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ABsTRACT

An exact golution of the equations of one-dimensional motion of a gas representing a
spherical wave of explosion headed by shock has been obtained in this paper. The shock
moves with constant velocity and advances in & quiescent atmosphere of constant pressure and
density. The solution is applicable to both weak and strong shocks.

1. INTRODUCTION

A spherical wave of explosion under terrestrial conditions with a shock surface
as wave front has been studied by G. I. Taylor (1950). Taylor reduced the equa-
tions governing the flow behind the shock wave into ordinary differential equations
which were integrated nurherically. His solutions, however, are applicable only to
very intense explosions for which the Mach number at the head of the shock surface
may be taken as very large. The total energy within the expanding wave was
taken to be constant. J. L. Taylor (1955) succeeded in obtaining an analytic solu-
tion of the equations of G. I. Taylor’s problem for large Mach number. Z. Kopal
et al. (1951a, b} have also investigated the advance of spherical waves headed by
shock in stellar bodies. The problem was reduced to one of numerical integrations
of ordinary differential equations.

In the present paper, by a combination of the methods of Z. Kopal et al.
and of J. L. Taylor it has been possible to obtain an exact solution of the equations
for an explosion under terrestrial conditions, namely, when the wave advances into
a region of constant density and pressure. The solution is applicable to both weak
and strong shocks. The shock front is supposed to be moving with constant
velocity. Constancy of the total energy behind the shock has not been assumed
and in fact is not satisfied. Besides only particle isentropy for motion behind the
shock has been assumed.

2. EQUuATIONS OF THE PROBLEM AND BoUNDARY CONDITIONS

As equations governing the flow behind a spherical shock are
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and further assuming isentropy for each element of fluid
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where %, p and p are velocity, pressure and density of the gas at radial distance r
from the centre at time ¢; ¥ is the ratio of the specific heats. No gravitational
force is considered.

This motion will be supposed to be bounded on the outside by a shock surface
at r = R(t), which will move outward with velocity

V=W'

If ahead of the shock the undisturbed pressure and density be pg, po, and those
just behind the shock py, py, then we have the following Rankine-Hugoniot condi-
tions at the shock surface.
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From (4), (5) and (6) we get
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Next let us seek solution of equations (1), (2) and (3) in the form
w = g Un); p=r5Y272Pm); p=r"8Q(n) .. .. (10,11, 12)
where
n=r% (13)

The constants K, A, @ and b are {or the present kept open and are to be deter-
mined from the conditions of the problem.
We choose the shock surface to be given by

Mo = Atﬂ"
where 4 and p are constants. This choice fixes the velocity of the shock surface as
_p=b R RS 73
a t

Let us now suppose that the shock surface advances with a constant velocity,
and without any loss of generality we may take b = 1. Hence it follows from (14)
that

a = pu—1.

Thus we have
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3. SoruTiON oF EqQuaTions (1), (2) AND OF (3)

The condition inside the wave will be obtained from the solution of the equa-

tions (1), (2) and (3).
From equation (12) we get by differentiation

ap AP b K 2

and
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Eliminating ' (y) and ¢, from (16), (17) and (15) we get
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Treating equation (11) in the same way we get
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From equations (1), (2) and (3) it can be shown that
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Now we find
b
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where P(») is a function of 7, expressible in terms of U(y), P(n) and £(y).

From equation (23) we get

aa? {,\-—2- b (K+2)}

Let us now choose the constants such that
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Without any loss of generality we may choose

K=—-5A=2;b=1;anda=pu—1, ..

(16)
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80 that the solutions take the form

r 1 2
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Let the Mach number M at the shock front be defined by

M2 =" O )

where C’:‘; = Z’—E‘—’, is the square of the velocity of sound in the undisturbed air, since
Po

V and Cy are constants it follows from equation (27) that M is constant.
From the Rankine-Hugoniot conditions (7), (8) and (9) we get
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pr = %.[QYMZ—();-—I)], @9
and
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p1= (Y=—DM2+2° (30)

Equations (28), (29) and (30), from which also follows the constancy of %y, py
and py, constitute the external boundary conditions of our problem. Next let us
proceed to solve the differential equations (1), (2) and (3).

From equations (20) and (24) we have

F=—-l=m. .. . @Y

From equation (31) it follows that u << 1. Combining equation (31) with equation
(15) wo get

Now we put

U , o
7 = %’ and E =7
in equation (31) and solving for 1;0 get
B _ 2 1"-—-(1—[1.)“' 32
p_O’u Sl —p)—r .. .. .. (32)
where C= r-1 Ve,
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Combining equations (2) and (3) we have
19p v—1 0p_ 1 Qg y=1 0 1 0u

p or p Or  pu'® ' pu ‘@ wu or

hFE

(33)

Replacing?%, and%% on the right-hand side by means of equations (18) and (19)

we get
1
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Equation (34) can be integrated with respect to 7, in fact integration gives
=0 —w =) T e (39)

where (' is a function of the time, and

log f(r') = -(2#+3><v—1>J dr’ (350)
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1
Solving for p and p from equations (32) and (35) we get
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and
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where C; and Cp are determined from the value of u; as given by the Rankine-
Hugoniot equation (28). We have in fact

2 2 L
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and .. (38)
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where _ )= u——; .
From equations (2) and (18) we get
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Using the value of p from equation (36) in this equation we get
2 1 [1_ au’(l—p)] 2 [ 1 aw(l—p) 1_]
u'(
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Now the solution of equation (39) can be written as
3y-1) , , ,
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Equations (36), (37), (40) and (41) give the solution of our problem. They
constitute a rigorous solution of the non-linear equations (1), (2) and (3) correspond-
ing to which the shock front moves characterized by the constant velocity V, and
the constant Mach number M. In the solution of the above equations there is no
restriction on the value of M which may be large or small. Thus the Ppresent
solution of these equations is valid for all strengths of the head shock wave. By
choosing a suitable value for i between 0 and 1 (equation (31) shows that u < 1),
and a value of M greater than 1, one obtains (for given () from (27), (28), (29),
and (30), V, uy, p, and p;. Equation (28) gives u’;. Then one evaluates the
integral (35a) tabulating f (') for different values of 7. From this with the help of

(36), (37), (38) and (40) the functions 2 , f and %, may be calculated.

1 71

It may be noted that though atpthe beginning we had taken the velocity, pres-
sure, and density behind the shock surface in the form as given by equations
(10, 11, 12), we have obtained explicit functions for p, p and u without determining
the functions U(y), P(n) and Q(n). Further, the solution of our equations is not
really dependent on our special choice of the values of K and A. The essential point
is that they should be connected by the relation (25). This one may verify by a
more complicated calculation.

We can now calculate the total energy within the shock wave at any time ¢
which is given by

R
1 P
_ = pulde | 2
?’—.4-”-" [2pu +7_l]r dr.
0

If we choose a value for p sufficiently small we may consider the total energy
behind the shock wave to be very nearly constant, or increasing at a slow rate.
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