ON SUMMABILITY FACTORS
by PramiLA SRIVASTAVA, Department of Mathematics, Allahabad University
(Communicated by B. N. Prasad, F.N.L)
(Received December 23, 1957 ; read January 5, 1958)

1.1. Given the improper Stieltjes integral of f(x), with respect to «(x), in the
infinite interval (a, o), viz.

@ R
(1.1) f f(@) da(z) =R1i_1)1:°f f(z) da(z),

its (C, k) mean is defined byJ the equation

Cylw) = f (1—z/w) f(z) da(z),
where k£ > ~1.
The integral (1.1) is said to be summable (C, k) to the sum s if
lim Ci(w) = s (see Hardy, 1949, p. 111)

w—>o
and if
Cr(w) = 0(1),

as w — o0, the integral is said to be bounded (C, k).

Again, if Cy(w) is of bounded variation in (h, c0), where b may be any finite
positive number, that is to say if

f;. [dC(w) | < o,

we say that the integral (1.1) is absolutely summable (C, k), or simply summable
10, k| (see Bosanquet, 1947 and 1948).

And, if

J.;. | Cr_1(@)—8]|dz = o(w),

we say that the integral is strongly summable (C, k), or simply summable [C, &] to
sum s ; while if

f | C,_y(@) | de = Ole),
h
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we say that the integral is bounded [C, k]; k > 0. For k = 0, if the integral is
summable (or bounded) (C, 0) and

[

j z|f(x) da(x) | = o(w) (or O(w)),*
A

we say that the integral is summable (or bounded) [C, 0].
We observe that if, in particular, o(z) is a step function defined as follows:
a{x) =0, for a < = < x,

=ag+ay...+a, forz, <z < 20y,
where

L TE< Ty, .. <Ty—> O}
the integral (1.1) may become an infinite series, that is to say

o0

J f(x) da(z) = Z @, f(x,) (Widder, 1941, p. 15).

n=10

1.2. A sequence {Az} of positive steadily increasing numbers tending to
infinity, determines Riesz means x"‘A:(x) of order % type A, for a series of complex
numbers Za, ; the means being defined by the equation

G@ =z"4@= > 1=\,
<o
(1.2) = j ' (1—s/a)*d0(s)
where k > 0. °
If
Cy@) = 0(1),
as x — o0, the series 2a, is said to be bounded (R, A, k) ; and if

Lim 0;"’(0:) =38,

Z=r w0

where s is finite, the series is said to be summable (R, A, k) to sum s.

If C;(x) is of bounded variation in (k, o), the series is said to be summable
| R, A, k.

The definition (1.2) is still applicable for negative k, ¥ > —1. With this
extension, if

@
[ 197w |4 =0,
the series is said to be bounded [R, A, k], and if

| | )= | o = o),

* The lower limit # may be any finite positive number. From now on in such cases we
omit the lower limit.
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the series Za, is said to be summable [R, A, %] to sum s, £ > 0. If the series be
convergent (or bounded) and

. J' wx l dG‘A’(x) [ = o(w) (or O(w)),

then it is said to be summable (or bounded) [R, A, 0].
2.1. Summability | R, ), k| is known to include summability [R, A, k] (Srivas-
tava, 1957, Theorem 9) and this fact is written as

|B, A, k| C [R, A, k]
The following inclusion relations also hold
[B, A, EJC (R, A K),
(B, A, k1) C[R, ), k] (Srivastava, 1957, Theorems 1 and 2).

The above two relations are true for boundedness, as well, in place of summa-
bility. Winn (1933) has given an example to show that there are series bounded
[C, k], summable (C, k), but not summable [C, k]. The same example goes to show
that there are series bounded [C, k] but not bounded (C, k—1), that is to say
that there are series bounded [R, A, k] but not bounded (R, ), k—1).

It is, further, known that there are series summable (R, A, k) but not summable
absolutely for any order whatsoever (Kogbetliantz, 1925). The summability fac-
tor problem, that naturally arises, is to find a sequence {f,.} such that if the series
2a, is summable (R, A, k), then the series Za, f, may be absolutely summable for
some order, say k4-1. Several theorems, in connection with this problem, have
been obtained, both for an infinite series in general, and in case of Fourier series
and also the series conjugate to it in particular. In the present paper we consider
this problem for general infinite series. We obtain here two theorems on summa-
bility factors involving Stieltjes integral, and then give certain deductions from
these.

2.2. While dealing with the problem of obtaining absolute summability from
ordinary summability with the help of summability factors, Bosanquet (1948)
stated the following theorem involving Stieltjes integral from which, as is evident
from the definitions, corresponding theorem for Riesz summability of infinite series
can be deduced.

Theorem A. If X >0 and i3 an integer (i) k(x) is continuous for > 1 and

(ii)J- ™ | k(z) |dz <
1

(iii)jmx"[dkw(x)]< o,
1
and if
| a0 =0,
as z -+ o0, then °
f . k(z) dg(x)
18 summable | C, A\ +1]|.
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Recently Borwein (1954) extended this theorem to general A. Theorem 1 of the
present paper, giving a summability factor k(z) such that summability | C, A | of the
factored integral follows from summability {C, 2] of a given integral, is similar to it ;
and for a large class of functions k(z), as can be easily seen, Theorem A can be
deduced from Theorem 1. A start in this direction, that of obtaining absolute
summability from strong summability of the same order, was made by Pati (1954).
He proved :

Theorem B. If Za, is summable [C, 1), and {},} is a convex sequence such that
the series Xn~1), 1s convergent, then Xa,), is summable | C, 1},

Theorem 2 is a generalization of Theorem 1, still in another direction, in the
sense that in it the hypothesis of strong boundedness is replaced by strong asymp-
totic estimate of the given integral. Theorems 3 to 5 concern summability factors
of infinite series—Theorem 3 giving, in particular, the extension of Theorem B to
general positive orders, since summabilities [E, n, k] and | R, n, k| are equivalent
to summabilities [C, k] and | O, k| respectively (Boyd and Hyslop, 1952 ; Srivastava,
1957 ; Hyslop, 1936).

3.1. Theorem 1. If X >0 and
[+ o]
f da(z) = O(1) [C, A},

then f k(x) da(x) is summable | C, A|,
where (1) k(t) is a continuous function,
[+ o}
(i) f [k@)t-1dt < oo,

and (a) when A is an integer

(i) f P aEN(t) | < o0
(b) when ) is not an integer

(iii") J. A+l ldk(m+1)(t) ' < o,

where [A] ts the greatest integer less than A, and
(iv) |%'(t) | 18 & monotonic non-increasing function of t.
Theorem 2. If X » 0 and

f da(@) = 0{x@)} [C, ),

where X(x) - o, as £ — o0, and
x () = o{x@) 1},
then

| " btz date)
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s summable | C, X|, where

(1) k(2) s a continuous function,
(id) f 1| k@) X(t) | dt < o0,
and (a) when A is an integer
(i) f & | x() dkP¢) | < oo,
(b) when ) is not an integer

o
(iii’) f A+ () db @) | < o0,
and
(iv) | k'(t) | s @ monotowic non-increasing function of t.
3.2.  We require the following lemmas for the proofs of Theorems 1 and 2.

Lemma 1% If k() is @ continuous function of ¢ such that

(1) f 171 k(t) | dt < o0,
and

@ [ elaoni< e,
then

f tr|dk(E) | < o0,

Jorr=0,12, ..., n=1, and hence also
[¢E(E) | < o0,
forr=0,1,2,...,n—-1.

Proof of the Lemma. From (ii) it follows that
f dkn) (1)
4

is convergent. Therefore there is a number ! such that, for ¢t >c,

kM)l = — f dk®(t)
. t
= o(1),
ag t— 0. If n =0, we have
I =lim k),
t—>o

and hence
| k(@) | < .

* See Borwein (1954), section 5. The Lemma is implicit in the analysis given there.
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Forn > 1,

!l = lim nt—* J‘m(t—u)"‘lk(")(u) du

1->»a

= lim n! k().

t—>w

In either case we deduce from the convergence of J‘ t1|k(t)|dt that I=0.
Now

f "t ake-n(y| = f 01| k) (2) | s

< f -1t f | k) (u) |
t

< 1/n J‘ u" | dk™)(u) |

< o,

by hypothesis (ii). This gives the first part of the Lemma. To deduce the second
part, we observe that

djdt {7k (@)} = rtr—1k)(t) +t'% kO ().
Integrating and applying the first part of the Lemma we obtain
k() = O(1),
agt—=>o0,forr=1,2,...,n~—1 That
k(t) = 0(1),
follows from

f |dk(t) | < o,
proved in the earlier part.

Lemma 2. If k(t) is a continuous function of t such that

(i) f -1 k(E)x(t) |di < 0,

(ii) f | x()dk™() | < o0,
X(t) —> oo and
X'() = 0{x(). t71},
as ¢t — oo, then
j tr | x(6)dk(?) | < oo,

and hence also
|Erx () (t) | < o0,
forr=0,1,2 ... n=1
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Proof of Lemma 2. When n =0,

2 (xtokn} =x0) 2 ko +r0x 0

= x() & k) +10) 0(x. 11}

Integrating and applying hypotheses (i) and (ii) we get the result.

since

f | Xk (@) | < oo,

f dk®(t)

is convergent. Also, since X(t) - oo, and

and x(t) - o0, as {t - 00,

f £ X(6)k(@) | dt < o0,
it follows that
f -1 k() | dt < 0.

f k™ (u)

is convergent, we obtain that there is a number I such that

From (ii), since X(f) > co and

kM) —1 = — f dk®™(u) = o(1),
t
ast—> oco. Also
13
= lim nt"'J. (t—u)""1k®™(u) du

to o
= lim n!1{~"k(t).
t—>x®
Hence, from the convergence of
-]
f 1| k(t)x () | dt,
we deduce that I =0, forn > 1. Now

| tflx(t>dkm(t>|<f x| aem)

- j kD) | f Vx|,
where

J "0t = 0{urrix(u)}.

For n >0,
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And therefore

f ¢ | X(t)@k)(t) | =0f Wt | X(u) dk(u) |

= 0f | X(u)dk™ (u) |
: < o,
forr=0,1,..., n—1.
For the second part we have
g {Ex@kO@) } = rr 2O O +2x Ok () +7X(0) d% (ko) }-
It is given that :
X = 0{xt).¢1}.
Hence, integrating and applying the first part of the Lemma,

[ X (E)kN)(t) | < oo,
forr=0,1,...,n-1,

Lemma 3. Let A > 0, then

d @
— L w A (w—t) k(@) dat) }
dw { Jl)

- r(x+1 “_
= Ao\ Hh(@)0xw)+ pp +1)%'\_) e J O Crn® k() —k(w)} X

ht1
. w-A-1 iler (h+1) ra4+n
(w—tp-t-2di+ F(h+2),=zl('1) o r | TQ=h+r—1)

J"" Crir (OO @) w—t 2 s,

0
where

a,(w) = f (w—1t)1 tda(t),

h denotes the greatest integer less than A, for 0<< A <1, h is defined to be zero, and when
) 18 an indeger the second term of the expression on the right is zero.

Proof of Lemma 3.
_— [m-h w-—=1)Ak(D) da(t ]
] fo (0—)Ak(t)da(t)

= Aw=A"1 J“" (w=0)A-1 th(t)da(t)
0
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= /\w'/\‘lk(w)a)‘(w)-l-/\w‘)“l J- {k(t)—k(w)}(w—t))“l tde(t)
0

~A-1x

= A=A ~1(@)C)(w) +(—1)*+1 I’(h/\-l-l) “

JW Crpa(t) DF+1 [{%@®) —k(w) } (w—t)A-1]dt,
- Jo

by partial integration h+-1 times. Now
DAL {k(t) — k(o) (o—t)A-1] = (—1)H+1 .. (@—tA=4-2{ (t) —k(w) }

I'(A—h-1)
+ Iil (=1)r+1-7 1y TQ) EO(t)(w—t)k=t+r-2
r=1 ( y JTQA—h+4r—1) w—t) s

the first term of the expression on the right being zero when ) is an integer. The
Lemma follows upon substituting this expression for

DI (k(t) —k(w) } (0—t)-1]
in the integrand.

Lemma 4. (i) If
f dafz 1[0, A,

Jlo,xl ldz = O(@),

then

as X — o0, for 1 > A; (ii) if
: da(2) = O{x@)}[C> ],
then
J oy x)ld:v 0{Xx(X)},

as X — oo, for 1 > ), where x x(x) or x* x(x), according as k 2 1, tends to infinity with
x and

= 0{x(x) .z} .

The first part of the above Lemma has been proved elsewhere (Srivastava,
1957 ; §5), the second part can be obtained in a similar faghion.
3.3. Proof of Theorem 1. Firstly, we observe that

= d
z-0(e) = = 7. {Oa) };
therefore, by Lemma 4 (i), under the hypothesis,
5 Oi(z)] =

x
wad

I O(z),
a8 X — o0, wherel > ) > 0.
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It is to be proved that

f |dF(z)| < o,
that is to say that

X
i [loma <
X—>w

where
w . A
Flw) = f (1 __) k(@) da(x).
0 w
When A = 0, the required result reduces to

X
1= [ Hartata)| = o),
ag X - 00. Integration by parts gives

X
1 =J [ﬁ:(—?-]]xda(x)]

e
= x k(z) _ k)
= [0(z) . k(x)/x] +0J |- |da
X X
=0(1)+OJ |k’(x)[dz+0‘[ 1| k(x) | de
= 0(),
using hypotheses (ii) and (iii).
For ) > 0, by Lemma 3,
X X| &+3
f |dF ()| = J D 1w | do,
p=1
say, where
Iy(w) = Ao A"Tk(w)Cy(w),
Iy(w) = Adw™"! f Crpa(){k(t)—k(w) Ho—t "2 d
0
I 5(w) = Ao ! f Crpa®) (=M 2=5 ) 4y,
0
p=1,2 ..., h+1; I, being zero when A is an integer, 4 is a constant may be
different at different places. It follows that it is sufficient to prove

X
(33.) [ 1110 =00,

a8 X —» o0, foreachp=1,2, ..., h+3.

191
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Integrating by parts and making use of Lemma 3, we have
X X, —
X ULL
J '11(w)ldw=,\j L_A___.w;””_(a‘:’_)ldw

X X
[0() k(x)] +0J Ilc%’-)—ldw+0j [K' ()] de

(3.3.2) = 0(1),

as X — co, by hypotheses (ii) and (iii) and Lemma 1.
Now, we consider the integrals involving I, s (w), where p=1,2,..., h+1.

X w
fxum(w)ldw:A f N 1d] f Cha® (=0~ ds|

X w
<4 f w-A-1dw f |Casr®) | | KD @) | (=t 22 a1,

Changing the order of integration we get

o X — ® (w__t)l-h+ﬁ—2
J Tpya(w) |do < 4 J |0h+1<t)k“”(t)tdtj e —do

i
x
<4 f |G P ) |6~ * 2 at
X Chaalt
= AJ [Cn@)] :;fl ip=1) 100y gt
By hypothesis (iii) or (iii’), according as A is or is not an integer, and Lemmas

1 and 4.
X X
f | I o(w) | dew = [O(2) 2P~k )] X+ 0 J. t7| dk'?(t)|

X
+0 f te-1 | kP(t) |t

(3.3.3) = 0(1),
as X > oo,

(3.3.1), (3.3.2) and (3.3.3) show the Theorem to be true for an integer. When
A is not an integer, we have to consider one more integral involving ls(w). We
obtain

X
f Z5(w) | deo
f @A do| f Crra®) k() — k(@) } (0=t~ &t

J‘ w-A~ lda,ljl |C+ (t)llk(t) k(w)l( t)) k- ldt

< J. 0w J. 1C, O 1E®) | (0=,
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by condition (iv). Changing the order of integration, using Lemma 1 and condition
(iii"), we get

X X B m(w_t)x_h_l
J Uz(w)ldw<AJ ]CHl(t)]]k’(t)]dtJ e

X —_—

= o[ G 0liko e
X —

=0 [ 15, ko)

x
= [0(z). ¥'(2))*+0 j t|dk'(t)]
= O(1).

This completes the proof of Theorem 1.

3.4. Proof of Theorem 2. Using Lemma 2, instead of Lemma 1, and Lemma
4 (ii), in place of Lemma 4 (i), Theorem 2 follows exactly by the procedure of the
proof of Theorem 1.

3.5. We now obtain the following theorems.
Theorem 3. If Za, be bounded [R, A, k] and $(t) satisfies the same conditions
as k(t) in Theorem 1 (for A, = n, $(t) may satisfy the following conditions
M) D nligm| <o,

(ii) inl+h' Ah+2 ¢(n) I < o,

where h 18 the greatest integer less than k, and when k is non-integral, also | A(n) |18
nom-increasing), then the series Za,$(A,) is summable |R, A, k|, for k > 0.

Theorem 4. If
Za, =0{x(n)} [R, A, k],

where X(n) = 00 with n, and X(t), B(t) satisfy the same conditions as X(t), k(t) in
Theorem 2 (for A, = n, X(t) and ¢(t) may be such that

A X(n) = O{x(n) .71},
and the sequence {$(n)} satisfies

B > x| <,

(it) i ni+k| x(n) AM2 (n) | < 0,

whete h is the greatest integer less than k, and when k is non-integral | A(r) | is non-
increasing), then the series Zad(la) 13 summable | R, A, k), k& 2 0.

1 —k-e 1 mable
Theorem 5. If Za, is bounded (R, A, k), then Sa "¢, where € > 0, 18 sum
| R, b, k| ,ezlhere ’x{ =exp (A). The factor (\)~*-¢ may, also, be replaced by $(Ad)/

(A)*, where {$(t)} satisfies the conditions of Theorem 3.
2
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Theorems 3 and 4 follow directly from Theorems 1 and 2. Theorem 5is
obtained from Theorem 3 by an application of a Theorem due to Tatchell (1954),
which we state below as a Lemma,

Lemma 5. If Za, is summable | R, A k|, then Za)\,~* is summable | R, p, k|,
where p, = exp (\,), ¥ > 0.

3.6. It may be pointed out that, as is evident from the proof of Theorem 1
given, the hypothesis in Theorems 3, 4 and 5 concerning the boundedness [R, A, k]
of the series Za, can be replaced by less restrictive conditions of boundedness

[B, ) k417 of the sequence { MiGn}, —(RB, A, k) mean of the sequence {A\.a,} is sup-
posed to be given by

> @=2)""Aa
A< w
It may also be observed here that in case ¢(n) is a logarithmico exponential
function of n, or simply an L-function, the conditions on ¢(n) in the preceding

Theorems 3 and 5 reduce to the single condition of convergence of Zn~1¢(n). This
follows immediately from the Lemma given below.

Lemma 6. If Zn~1p(n) is convergent and $(n) is an L-function of n, then
n"AT$(n) > 0,

and

| Zur| A g(n) |
18 convergent.

Proof of Lemma 6. Since ¢(n) is an L-function, A'¢(n) is monotonic for all
values of r from a certain value of #» onwards, we may take A'¢(n) to be monoto-
nic for all values of », and hence the convergence of

Znt| A1 4(n) |
reduces to the convergence of

anAr+1 ¢(n).
We suppose that the required result is true for r = k, that is
nt AFp(n) — 0,
and the series
Znt A*H1g(n)

is convergent. Now since the terms of the convergent series have the same sign
nF+1 AR+14(n) — 0,
ag n— 00, Also
N N

> waMm) = > nr1{ AMIgn)— AMI$m+1))

n=1 =1

N
= Z A*HG(n) {nA+1—(n—1)F+1}
— NFIARIG(N 1)
~nF ARG (n) — (N 4 1A RIG(N 4 1),

2B



PRAMILLA SRIVASTAVA: ON SUMMABILITY FACTORS 195

Therefore
Znk+1 p B2g(n)

is convergent. That the required result is true for k = 0 follows from the conver-
gence of Zn~1¢(n).

And this completes the proof of the Lemma.

Further, if X(») be also supposed to be an L-function, then the conditions of
Theorem 4 reduce to the single condition that Zn-1y(n)¢$(n) is convergent.
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