UNION CONGRUENCES OF A SUBSPACE V_n EMBEDDED IN A RIEMANNIAN V_m

by (Miss) K. Nirmala, Department of Mathematics, Shivaji University, Kolhapur

(Communicated by Ram Behari, F.N.I.)

(Received November 28, 1964; after revision March 22, 1965)

Springer (1945, 1947, 1950) has defined a union curve on an ordinary surface as a curve such that the osculating plane at each point of the curve contains the line of a specified rectilinear congruence. He further developed the subject for a hypersurface in a Riemannian space by introducing a totally geodesic surface as an analogue for the osculating plane in ordinary space, and studied some properties of these curves. Mishra (1951, 1952) extended the notion of union curves to a subspace V_n embedded in a Riemannian V_m . He also discussed hyperasymptotic curves on an ordinary surface and in a V_n embedded in V_m . In this paper we introduce a union congruence of curves and some other congruences on similar lines.

1. Let V_n be a subspace with the coordinates x^i , and the fundamental metric $g_{ij}dx^idx^j$ (i, j = 1, 2, ..., n), embedded in a Riemannian V_m of m dimensions with y^{α} as the coordinates of any point, and $a_{\alpha\beta}dy^{\alpha}dy^{\beta}(\alpha, \beta = 1, 2, ..., m)$ as the fundamental metric. We have the relation

$$a_{\alpha\beta}y_{:j}^{\alpha}y_{:j}^{\beta} = g_{ij}. \qquad \dots \qquad \dots \qquad \dots \qquad \dots$$

Let N_{ν}^{α} ($\nu = 1, 2, \ldots, m-n$) be the contravariant components of a system of m-n linearly independent orthogonal unit normal vectors to V_n , so that

$$a_{\alpha\beta}N^{\alpha}_{\nu}N^{\beta}_{\mu} = \delta^{\nu}_{\mu} \qquad . . \qquad . . \qquad (2)$$

Let us consider a congruence of curves λ tangential to V_n , such that one curve of the congruence passes through each point of the subspace V_n . Let t^i and λ^{α} be the contravariant components of the unit tangent vector to a curve of the congruence λ in terms of the coordinates of V_n and V_m respectively.

We have

$$\lambda^{\alpha} = t^{i} y^{\alpha}_{\cdot i}. \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots$$

The tensor derivative of (4) gives

$$\lambda_{:i}^{\alpha} = t^l y_{:il}^{\alpha} + t_{:i}^l y_{:l}^{\alpha}.$$

Using the known formula (Weatherburn 1957)

$$y^{\alpha}_{;ij} = \sum_{\nu} \Omega_{\nu+ij} N^{\alpha}_{\nu+},$$

where $Q_{\nu \mid ij}$ are symmetric covariant tensors of the second order, the above simplifies to

$$\lambda_{\,;\,i}^{\alpha} = \sum_{\nu} \mathcal{Q}_{\nu\,|\,il} t^l N_{\nu\,|}^{\alpha} + t^l_{\,;\,i} y_{\,;\,l}^{\alpha}\,.$$

Let $x^i = x^i(s)$ be any given curve C in V_n and P any point on it. The derived vector of λ along the curve C considered as a curve in V_m is given by

$$\frac{\delta \lambda^{\alpha}}{\delta s} = \sum \Omega_{\nu | \cdot l} t^{l} \frac{dx^{l}}{ds} N_{\nu | \cdot}^{\alpha} + \frac{\delta(t^{l})}{\delta s} y_{| \cdot | \cdot}^{\alpha}. \qquad (5)$$

This equation can be put in the following form (Nirmala 1963):

$$\frac{\delta \lambda^{\alpha}}{\delta s} = \kappa_{\lambda^{\perp}} \omega^{\alpha}_{\lambda^{\perp 1}} = \kappa_{\lambda^{\perp n}} N^{\alpha} + \kappa_{\lambda^{\perp} g} a^{\alpha}, \qquad (6)$$

where (i) $\kappa_{\lambda|}$ is the absolute curvature of the congruence λ w.r.t. C, (ii) $\kappa_{\lambda|n}$ and $\kappa_{\lambda|s}$ are the normal curvature and geodesic curvature of the congruence λ w.r.t. C respectively. Their magnitudes are given by

and

$$\kappa_{\lambda+n}^{2} = \sum_{\nu} \Omega_{\nu+li} \Omega_{\nu+mj} t^{l} t^{m} \frac{dx^{l}}{ds} \frac{dx^{l}}{ds}$$

$$\kappa_{\lambda+g}^{2} = g_{lm} \frac{\delta(t^{l})}{\delta s} \frac{\delta(t^{m})}{\delta s}.$$
(7)

In a previous paper, we have worked out the Serret-Frenet formulae (Nirmala 1964) for a congruence. We have thereby

$$\frac{\delta \omega_{\lambda|r}^{\alpha}}{\delta s} = \omega_{\lambda|r+1}^{\alpha} \kappa_{\lambda|r+1} - \omega_{\lambda|r-1}^{\alpha} \kappa_{\lambda|r}$$

$$(r = 0, 1, 2, \dots, m-1),$$

where

$$\boldsymbol{\omega}_{\lambda+0}^{\alpha}=\lambda^{\alpha},\,\boldsymbol{\kappa}_{\lambda+1}=\boldsymbol{\kappa}_{\lambda+},\,\boldsymbol{\kappa}_{\lambda+0}=0,\,\boldsymbol{\kappa}_{\lambda+m}=0,$$

 $\omega_{\lambda+0-1}$, $\omega_{\lambda+m}$ are the zero or null vectors,

and the vectors λ^{α} , $\omega_{\lambda+1}^{\alpha}$, $\omega_{\lambda+2}^{\alpha}$, ..., $\omega_{\lambda+m-1}^{\alpha}$ are mutually orthogonal.

The vectors with contravariant components $\omega_{\lambda+1}^{\alpha}$, $\omega_{\lambda+2}^{\alpha}$, ..., $\omega_{\lambda+m-1}^{\alpha}$ have been called the unit principal normal vector, the first unit binormal vector, the second unit binormal vector, ..., to the congruence λ in V_m relative to the curve C at the point P. We can express these vectors in terms of the tangential and normal components on V_n . Hence we have

$$\omega_{\lambda+r}^{\alpha} = t_{r+}^{i} y_{;i}^{\alpha} + \sum_{\nu} a_{\nu+r} N_{\nu+}^{\alpha} \qquad ... \qquad ..$$

$$(r = 0, 1, 2, ..., m-1),$$
(8)

where t_{r+}^i and a_{r+} , are the tangential and normal components of $\omega_{\lambda+}$, on V_n and

$$\omega_{\lambda|0}^{\alpha} = \lambda^{\alpha}, t_{0|}^{i} = t^{i}, a_{\nu|0} = 0.$$

Also we have from (8),

$$1 - \sum_{\nu} a_{\nu+r}^2 = g_{ij} t_{r+}^i t_{r+}^j \quad . \tag{9}$$

$$(r = 1, 2, \ldots, m-1).$$

Now let us consider a congruence μ of curves in V_m such that one curve of the congruence passes through each point of V_n . Let μ^{α} be the contravariant components of the unit vector tangential to a curve of the congruence μ at the point P on C. Resolving μ^{α} tangentially and normally to V_n , we have

$$\mu^{\alpha} = p^{i}y_{;i}^{\alpha} + \sum_{\nu} c_{\nu} N_{\nu}^{\alpha}. \qquad \qquad \dots \qquad \dots \qquad \dots \qquad \dots$$
 (10)

where p^i are the tangential components of μ in V_n and $c_{\nu_{\perp}} = \cos \theta_{\nu_{\perp}}$, $\theta_{\nu_{\perp}}$ being the angle between the vectors μ and $N_{\nu_{\perp}}$. From (10), we have

$$1 - p^{i} p_{i} = \sum_{\nu} c_{\nu i}^{2} = \sum_{\nu} \cos^{2} \theta_{\nu i}. \qquad (11)$$

We shall call the surface generated by the geodesics tangential at P to the pencil of directions determined by the unit tangent vector λ^{α} and the unit principal normal vector $\boldsymbol{\omega}_{\lambda|1}^{\alpha}$ as the osculating geodesic surface of the congruence λ w.r.t. C. If the congruence μ is such that the osculating geodesic surface of the congruence λ at each point of the curve C contains the unit tangent vector μ^{α} to a curve of the congruence μ , we shall then call the congruence λ as a union congruence of the subspace V_n relative to the congruence μ .

Hence we can express μ^{α} in the following form:

$$\mu^{\alpha} = r \lambda^{\alpha} + v \omega_{\lambda+1}^{\alpha}. \qquad \dots \qquad \dots \qquad \dots \qquad \dots$$
 (12)

From (4), (8) and (10), this can be written as

$$p^{i}y_{;i}^{\alpha} + \sum_{\nu} c_{\nu|}N_{\nu|}^{\alpha} = rt^{l}y_{;i}^{\alpha} + v\left(t_{1}^{l}y_{;i}^{\alpha} + \sum_{\nu} a_{\nu|1}N_{\nu|}^{\alpha}\right). \qquad (13)$$

Multiplying (13) by $a_{\alpha\beta}y_{:i}^{\beta}$,

$$p_j = rt_j + vt_{1+j}. \qquad .. \qquad .. \qquad .. \qquad (14)$$
 Multiplying (13) by $a_{\alpha\beta}N^{\beta}_{\mu_+}$,
$$c_{\mu_+} = va_{\mu+1}. \qquad .. \qquad .. \qquad .. \qquad (15)$$

$$c_{\mu \parallel} = v a_{\mu \parallel 1}. \qquad \qquad \dots \qquad \dots \qquad \dots \tag{15}$$

Taking the scalar products of (12) w.r.t. λ ,

From (15) and (16), (14) can be written as

$$a_{\nu+1}[p_j - p_k t^k t_j] = c_{\nu} t_{1+j}.$$
 (17)

In this equation the suffix j can take any of the values $1, 2, \ldots, n$ and ν can take any of the values $1, 2, \ldots, m-n$. Hence we get altogether n(m-n) equations in the quantities t and their solutions will determine the directions at P of the union congruences of a subspace relative to a given congruence μ of V_m . But on account of (15), the (m-n) equations given by (17), for different values of ν , are identical for any one value of j. Hence we get only n differential equations in the quantities t. The equations (17) are thus always consistent and hence union congruences associated with any given congruence μ exist. We shall call these equations as the differential equations of the union congruence of a subspace relative to the congruence μ .

From (5), (6) and (8) we have

$$\frac{\delta \lambda^{\alpha}}{\delta s} = \kappa_{\lambda+1} \left(t_{1+}^{l} y_{;l}^{\alpha} + \sum_{\nu} a_{\nu+1} N_{\nu+1}^{\alpha} \right)$$

$$= \sum_{\nu} \Omega_{\nu+li} t^{l} \frac{dx^{i}}{ds} N_{\nu+1}^{\alpha} + \frac{\delta}{\delta s} (t^{l}) y_{;l}^{\alpha} . \qquad (18)$$

Multiplying (18) by $a_{\alpha\beta}y^{\beta}_{;j}$,

$$\kappa_{\lambda \mid 1} t_{1 \mid j} = g_{ij} \frac{\delta}{\delta s} (t^i). \tag{19}$$

Multiplying (18) by $a_{\alpha\beta}N^{\beta}_{\nu+}$, we have

$$\kappa_{\lambda+1} a_{\nu+1} = \Omega_{\nu+ii} t^i \frac{dx^i}{ds}. \qquad (20)$$

Using (19) and (20), equation (17) can be written in the alternative form

$$Q_{\nu \mid h} t^{i} \frac{dx^{i}}{ds} \left[p_{j} - p_{h} t^{h} t_{j} \right] = c_{\nu \mid j} g_{ij} \frac{\delta}{\delta s} \left(t^{i} \right) \qquad . \qquad (21)$$

which is obviously a differential equation of the first order in the t's and the derivatives of t.

Kaul (1957) has dealt with the converse of this problem for a hypersurface. Given a vector field in V_n , he discusses the determination of a curve C in V_n such that the totally indicatrix surface of the vector field contains the

unit tangent vector to a curve of the congruence μ . The problem studied in this paper is the converse, viz. the determination of a congruence λ in V_n such that the osculating geodesic surface of the congruence λ w.r.t. a given curve C contains the unit tangent vector to a curve of the given congruence μ . The differential equations (21) for a hypersurface are identical with the differential equations (3.7) of Kaul's paper. But they are used in Kaul's paper to determine $\frac{dx^i}{ds}$, given t^i , whereas we consider them as determining t^i , given $\frac{dx^i}{ds}$.

When λ defines a curve tangential to C, $t^i = \frac{dx^i}{ds}$, the equation (21) reduces to

$$\label{eq:Qnumber} \mathcal{Q}_{\nu + li} \, \frac{dx^l}{ds} \, \frac{dx^i}{ds} \left[p_j - g_{jk} p_h \frac{dx^h}{ds} \, \frac{dx^k}{ds} \right] = c_{\nu} \, g_{lj} \, \frac{\delta}{\delta s} \left(\frac{dx^i}{ds} \right).$$

The differential equations of the union curves of a subspace relative to a congruence, as given by Mishra, thus follow as a special case of the above. From (15) and (20), we have

$$\frac{1}{v} = \frac{a_{\nu+1}}{c_{\nu+1}} = \frac{\Omega_{\nu+it}t^i\frac{dx^i}{ds}}{c_{\nu+}\kappa_{\lambda+1}} = \frac{\Omega_{\mu+it}t^i\frac{dx^i}{ds}}{c_{\mu+}\kappa_{\lambda+1}}$$

$$\nu$$
, $\mu = 1, 2, \ldots, m-n \cdot \nu \neq \mu$.

Using (7), each of the above ratios is equal to

$$\frac{\kappa_{\lambda^{+n}}}{\left[\sum_{\nu} c_{\nu^{+}}^{2}\right]^{\frac{1}{2}} \kappa_{\lambda^{+1}}} \dots \qquad (22)$$

Let α be the angle between the vectors p^i and t^i .

$$\cos \alpha = \frac{g_{ij} p^{it^{j}}}{\left[1 - \sum_{\nu} c_{\nu}^{2}\right]^{\frac{1}{2}}} . \qquad . \qquad . \qquad (23)$$

Let β be the angle between the vectors p^i and t_{11}^i .

$$\cos \beta = \frac{g_{ij}p^{i}t_{1+}^{j}}{\left(1 - \sum_{\nu}c_{\nu+1}^{2}\right)^{\frac{1}{2}}\left(1 - \sum_{\nu}a_{\nu+1}^{2}\right)^{\frac{1}{2}}}.$$
 (24)

Multiplying (14) by g^{jk} , we have

$$p^k = rt^k + vt_1^k \qquad \dots \qquad \dots \qquad (25)$$

Multiplying (25) by $g_{lk}t_{11}^{l}$ and using (9) we have

$$g_{lk}t_{1|}^{l}p^{k} = vg_{lk}t_{1|}^{l}t_{1|}^{k} = v\left(1 - \sum_{\nu}a_{\nu|1}^{2}\right). \qquad (26)$$

From (24) and (26),

$$v\left(1-\sum_{\nu}a_{\nu+1}^2\right)^{\frac{1}{2}}=\cos\beta\left(1-\sum_{\nu}c_{\nu}^2\right)^{\frac{1}{2}}.$$
 (27)

Multiplying (25) by $g_{lk}t^l$,

$$g_{lk}t^lp^k = r = \cos\alpha\left(1 - \sum_{\nu}c_{\nu \, l}^2\right)^{\frac{1}{2}}.$$
 (28)

Squaring (25), we have

$$\left(1 - \sum_{\nu} c_{\nu \, | \, 1}^2\right) = r^2 + v^2 \left(1 - \sum_{\nu} a_{\nu \, | \, 1}^2\right).$$

Using (27) and (28), this can be written as

$$\left(1 - \sum_{\nu} c_{\nu|}^{2}\right) = \cos^{2} \alpha \left(1 - \sum_{\nu} c_{\nu|}^{2}\right) + \cos^{2} \beta \left(1 - \sum_{\nu} c_{\nu|}^{2}\right).$$

$$\cos^{2} \alpha + \cos^{2} \beta = 1$$

$$i.e. \quad \cos^{2} \beta = \sin^{2} \alpha. \quad .. \quad .. \quad (29)$$

Let us denote

$$\eta_{j} = \kappa_{\lambda+1} \left[t_{1+j} - \frac{a_{\nu+1}}{c_{\nu+1}} (p_{j} - p_{h} t^{h} t_{j}) \right].$$
(30)

We shall call the vector defined by the components η_j as the union curvature vector of the congruence λ w.r.t. C relative to the congruence μ . From (17), it is obvious that for a union congruence, the union curvature vector is the null or zero vector.

Let κ_{μ} be the magnitude of the vector η_{j} .

$$\begin{split} \kappa_{\mu}^{2} &= g^{jk} \eta_{j} \eta_{k} \\ &= \kappa_{\lambda \mid 1}^{2} g^{jk} \bigg[t_{1 \mid j} - \frac{a_{\nu \mid 1}}{c_{\nu \mid}} \big(p_{j} - p_{k} t^{h} t_{j} \big) \bigg] \\ &\qquad \times \bigg[t_{1 \mid k} - \frac{a_{\nu \mid 1}}{c_{\nu \mid}} \big(p_{k} - p_{k} t^{h} t_{k} \big) \bigg] \\ &= \kappa_{\lambda \mid 1}^{2} \bigg[g^{jk} t_{1 \mid j} t_{1 \mid k} - 2 \frac{a_{\nu \mid 1}}{c_{\nu \mid}} g^{jk} t_{1 \mid j} p_{k} \\ &\qquad + \bigg(\frac{a_{\nu \mid 1}}{c_{\nu \mid}} \bigg)^{2} g^{jk} \big(p_{j} - p_{k} t^{h} t_{j} \big) \big(p_{k} - p_{l} t^{l} t_{k} \big) \bigg]. \end{split}$$

Using (9), (23) and (24), this simplifies to

$$\kappa_{u}^{2} = \kappa_{\lambda+1}^{2} \left[\left(1 - \sum_{\nu} a_{\nu+1}^{2} \right) - 2 \frac{a_{\nu+1}}{c_{\nu+1}} \cos \beta \left(1 - \sum_{\nu} c_{\nu+1}^{2} \right)^{\frac{1}{2}} \right. \\
\times \left(1 - \sum_{\nu} a_{\nu+1}^{2} \right)^{\frac{1}{2}} + \left(\frac{a_{\nu+1}}{c_{\nu+1}} \right)^{2} \left(1 - \sum_{\nu} c_{\nu+1}^{2} \right) \sin^{2} \alpha \right]. \tag{31}$$

But from (7) and (19) we have

$$\left(1 - \sum_{\nu} a_{\nu+1}^2\right) = g_{ij} t_{1|}^i t_{1|}^j = \frac{\kappa_{\lambda+g}^2}{\kappa_{\lambda+1}^2}, \qquad (32)$$

Substituting in (31), we have

$$\kappa_{u}^{2} = \kappa_{\lambda \mid g}^{2} - 2\kappa_{\lambda \mid g} \kappa_{\lambda \mid 1} \cos \beta \left(1 - \sum_{\nu} c_{\nu \mid}^{2}\right)^{\frac{1}{2}} \frac{a_{\nu \mid 1}}{c_{\nu \mid}} + \kappa_{\lambda \mid 1}^{2} \left(\frac{a_{\nu \mid 1}}{c_{\nu \mid}}\right)^{2} \left(1 - \sum_{\nu} c_{\nu \mid}^{2}\right) \sin^{2} \alpha. \qquad (33)$$

We shall call κ_u as the union curvature of a congruence λ w.r.t. C relative to the congruence μ . Hence the expression (33) gives a relation connecting the union curvature, geodesic curvature and absolute curvature of the congruence λ w.r.t. C.

Using (22) and (29), the general expression (33) for the union curvature reduces in the case of a union congruence to the form

$$\kappa_u^2 = \left[\kappa_{\lambda \mid s} - \kappa_{\lambda \mid n} \left(\frac{1}{\sum c_{\nu \mid}^2} - 1\right)^{\frac{1}{4}} \sin \alpha\right]^2 = 0.$$

Hence we have for a union congruence

$$\kappa_{\lambda \mid g} = \kappa_{\lambda \mid n} \left(\frac{1}{\sum_{\nu} c_{\nu \mid}^2} - 1 \right)^{\frac{1}{2}} \sin \alpha \qquad \dots \qquad \dots \qquad \dots \qquad (34)$$

a relation connecting the geodesic curvature and the normal curvature of the congruence.

Special cases.

(i) Choose the congruence μ to be normal to V_n .

$$\therefore \sum_{\nu} c_{\nu \parallel}^2 = 1.$$

From (33), we have

$$\kappa_u^2 = \kappa_{\lambda \mid \rho}^2$$

- i.e. The union curvature of the congruence λ relative to a normal congruence μ is equal to the geodesic curvature of the congruence λ w.r.t. C. Hence the curve C will be a λ -geodesic (Nirmala 1963) w.r.t. the union congruences.
- (ii) Choose the curve C to be an asymptotic line of the first type (Nirmala 1963) of the congruence λ . Then $\kappa_{\lambda \mid n} = 0$.

If λ is a union congruence, it follows from (34), that

$$\kappa_{\lambda \mid g} = 0.$$

The curve C is therefore an absolute geodesic.

Hence a curve C which is an asymptotic line of the first type w.r.t. a union congruence λ is an absolute geodesic of the congruence λ .

2. In a similar manner, we can introduce hyperasymptotic congruences of a subspace.

We shall call the surface generated by the geodesics tangential to the pencil of directions determined by the directions of the tangent and the first binormal vector to a curve of the congruence λ as the rectifying geodesic surface of the congruence λ w.r.t. C. Suppose the rectifying geodesic surface at each point of a curve of the congruence λ contains the tangent vector to a curve of the congruence μ . Then we shall call the congruence λ as a hyperasymptotic congruence of the subspace relative to the congruence, we obtain the differential equations of the hyperasymptotic congruences of a subspace relative to the congruences of a subspace relative to the congruence μ , in the form

$$\begin{split} a_{\nu+2} \big[\, p_j - p_{\scriptscriptstyle A} t^{\scriptscriptstyle A} t_j \big] &= c_{\nu \setminus} t_{2+;} \\ j &= 1, \, 2, \, \dots, \, n \cdot \nu = 1, \, 2, \, \dots, \, m-n. \end{split}$$

The intrinsic derivative of $\omega_{\lambda | 1}$ w.r.t. the curve C can be put in the following form :

$$\frac{\delta \omega_{\lambda+1}}{\delta s} = (\kappa_{\omega_1|n} N_{1|}^{\alpha} + \kappa_{\omega_1|g} a_{1|}^{\alpha}) t_{1|},$$

where (i) $t_{1|}$ is the magnitude of the vector $t_{1|}^i$, (ii) $\kappa_{\omega_1|_n}$ and $\kappa_{\omega_1|_g}$ are the normal curvature and geodesic curvature of the congruence $\omega_{\lambda|1}$ w.r.t. C. Their magnitudes are given by

$$\kappa_{\omega_{1\mid n}}^{2} = \sum_{\nu} \left(t_{1\mid}^{l} \Omega_{\nu\mid li} + a_{\nu\mid 1; i} + \sum_{\mu} a_{\nu\mid 1} \theta_{\mu\nu\mid i} \right)$$

$$\left(t_{1|}^{m} \Omega_{\nu+mj} + a_{\nu+1;j} + \sum_{\mu} a_{\nu+1} \theta_{\mu\nu+j}\right) \frac{dx^{i}}{ds} \frac{dx^{j}}{ds} \bigg/ g_{lm} t_{1|}^{l} t_{1|}^{m}$$

and

$$\kappa_{\omega_1 \mid g}^2 = g_{lm} \left(t_{1 \mid ; i}^l - \sum_{\nu} a_{\nu \mid 1} \Omega_{\nu \mid ik} g^{kl} \right)$$

$$\times \left(t_{1+,j}^m - \sum_{\nu} a_{\nu+1} \Omega_{\nu+jk} g^{km}\right) \frac{dx^i}{ds} \frac{dx^j}{ds} \bigg/ g_{lm} t_{1+}^l t_{1+}^m$$

We further obtain

$$\frac{c_{\nu+}}{a_{\nu+2}} = \frac{c_{\mu+}}{a_{\mu+2}} = \frac{\left[\sum_{\nu} c_{\nu+}^2\right]^{\frac{1}{2}} \kappa_{\lambda+2}}{\kappa_{\omega_1+n} t_{1+}} \qquad \dots \qquad \dots \qquad (35)$$

and

$$\sin \alpha = \cos \gamma, \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots$$

where α and γ are the angles made by the vector p^i with the vectors t^i and $t^i_{2\perp}$ respectively.

Let us denote

$$\xi_{j} = t_{2+j} - \frac{a_{\nu+2}}{c_{\nu+1}} (p_{j} - p_{h} t^{h} t_{j}) \qquad . \qquad . \qquad (37)$$

and call ξ_j as the components of the hyperasymptotic curvature vector of the congruence λ w.r.t. C.

From (37), it follows that for a h.a.* congruence, the h.a. curvature vector is the zero or null vector.

Let κ_h be the magnitude of the vector ξ_l .

$$\begin{split} \kappa_h^2 &= g^{jk} \xi_j \xi_k \\ &= g^{jk} \bigg[t_{2+j} - \frac{a_{\nu+2}}{c_{\nu+}} \big(p_j - p_k t^k t_j \big) \bigg] \\ &\qquad \times \bigg[t_{2+k} - \frac{a_{\nu+2}}{c_{\nu+}} \big(p_k - p_l t^l t_k \big) \bigg]. \end{split}$$

This simplifies to

$$\kappa_{h}^{2} = \left(1 - \sum_{\nu} a_{\nu+2}^{2}\right) - 2\frac{a_{\nu+2}}{c_{\nu+1}} \cos \gamma \left(1 - \sum_{\nu} c_{\nu+1}^{2}\right)^{\frac{1}{2}}$$

$$\left(1 - \sum_{\nu} a_{\nu+2}^{2}\right)^{\frac{1}{2}} + \left(\frac{a_{\nu+2}}{c_{\nu+1}}\right)^{2} \left(1 - \sum_{\nu} c_{\nu+1}^{2}\right) \sin^{2} \alpha. \qquad (38)$$

We shall call κ_h as the h.a. curvature of the congruence λ w.r.t. C. For an h.a. congruence, the h.a. curvature vanishes. Hence using (35) and (36), we have for a h.a. congruence,

$$\kappa_{h}^{2} = \left[\kappa_{\lambda|2} \left(1 - \sum_{\nu} a_{\nu|2}^{2} \right)^{\frac{1}{2}} - \kappa_{\omega_{1}|n} t_{1|} \left[\frac{1}{\sum_{\nu} c_{\nu|}^{2}} - 1 \right]^{\frac{1}{2}} \sin \alpha \right]^{2} = 0,$$

i.e.

$$\kappa_{\lambda \mid 2} \left(\mathbf{I} - \sum_{\nu} a_{\nu \mid 2}^2 \right)^{\frac{1}{4}} = \kappa_{\omega_1 \mid n} t_{1 \mid} \left[\frac{1}{\sum_{\nu} c_{\nu \mid}^2} - 1 \right]^{\frac{1}{4}} \sin \alpha$$

a relation connecting the absolute torsion of the congruence λ w.r.t. C and the normal curvature of the congruence $\omega_{\lambda+1}$ w.r.t. C. Special case.

Choose the congruence μ to be normal to V_n .

$$\sum_{\nu} c_{\nu j}^2 = 1.$$

^{*} We use the abbreviation h.a. to denote 'hyperasymptotic'.

The general expression (38) for the h.a. curvature reduces to

$$\kappa_h = 1 - \sum_{\nu} a_{\nu/2}^2 \quad \text{[using (35)]}$$

$$= 1 - \frac{\kappa_{\omega_1/n}^2 t_{1/2}^2}{\kappa_{\lambda/2}^2}.$$

Hence we have for an h.a. congruence relative to a normal congruence μ ,

$$\kappa_{\lambda|2}^2 = \kappa_{\omega_1|n}^2 t_{1|}^2.$$

From (32), this can be written as

$$\kappa_{\lambda|1}\kappa_{\lambda|2} = \kappa_{\omega_1+n}\kappa_{\lambda|g}$$

3. From (30) and (37), we have

$$(\kappa_{\lambda+1}t_{1+j}-\eta_j)\frac{1}{a_{\nu+1}}=(t_{2+j}-\xi_j)\frac{1}{a_{\nu+2}}.$$

On squaring,

$$\begin{split} g^{jk} & \big[(\kappa_{\lambda+1} t_{1+j} - \eta_j) (\kappa_{\lambda+1} t_{1+k} - \eta_k) \big] a_{\nu+2}^2 \\ & = g^{jk} \big[(t_{2+j} - \xi_j) (t_{2+k} - \xi_k) \big] a_{\nu+1}^2. \end{split}$$

This simplifies to

$$\begin{split} & \left[\kappa_{\lambda+1}^2 g^{jk} t_{1+j} t_{1+k} - 2 g^{jk} t_{1+j} \eta_k \kappa_{\lambda+1} + \kappa_u^2 \right] a_{\nu+2}^2 \\ & = \left[g^{jk} t_{2+j} t_{2+k} - 2 g^{jk} t_{2+j} \xi_k + \kappa_h^2 \right] a_{\nu+1}^2. \tag{39} \end{split}$$

Let ϕ be the angle between the vectors t_{1} and η_{j} .

$$\cos \phi = \frac{g^{jk} t_{1+k} \eta_j}{\kappa_u \left(1 - \sum_{\nu} a_{\nu+1}^2\right)^{\frac{1}{2}}}$$

$$= \frac{\kappa_{\lambda+1} g^{jk} t_{1+k} \eta_j}{\kappa_u \kappa_{\lambda+n}}. \qquad (40)$$

Let ψ be the angle between the vectors $t_{2|}$ and ξ_{j} .

$$\cos \psi = \frac{g^{jk} t_{2|j} \xi_k}{\kappa_k \left(1 - \sum_{\nu} a_{\nu|2}^2 \right)^{\frac{1}{2}}}.$$
 (41)

Using (32), (40) and (41), (39) can be written as

$$\begin{split} \left(\kappa_{\lambda\mid\varepsilon}^2 - 2\kappa_u \kappa_{\lambda\mid\varepsilon} \cos\phi + \kappa_u^2\right) a_{\nu\mid 2}^2 \\ &= \left[\left(1 - \sum_{\nu} a_{\nu\mid 2}^2\right) - 2\kappa_h \left(1 - \sum_{\nu} a_{\nu\mid 2}^2\right)^{\frac{1}{2}} \cos\psi + \kappa_h^2 \right] a_{\nu\mid 1}^2 \end{split}$$

which gives a relation between the union curvature, hyperasymptotic curvature and geodesic curvature of the congruence λ w.r.t. C.

4. Pravanovitch (1955, 1956) has defined hyper-Darboux lines on an ordinary surface by the property that the plane determined by the tangent to the curve and the vector $R_1 n^i + R_2 \frac{dR_1}{ds} b^i$ at all points of the curve contains the tangent to the congruence μ through that point, n^i and b^i being the components of the unit principal normal vector and the binormal vector, R_1 and R_2 , the radii of the first and second curvatures of the curve at that point. In this section, we consider a congruence λ of curves on V_n such that the surface generated by the geodesics tangential to the pencil of directions determined by the tangent to a curve of the congruence λ and the vector $\kappa_{\lambda+1}\omega_{\lambda+1}^{\alpha}+\kappa_{\lambda+2}\omega_{\lambda+2}^{\alpha}$ contains the unit tangent to a curve of the congruence μ , $\omega_{\lambda+1}$ and $\omega_{\lambda+2}$ being the unit principal normal vector and the first binormal vector to the congruence λ , $\kappa_{\lambda+1}$ and $\kappa_{\lambda+2}$ the first and second curvatures of the congruence λ w.r.t. C. We shall call the congruence λ with the above property as a hyper-Darboux congruence of the subspace relative to the congruence μ .

Proceeding on lines similar to the above, the differential equations of a hyper-Darboux congruence of the subspace relative to the congruence μ are obtained in the form

$$(\kappa_{\lambda+1}a_{\nu+1} + \kappa_{\lambda+2}a_{\nu+2})(p_j - p_h t^h t_j)$$

$$= c_{\nu+1}(\kappa_{\lambda+1}t_{1+j} + \kappa_{\lambda+2}t_{2+j}).$$

$$j = 1, 2, \dots, n. \nu = 1, 2, \dots, m-n.$$

The vector

$$\xi_{j} = \left(\kappa_{\lambda+1}t_{1}^{j} + \kappa_{\lambda+2}t_{2+j}\right) - \frac{\kappa_{\lambda+1}a_{\nu+1} + \kappa_{\lambda+2}a_{\nu+2}}{c_{\nu+1}}\left(p_{j} - p_{k}t^{h}t_{j}\right)$$

will be said to form the hyper-Darboux curvature vector of the congruence λ w.r.t. C. We establish on lines similar to the above, the relation

$$\begin{split} & \left(\kappa_{\lambda^{\parallel n}}^2 + \kappa_{\omega 1 \parallel n}^2 t_{1 \parallel}^2 - 2\kappa_{\lambda^{\parallel 1}} \kappa_{\lambda^{\parallel 2}} g_{ij} t_{1 \parallel}^i t_{2 \parallel}^j \right) \left(\frac{1}{\sum_{\nu} c_{\nu \parallel}^2} - 1 \right) \sin^2 \alpha \\ & = \left[\kappa_{\lambda^{\parallel g}}^2 + \kappa_{\lambda^{\parallel 2}}^2 \left(1 - \sum_{\nu} a_{\nu \parallel 2}^2 \right) + 2\kappa_{\lambda^{\parallel 1}} \kappa_{\lambda^{\parallel 2}} g^{jk} t_{1 \parallel j} t_{2 \parallel k} \right] \end{split}$$

connecting the normal curvature, geodesic curvature, absolute curvature and absolute torsion of the congruence λ and normal curvature of the congruence $\omega_{\lambda|1}$.

I wish to express my deep gratitude to Dr. C. N. Srinivasiengar for his kind guidance.

REFERENCES

- Kaul, R. N. (1957). Union curvature of a vector field. Tensor, 7, 185-89.
- Mishra, R. S. (1951). On the congruence of curves through points of subspace embedded in a Riemannian space. *Ann. Soc. sci.*, **65**, 109-15.
- Nirmala, K. (1963). Curves and invariants associated with a vector field of a Riemannian V_m in relation to a curve C in a sub-space V_m . Proc. natn. Inst. Sci., India, A 29 (4), 394-406,
- Pravanovitch, Mileva (1955). Hyper-Darboux lines on a surface in three-dimensional Euclidean space. Bull, Calcutta math, Soc., 47, 55-60.
- ---- (1956). Curvature of the curves of a Riemannian space. Math. Stud., 24, 209-15.
- Springer, C. E. (1945). Union curves and union curvature. Bull. Am. math. Soc., 51, 686-91.
- ---- (1947). Am. math. Mon., 54, 256-62.
- (1950). Union curves of a hypersurface. Canad. J. Math., 2, 457-60.
- Weatherburn, C. E. (1957). An Introduction to Riemannian Geometry and the Tensor Calculus. Cambridge Univ. Press, § 90, p. 163.