standard form-function.

z= (1=)(1+6f) .. .. .. .. (64)
We now develop a method for the case when the charge has the more general form-
function z=¢(f) .. . . . .. (65)

We take Y as dependent and f as independent variable.
From (16a) and (65)

ay , .
V=Gp=40E L L e
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and hence s
Y _ 4 ¢
=L -1z .. .. e .. 7
Substituting from (66) and (67) in (12), we get
1-ay _Yi-o)
() (F - = (3)
- Yd —_— = — =7 == MYI a —_ . . 68
af ¢’ Y ¢ ¢ )

This is the fundamental differential equation of this case. It may be pointed
out that it is of the third order. The initial conditions are

f=f0’ Y = o, Y =4¢(fo), Y = #*(fo)s .. .. (69)
where f, is determined by

2, = Lo = ¢(fo) B ‘e .. .. (70)
The numerical solution of (68) subject to (69) would give
Y=Mf) .« .. .o .. (1D
Y=p(f) .. oo o e .. (72)
Y'=vf),.. - .. .. .. (13
1
then ‘e [g(_[)_]"‘ O 2
$'(f) , :
= _Ii(_f_)] v ()
t=un |55
=M - Lf)] “1]
"72 - Y1 [¢(f) ‘\(f) [¢'(f) b v . (76)

Maximum pressure, all-burnt position and muzzle velocity are obtained as
in the other two methods.

7. SoME REMARKS ON THE CHOICE OF VARIABLES

The choice of variables for forming the differential equations is restricted by
the following considerations :

(i) € is not a desirable independent variable, ag the derivative of any other
variable with respect to ¢ tends to infinity at shot-start making
numerical integration difficult.

(ii) £ is not a desirable independent variable ag (2) it is not monotonic and
(b) derivative of any other variable with respect to { tends to infinity
at the instant of maximmm pressure.

(iii) Y is used as independent variable in the first two methods and as
dependent variable in our third method and in Clemmow’s method.
Its significant physical interpretation in terms of entropy explains
why it is 8o useful.

(iv) 2z and f are both monotonic and are respectively used as independent
variables in Clemmow’s and in our third method.

Besides it is not always possible to eliminate other variables to get the differen-
tial equations between any two variables. Our three methods together with
Clemmow’s almost exhaust all fruitfal possibilities.
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8. IsorHERMAL MopEL. Fimsr METHOD OF SOLUTION
We have to solve the differential equation
Y —@—) Y2 2—a)il = — M ™ oo (28)

subject to initial conditions

E=1, =0, =1, Y =1, Z;%;=l' .. (7T
For & = 1 (28) reduces to
YU Y24+ M2 =0 .. .. .. (78)
We shall first integrate (78) subject to initial conditions (77).
Let {=eMYH(Y), .. .. .. .. (79)
then (78) gives
YH(Y)H (V)= Y[H(Y)F+H(Y)H'(Y) =0. .. .. (80)
Let HYN) =Y v=¢, .. .. .. .. (8
then (80) reduces to
%2;—(3=0. O - 7))

Integrating (82) subject to initial conditions determined by (77), (79) and (81),
we get as the solution of (78)

[ = HY-ly (gl;)”{" =Py(¥) (say). ... (83)
Now put a=1-—28, . e . .o (84)
8o that (28) reduces to
YI'~(1+B) Y24+ (14 B+ M =0 .. .. (85)
Let the solution of (85) be
{=Py(N)+BVy(Y) .. .. .. .. (86)

Substituting in (85) and neglecting squares and higher powers of B, we get on
gimplification

YP,V +V,[P,—2P, Y]+—l';§ [YP,P)+ PyP,+2H P

=YP;~PP\—2MPilogP, .. .. .. .. (8Ta)
Since Py(Y) satisfies (78), the equation simplifies to
YeVi4+V [Y—2Y(1+ M— M Y) |+ V[ B2 Y24 Y(1 + M p— H T2)]

— (Y ~Lo) (Y5
=e (l—o) YY), .. .. .. .. (87b)

where
$(T) = MY —Lo)2—M(Y L) +2M°Y (T =L,)
—2MY(1+M,) log Y4+2M°Y, log L, .. .. (88)
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d
In terms of the operator D = 77 (87), becomes

(YD+JI?Y—-1—37§0)( YD+ MY—1—-M{,)V,

— (Y — —50
= V¥ “”({)M YHY) .. (89)
0.
Let _ _
(YD+HY~1-ML)V, =U, .. .. .. (90
then since )
Vildo) =0, Vi) =0, . .- < (91)
we get
U(L,) = 0. .. .. .. .. (92)
(89) now gives _ -
aU (= 1+ ML, _‘ﬁ(Y—-ﬁo)(Z)Mn
‘-i-?.'.(M-—-———Y——)U..e z) 4D e

Integrating (93) subject to (92) ,
U(Y) = B—E(Y_go)(g)McoYf #D) gy

Y
0 :o
or v ’
v,y (5 1+Jl7§o) _ —H(cho)(Y)mo $(¥)
d—y+(M—— Y Vl-—e a) ; —Y—dY. .. (94)
Integrating (94) subject to (91), we get °
—H(Y— il Y Y
Vi) = TR 101 ) L .. (95)
Lo Y Y
% L
Substituting for ¢(Y) from (88) in (94) and (95) and integrating we get

_ (A + ML) M, log ¥ —(M)(2M Lo +1)(Y =) f
)Mfo CO

+H(Y—{0)2—2 M (1 + HLo)(Y log ¥ — F Lo log Ly +-£p) | 96)
+2M2, log {o(Y —&)

= Y-t (Y
UY)=e¢e (Co

and

Vi(Y) = Py(Y)F(Y),
where

($M o1+ HLo)[(log ¥)2—(log Ly)?]
—(1+ M) H L, log Lo log 1: —HEM4+1)(F—1)

+ L @H L +1) log ZI‘Z F3E(Ye— L)

FY)={ _ y - \ (97)
—2M2L,(Y — o)+ M2Ly2 log & ZM(1+MEL)(Y log Y~ log L)

+4M (1+ ML) (Y =) — 28 Lo(1 4+ ML) (1—log L) (Y —L,)
(250, log 1y( ¥ — o) — 20,8 log Lo Tog
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MAxiMUM PRESSURE

If ¢ = 1, maximum pressure occurs when

1
Y== BK .. . .. .. (98
M+§o+ (98)
provided Jll_l+£o < 1;if %+§o > 1, the maximum pressure occurs at all-burnt.

When a 7 1, let maximum pressure occur when

1
== BE, .. .. .. .. (99
M+§o+ (99)
then
T1 1
Fo [§+£0+BK] +BY, [§+£O+BK] =0.

Neglecting squares and higher powers of B and simplifying we get

2 (14-ML)(2+ML), 1+My, .
b2 I - g i ( + ML) log & (100)
Also up to the first power of B, maximum pressure is given by

1 1
L,..=Po [A—_I'I'{o"'BK] +BV, [ﬁ+§o+BK]
= Po| st | +BEP, [+ 1o +BV: [ £+ 4,
B O[I[ °] 0[117 °] ‘[ﬂ ]

_1 1+E§o)ﬂ§° (1+ﬂ§o) (_!_ ) 1
_e( = 50) 487, 2+ o ... (o

gince

f1
P, (ﬁ+£o) = 0.

In (101), the value of ¥, (%+ Co) is obtained from (97).

ArL-BURNT PosITioN. MoOTION AFTER ALL-BUurNT. MUZZLE VELOOITY
All-burnt position occurs when z=1or ¥ = 1.
The pressure in this position is given by
(1) = Py(1)+BY,(1) .. . . . . .. (102)
and the shot-travel up to this instant is given by
1 v()

£1) = 512 = o~ B

L)~ Po(l) T [PDF .. (103)




INTERNAL BALLISTICS FOR POWER LAW OF BURNING
After all-burnt
L& = const. = L[EDT = [LL)]

L V)
- [T’Z(—l")] +BO=p =]

The muzzle velocity is given by

7%= -— [1 abs] = [1 £s Ey]

2.M 1— 51 b4 1 _LB(Y"I)VI(]-)]
=y=1 [(Po(l))v-” [P

27

. (104)

.. (105)

9. IsotHERMAL MODEL: SECOND MERTHOD OF SOLUTION. RELATION BETWEEN THE

Two SoLuTIONS

We have to integrate (54) subject to initial conditions (57) when « = 1, (54)

gives _
YEE —YE24£E = —ME2
As in section (8), its solution subject to (57) is

- Y\ —#o
£=eit=0 (1) 2 1) feay)
Let the solution of (54), i.e. of

YE£" ~(1—B) Y24 (1—B)ét = M Y?P 228
be
&€= Qo(Y)4+BW(Y).

Neglecting ‘squares and higher powers of B, we get on samphﬁcamon

YW+ YW, (128 Y421 o)+ W, [M2(¥ — )2~ H Y]

= —eB(v—Lo) (’;)‘;) e L)
or
(YD—-H Y+ ML) (YD—-H Y+ M)W, = — BT~ (—g—’) T
Let ’
(YD-HBY+HL) W, = R,(Y),

then since
Willo) =0, W, (L) =0,
we get
By (o) =
(111) gives

dR - _lo) = Myl )”c"?‘(y)
a7~ (1= §) re —omreo (T) 75040

. (1086)

. (107)

. (108)

. (109)

. (110)

.. (111)

. (112)

. (113)

. (114)
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Integrating (114) subject to (113)
Y
74"
R(Y) = —e¥(y—Lo) (Z) J ﬂlﬁdy .. .. (115)
o

Q
or

Y
aW . _ Y - Mo 1 Y
LA ( _i_}g) W, = —efi(v—L) (Z,) 7 L ﬂf,_)dy .. (116)

0

Integrating (116) subject to (112)
Y

-M, Y
W1 (Y) = —eM(v—1o) (;1;) J %,de ?‘L(?Y—)dy .. (117)
{

0 ‘0

From (95) and (117)
WuY) _ _ omty—to) ( ) 2o 1
Vi(Y) $o 4
Y ___ ¥
. m( )2MCo T [Po(D)2°

(118)

This relation between the two solutions can be deduced alternatively from the
definitions.

Since for our model

Y = = [Po(Y)+BV(D)[Q(Y)+BW(Y)] .. .. (119)
But from (83) and (107) '

PNV =Y .. .. .. .. (120
neglecting B2
Py(Y)W(X)+Qo(Y)Vi(Y) =
or
Wi(Y) = — Q°g; AT . . ...z

(120) shows that (118) and (121) are identical.

The shot-travel up to the instant of maximum pressure is given by, using (99)
and (101)

1

e ¥ i +{+BK as2)
L 1+ ML\ M 14T, 1 ’ )
6( Mco) ( 73 )+BV( +':°)

where K is obtained from (100) and V, (:}M—_+§o) is obtained from (97).

10. THE SERIES SoruTION

We have so far neglected squares and higher powers of B. When B is not very
small, we may have to consider coefficients of B2, B3, ... in the solution of (85).
Let the series solution of (85) be

L =Py(Y)+BV(V)+BVy(Y)4+BVo(X) 4 ... +BV(T)+.... (123)
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Substituting in (85) and equating the coefficients of various powers of B, we get

YPP—YP+PP+HMP =0 .. .. .. (124)
YPV +V[—~2VP +P]+V[YP,+ P +2MP,]
= YPJ—P P —~2MP:logP, .. .. .. (125)
YP\V,+V[—2YP,+P |+ V[YP,+P,+2MP,]
= —YV V+ YV 42YP,V,—V.V,—-PV, .. (126)

—P,V,—M[2P}log P,+2V P +2P,V, log P 4 V]
YPoV,+ V[ ~2YP +Py]+Vy YP, 4 P, + 2 P,
==YV \V,— YV V +2Y VP, +2Y PV, + YV, ~V,V,~Y,V,

. 2T,
'—P0V2—V1V1— VZPO—M -§—- (log P0)3+2P0V1 2(10g Po) +—Fg

+2(POV2+ Vf) ].Og P0+4_P0V1 log V1+2V1V2:| .a .. .. (127)

and in general
YPoV,+V[—~2YP,+Py|+V [YP,+P,+2HP,]
=4 Y, Py, P, Vy, Voo, Voo, Vi, Voo oo, Vo)
Vo Ve Vol o o o028
Here the function ¢ is homogeneous of the second degree in Py, P('), Vi V;, V:

except for powers of log P,
Equations (124) and (125) are respectively the same as equations (78) and (87a)
and have already been solved giving

_ M,
Py(Y) = e~M(Y—;..>(Z) "y
0.

2

, - e
By() = e~ BT "0 g, i),

0.
ViY) = e—-j-l(Y—Co)(z_Yo) co:,[ul(Y),
, — M, , M —
Vi(Y) .__e—M(Y—io)(g;) [¢1(Y)+j%m —Msbl(Y)] )

1=

_ My, MIy (Y) o —
V;(Y):e_M(Y"';o)( ) {¢1(Y)+_;9_?_(__)__.L_[_€.9.Y¢%_(27) —M¢'1(Y)

e

0.
M, -\, Mlp(¥) &,
+(2o 5ty + oD gy,
where ¥,(Y) is determined from (97) and contains only integral powers of log ¥

and Y. Substituting in (126), we get a differential equation of exactly the same
type as (87a), which can be integrated in the form

- #lo
Vg(Y).—.e‘"‘Y"‘”(g)u oY) .. .. .. (129)
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Similarly
vt { Y\ #ho
V() = ¢ Hv-{0) (;‘) W(Dr=12......1 .. .. (130)

0/

Now the functions ¢,(Y) contain only integral powers of ¥ and log Y and, at
any stage, can be obtained as closed expressions not requiring any further
quadratures.

The process can be carried to any stage we like, though, in practice, the
calculations of terms beyond the third would obviously be tedious and we may
prefer to integrate (85) numerically. At the same time, we may remember that
when B is small the convergence of the series solution is expected to be quite rapid
and very often even the first and the second terms may give satisfactory results.
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