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Springer (1945, 1947, 1950) has defined a union curve on an ordinary surface
as a curve such that the osculating plane at each point of the curve contains
the line of a specified rectilinear congruence. He further developed the
subject for a hypersurface in a Riemannian space by introducing a totally
geodesic surface as an analogue for the osculating plane in ordinary space,
and studied some properties of these curves. Mishra (1951, 1952) extended
the notion of union curves to a subspace Vn embedded in a Riemannian .
He also discussed hyperasymptotic curves on an ordinary surface and in a
Va embedded in Vs, In this paper we introduce a union congruence of
curves and some other congruences on similar lines.

1. Let V, be a subspace with the coordinates zf, and the fundamental
metric g da‘dx’ (i, j=1, 2, ..., n), embedded in a Riemannian Vp of m
dimensions with y* as the coordinates of any point, and uaﬁdy“dyﬁ(oc, B=
1, 2, ..., m) as the fundamental metric. We have the relation

aapy%HP = g, R ¢ B!

Let Ny, (=1, 2, ..., m—n) be the contravariant components of a

system of m—n linearly independent orthogonal unit normal vectors to V,,
so that

apNy, N8 =8 .. .. . @
G’ Ne =0 .. . L L ®

Let us consider a congruence of curves A tangential to V,, such that one
curve of the congruence passes through each point of the subspace V,. Let ¢
and A% be the contravariant components of the unit tangent vector to a curve
of the congruence A in terms of the coordinates of Vyu and Vy, respectively.

We have

AG. s o

H

The tensor derivative of (4) gives
'3 1
)‘O;Li = tyf‘.,+t; sy?z .
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Using the known formula (Weatherburn 1957)

..—Zgy,u :,

where 2,;;; are symmetric covariant tensors of the second order, the above
simplifies to

/\ofi = Z'Qvlilth:‘]'{'tl; iy?l .
14

Let ot = x%(s) be any given curve C in ¥, and P any point on it. The
derived vector of A along the curve C eonsidered as a curve in Vy, is given by

SX" S(t!
ZQVth ds N +*(—) ? N !
This equation can be put in the following form (Nirmala 1963):
8\ .
B " Axl ).\nN +",\,g“u x . .o (6)

where (i) «,, is the absolute curvature of the congruence A w.r.t. C, (ii) #,,
and «,), are the normal curvature and geodesic curvature of the congruence A
w.r.t. C respectively. Their magnitudes are given by

¢ dad
/\\" zgvmgvlm]tlt Ti'g ‘Jg
and .. . (M
0 8(¢1) 8(tm)

e =I5y o
In a previous paper, we have worked out the Serret-Frenet formulae
(Nirmala 1964) for a congruence. We have thereby

8ww .
55 /\If-H e ™ )«lr—l At
(r=0,1,2,...,m=1),
where
X a
W10 =A% Ky =Ky Ky 1o = 0,0, =0,

w)jg-1, Wy m are the zero or null vectors,
and the vectors A*, @y, @) 5 « - - » @) ,_; are mutuaily orthogonal. i

The vectors with contravariant components o, )\]2, ..oy, have
been called the unit principal normal vector, the first unit binormal vector,
the second unit binormal vector, ..., to the congruence A in V,, relative to

the curve C' at the point P. We can express these vectors in terms of the
tangential and normal components on V,. Hence we have

W, =6 D aul, e ®
1 4

(r=0,1,2,...,m=1),
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where tﬁl and a,, are the tangential and normal components of w, , on V,
and
w;‘m = )\a, t:)] = t’, @y g = 0.

Also we have from (8),
2 i 47
1= a, =g .. . ..
v
(r=1,2,..., m=1).

Now let us consider a congruence p of curves in ¥V, such that one curve of
the congruence passes through each point of V,. Let u* be the contravariant
components of the unit vector tangential to a curve of the congruence p at
the point P on C. Resolving p* tangentially and normally to V,, we have

“a=piy?i+z CVIN:((‘ . . . (10)

where pi are the tangential components of p in ¥V, and ¢, = cos 6, 6,
being the angle between the vectors x and N, ,.

From (10), we have
l—p‘]oi=ch:=2<zos2 G, . .. .. (11

We shall call the surface generated by the geodesics tangential at P to
the pencil of directions determined by the unit tangent vector A* and the unit
principal normal vector wf\c“ as the osculating geodesic surface of the con-
gruence A w.r.t. C. If the congruence y is such that the osculating geodesic
surface of the congruence A at each point of the curve O contains the unit
tangent vector u* to a curve of the congruence u, we shall then call the con-
gruence A as a union congruence of the subspace Vs relative to the congruence p.

Hence we can express 1* in the following form :

u& = r,\“-l—vw;l. .. .. .o (12)

From (4), (8) and (10), this can be written as

P+ ZCVJN:[; = "tlyo;‘z‘*‘”(tily?z'*' Z“"HN:I)' .- (13)
Multiplying (13) by aqgy B i
P =ttt T § 1)
Multiplying (13) by aqeN% ,
Oy =102, S ¢ 1)
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Taking the scalar products of (12) w.r.t. A,

re= aaﬁl»‘ml\ﬁ
= “«B(P‘y?ﬁz chNfl)tjy/?j
=t (16)
From (15) and (16), (14) can be written as
a, [p—pit]=c,t, . N e 6!
In this equation the suffix j can take any of the values 1, 2, ..., n and +
can take any of the values 1, 2, ..., m—n. Hence we get altogether n(m—n)

equations in the quantities ¢ and their solutions will determine the directions
at P of the union congruences of a subspace relative to a given congruence p
of V. But on account of (15), the (m—n) equations given by (17), for different
values of v, are identical for any one value of j. Hence we get only » differen-
tial equations in the quantities £. The equations (17) are thus always consist-
ent and hence union congruences associated with any given congruence u exist.
We shall call these equations as the differential equations of the wnion congru-
ence of a subspace relative to the congruence p.
From (5), (6) and (8) we have

"
Y A]l( 1Y, z+z )

dz' o B
= valxN“+8—8(tl)y?l. e 1)

Multiplying (18) by 2,g%° .
)
ity =955, (). (19)

Multiplying (18) by @,z fl , we have
1d:b

K1y =t (20)
Using (19) and (20), equation (17) can be written in the alternative form
zdx .
Q. = [n—pi't]= ,19,,38 ) I 1 )

which is obviously a differential equation of the first order in the t’s and the
derivatives of ¢.

Kaul (1957) has dealt with the converse of this problem for a hypersurface.
Given a vector field in Vp,, he discusses the determination of a curve C in
Vs such that the totally indicatrix surface of the vector field contains the
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unit tangent vector to a curve of the congruence p. The problem studied in
this paper is the converse, viz. the determination of a congruence A in V,
such that the osculating geodesic surface of the congruence A w.r.t. a given
curve C contains the unit tangent vector to a curve of the given congruence p.
The differential equations (21) for a hypersurface are identical with the differ-

ential equations (3.7) of Kaul’s paper. But they are used in Kaul’s paper to
dat
determine d—t, given #, whereas we consider them as determining #, given

dxt
ds *

i
When X defines a curve tangential to C, # = %, the equation (21)

o, AR A (e
V‘lt?{; ds p] gjkphz; ds V‘gl]s—s ds .

The differential equations of the union curves of a subspace relative to a
congruence, as gien by Mishra, thus follow as a special case of the above. From
(15) and (20), we have

reduces to

dx? dxt

Qg Q gt

1 gy s TR

A Gy ®ai1 S ¥y
v,u=12 ..., m—n.v£Epu

Using (7), each of the above ratios is equal to

Fxin b
T (22)
[ Z cv ] i1
Let o be the angle between the vectors pf and .
_pit’
cos o = ———g—’—]—:’—)——& . (23)
[l -— Z cf l]
Let B8 be the angle between the vectors p¢ and ti P
D't
cos B = LA (24)

-3

14 v

Multiplying (14) by g%, we have
= rtk+vtf|. .. .. .. .. (25)

Multiplying (25) by y,ktl” and using (9) we have

auth P = vg, 8 1 = v(l-—z af,l). L. (28)

v
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From (24) and (26),
.v(l—-Za.fll)é=cosﬁ(1——2631)}. .. 27

Multiplying (25) by g,,t,

1k 2 \?
gt p =r=cosoc(1— cvl)‘ .. . (28)
2
Squaring (25), we have

o3 <=3

v

Using (27) and (28), this can be written as

(1— Z(ﬁ‘) = cos? :7.(1—— Zcf,)+cosz ,3(1— z"fl) :

v v 14
cos2 a4cos2 B=1"

i.e. cos? B =sin?a. .. .. .. (29)
Let us denote

Ay |1 3 .
1,1=Km[tm- » (p;—ppt tj)]. . . . (30)

We shall call the vector defined by the components 7y as the union cur-
vature vector of the congruence A w.r.t. C relative to the congruence p. From (17),
it is obvious that for a union congruence, the union curvature vector is the
null or zero vector.

Let «, be the magnitude of the vector ;.

2 _ 3k

Kl"' = g 7]]*7’/3
— .2 gty Wi h
=0 [tllj cvl (Pj_pht tf)]

Ay |1 h
X [tuk'— 27 (pk—.p;,t tk):,

R T A1 ik
_K/\u[g hite—2 o 7 b\ iPx

2 .
(2 =) mrt) |
v

Using (9), (23) and (24), this simplifies to

2 _ 2 2 50 ~ 2\
Ky =5 [(1— Eavvu)—l o cosﬁ(l—— E Cv{)
. b 2
_22 it _22;2 . (3
X(l avu) +(Cv() (1 cvi) sin a] (31)

v v
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But from (7) and (19) we have
2

2\ _ g M
(I_Z“vn) =gt =55 c e (32)
v M
Substituting in (31), we have
2 _ 2 : 2\ i1
Ka = K1 2Ry My 008 B(I—Z%u) A

v vi

2 (%1)? 2\ .
+KM](GVV| I—ch, sin? a. .. .. (33)
~ :
We shall call «, as the union curvature of a congruence A w.r.t. C relative
to the congruence p. Hence the expression (33) gives a relation connecting the

union curvature, geodesic curvature and absolute curvature of the congruence
Award. C.

Using (22) and (29), the general expression (33) for the union curvature
reduces in the case of a union congruence to the form

2 [ 1 L 2
K, = {KA;&'_KA[”(?- —'1) Sin fl] =0.
vi

Hence we have for a union congruence

1 LI .
KA]S=K/\|"(—_§72—_1) S o . .. . (34)
vl

v

a relation connecting the geodesic curvature and the normal curvature of the
congruence.

Special cases.

(1) Choose the congruence n to be normal to V.

ch] =1.

v

From (33), we have
KIZ‘ = Ki\g'
t.e. The union curvature of the congruence A relative to a normal congruence p
1s equal to the geodesic curvature of the congruence A w.r.t. C. Hence the curve C
will be a A-geodesic (Nirmala 1963) w.r.t. the union congruences.
(i) Choose the curve C to be an asymptotic line of the first type (Nirmala
1963) of the congruence A. Then «,;, = 0.
If A is & union congruence, it follows from (34), that
: Kxig = 0.
The curve C is therefore an absolute geodesic.
Hence a curve C which is an asymptotic line of the first type w.r.t. a union
congruence A is an absolute geodesic of the congruence A.
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2. In a similar manner, we can introduce hyperasymptotic congruences
of a subspace.

We shall call the surface generated by the geodesics tangential to the
pencil of directions determined by the directions of the tangent and the first
binormal vector to a curve of the congruence A as the rectifying geodesic
surface of the congruence A w.r.t. C. Suppose the rectifying geodesic surface
at each point of a curve of the congruence A contains the tangent vector to a
curve of the congruence u. Then we shall call the congruence A as a hyper-
asymptotic congruence of the subspace relative to the congruence p. Proceeding
on lines analogous to the above discussion for a union congruence, we obtain
the differential equations of the hyperasymptotic congruences of a subspace
relative to the congruence u, in the form

h
avlz[pj_pht tjjz cv1t2|;
i=L2 ...,nv=12, ..., m—n.

The intrinsic derivative of wy(; w.r.t. the curve ¢ can be put in the
following form :
A1 ® o
“_3:9L= (KwI]nN1[+lelgall)t1l’

where (i) {;; is the magnitude of the vector ti], (i) kw1 yn and ky |, arve the
normal curvature and geodesic curvature of the congruence w,;; w.r.t. C.
Their magnitudes are given by

2 1
le]n = Z (tl |‘Qvlli+av]1;i+z av]leuvli)
I

14

m dxi dxj i om
(tligv|mj+avll;j+zav]10;11/1]‘) E; d_s glmtlltlx
i

and
2 1 ki
le[g = glm(tll;i_zavél‘gvukg )
v
m i\ da’ die’ rom
X (tu;;“z%u‘?vmg )TE ds, Tunhi 1
v
We further obtain
2y 9 *
. c [ch[] Kyre
vl pt by J . .. .. .. (35)
T s Kl |n'14
and
sin « == cos 7, .. .- . .. (36)

where « and ¥ are the angles made by the vector pt with the vectors ¢ and
ts| respectively.
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Let us denote

£ =t —?”—’—'“’( —pt't) 37
i = layj Cyl Pj phj . .. .o (37)

and call ¢; as the components of the hyperasymptotic curvature vector of
the congruence A w.r.t. C.

From (37), it follows that for a h.a.* congruence, the h.a. curvature vector
is the zero or null vector.

Let «, be the magnitude of the vector £;.

"i = gjkf]'f,c
ik @y 1y k

@,
X [t:zlk_ ‘cﬂlf(pk‘pztltk)]'
v
This simplifies to

. o @, . 3
K= [1— Ea“ —2 2 eosyf1="> ¢
k vi2 CVI vl

14 14

(1—zaflz)*+(“c”'2)2(1—chl)sinza. e (38)
v vl v

We shall call «;, as the h.a. curvature of the congruence A wr.t. C. For
an h.a. congruence, the h.a. curvature vanishes. Hence using (35) and (36),
we have for a h.a. congruence,

2 2 3 [ 1 LA 2
K, = KM2<l—zavI2) —;cw”nt” 5 —1}sina] =0,
: S

L. v .

7.e.

14 V|

2 \}_ F 1 i
K'\;Z(I—Za”z) —"wuntu Z 5 -1} sin«
c
L. v J

a relation connecting the absolute torsion of the congruence X w.r.t. C and the
normal curvature of the congruence wy; w.r.t. C.
Special case.

Choose the congruence u to be normal to V.

Zcf, =1

v

* We use the abbreviation h.a. to denote ‘hyperasymptotic’,
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The general expression (38) for the h.a. curvature reduces to

K, =1— Z a?, [using (35)]
2 2

=1 Kt i al1)

=l=-—

fal2

Hence we have for an h.a. congruence relative to a normal congruence p,

2 2

o
K2 = Ko bl

From (32), this can be written as

a1z = Ko n®ae,

3. From (30) and (37), we have

1 1
(it =) = (t2lj_§j)r
vl v}i2
On squaring,
g]k[(K,\[ltl |j—77j)(KM1t1 lk“nk)]“;lz
i 2
=g [(tZIj_fj)(tZ[k—gk)]a’vl1'
This simplifies to

2

e it 2
Ceaing? it e =207t ey H 00
= [0, ty s —~20"1, £+ 0] e (39)
Let ¢ be the angle between the vectors ¢, and 7;.

ik
gty

2 4
Ku(l _Za'vl 1)

v

cos ¢ =

7k
_and by

(40)
KuFhie
Let ¢y be the angle between the vectors f,, and &;.
jk
ty
cos if = 7 b (41)

2\’
"h(l—zavw)
v

Using (32), (40) and (41), (39) can be written as

2 2 2
(KMg—.‘ZKung cos g{:-]-/(u @y

= [(I—Z “3{2)“2";,(1"2“312)& cos :/x+xf]af{1

14 1 4
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which gives a relation between the union curvature, hyperasymptotic curvature
and geodesic curvature of the congruence A w.r.t. C.

4. Pravanovitch (1955, 1956) has defined hyper-Darboux lines on an
ordinary surface by the property that the plane determined by the targent to

dR
the curve and the vector R;n‘+R2—d?lb‘ at all points of the curve contains

the tangent to the congruence u through that point, »* and b¢ being the
components of the unit principal normal vector and the binormal vector,
R, and R,, the radii of the first and second curvatures of the curve at that
point. In this section, we consider a congruence A of curves on V, such that
the surface generated by the geodesics tangential to the pencil of directions
determined by the tangent to a curve of the congruence A and the vector
K/mw;l+KM2w;2 contains the unit tangent to a curve of the congruence
w, w1 and wy,, being the unit principal normal vector and the first binormal
vector to the congruence A, x),; and «,, the first and second curvatures
of the congruence A wr.t. C. We shall call the congruence A with the
above property as a hyper-Darboux congruence of the subspace relative to the
congruence p. \

Proceeding on lines similar to the above, the differential equations of a
hyper-Darboux congruence of the subspace relative to the congruence n are
obtained in the form

(fx 1% 11 TR0 10 12) (2~ 2it™t;)
= 0 (Ky 11115y oba15)-
=12 ...,nv=12 ..., m—n.
The vector

PN A N
Al vl Al27v)2
A- P ARYE (.pj

k.
—pht 2
. )

_ j
¢ = (",\l 1t1]+KM2t211‘)_

will be said to form the hyper-Darboux curvature vector of the congruence
Awrt. C. We establish on lines similar to the above, the relation

2 2 2 i i 1 .
(KMn+Kw“nt1|—2K/\”K)\|2g‘-jt1,t2’)<z~———2 —l)smhx.
v
v

2 .2 2 : ik
= [K)«Ig"'")«lz(l— Z“vxz)'"z")\u")uzgj tlljt2|k]
v

connecting the normal curvature, geodesic curvature, absolute curvature and
absolute torsion of the congruence A and normal curvature of the congruence

le.

I wish to express my deep gratitude to Dr. C. N. Srinivasiengar for his
kind guidance.
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