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Space-times of vanishing scalar curvature B conformal to empty spaces are

considered. The solutions of the equation B = 0, which is a necessary
condition for the field to be electromagnetic, are discussed in two stages.
In a particular case it is shown that the conformal space-time is null electro-
magnetic if & certain vector associated with it is null and the empty space is
self-conjugate or flat. When the vector is time-like the conformal space is
ono of disordered radiation and the empty space is necessarily flat. The
general solution is discussed for some well-known empty fields including
flat space. It is shown that electromagnetic fields exist when the empty
space is either flat or one of plane gravitational wave, It is further found
that space-times conformal to empty spaces of spherical, cylindrical and
static axial symmetries do not represent electromagnetic fields when the
corresponding symmetry is preserved., An interesting feature emerging
from these solutions is that the square-root of the conformal factor propagates
with fundamental velocity.

INTRODUCTION

The conformal curvature tensor Cximyn Obtains its importance in general
relativity through Pirani’s (1962) formulation of gravitational radiation in
empty and non-empty space-times. The metric tensors g, and g, of two
conformal space-times ¥4 and ¥V, are related by the equation

glm = ezoglm’ .. . . .. 1)

where o is any scalar function of coordinates. From equation (1) arises the
necessary and sufficient condition that (Eisenhart 1949)

aklm” = Crimn’ c. .. .- . (2)
where

Cklmn = Rklmn+i(gkaln_gkanm+glanm—glmRkn)+%’R(gknglm—gkmgln)' ()

Because of this identity of the two conformal curvature tensors, it follows
that gravitational space-times which are conformal to each other will have
similar radiative behaviour. From this point of view a study of Riemannian
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fourfolds which are conformal to certain well-known gravitational fields will
be of special interest.

If V, is an empty space, i.e. if Rim = 0, we have
Crimn = Riimns

which implies that in an empty space the gravitational features are completely
characterized by the conformal curvature tensor. For ¥V, the following
possibilities arise:

(i) Rklmn = O: (11) Elm = 0, (m) le 7‘— Oa R = O: (iV) le ;ﬁ 0, R ?ﬁ 0.

Case (i): This case is of no gravitational consequence,

Case (ii): If Bim = 0 we get

Eklmn = aklmn
which leads to

Rklmn = Riimn
implying that V, and V, are gravitationally identical. Hence if an empty
space is conformal to another empty space it is identical with the latter. In
particular an empty space cannot be conformal to flat space unless it is itself
flat. The value of o which carries over V, into an identical empty space is
given by
o;lm—o;lo';m+%glmg'$a';,c;s=O. .. .. . 4)
Here a suffix following a semi-colon indicates covariant differentiation with
respect to the metric g,,.
Case (iii): When By 7 0 the material distribution for ¥, is given by
—8”?‘"'= 2(0;lm—a;lo;m)~glmg's(20;rs+o;rc;s) T (5)

which on contraction leads to

47T = 33—209'3(0; sto.,0) - - .. (6)
Also, since B = 0, we have
g"(o;n-l-o;'a;s)::o .. .. .. oo (7
or
@), =0 .. .. .. . .8

which is the necessary condition that ¥, be an electromagnetic field. This
together with

RinE™ — 1R B8 = 0 L ®
and
“z;m_“m;1=0’ .. .. .. .. .. (10)

& = v:‘;‘lmnpng:"; 'ch
’ RR,

where

(11)

iB
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gives sufficient conditions when the field is non-null (Wheeler 1961). If the
field be null electromagnetic we must have

RinR™ = 0. ¢ £

The equation (8) is a wave equation in curved space and has solutions for given
boundary conditions. The quantity e is associated with the deviation of
the new metric from the old one and the condition (8) shows that it is
propagated with fundamental velocity.

In the following, we investigate the existence of electromagnetic fields
which are conformal to empty space-time fields. As a particular case, electro-
magnetic fields conformal to flat space-time have been discussed. The solu-
tion of equation (7) has been discussed in two stages. In the first instance,
when the expression in the parentheses vanishes, we obtain that V, leads to a
null electromagnetic field if ¢, is a null vector and that it represents a field of
disordered radiation if o, is time-like. The integrability condition requires
that ¥, be self-conjugate (Roy and Radhakrishna 1963) when ¥, is null electro-
magnetic, and flat when V, is a field of disordered radiation. This result has
been further generalized by assuming that

O im = PO 10, ;e . . . e (13)

This at once leads to ¥, being a null electromagnetic field when p = +1. The
general solution of (7) has been discussed when V4 is—
(i) flat,
(i) a field of plane gravitational wave,
(iii) a Schwarzschild exterior field,
(iv) a cylindrically symmetric empty field, and
(v) an axially symmetric empty field.

In the last four cases, conformal space-time 7, is taken to be having a sym-
metry same as that of V. It isfound that in the first two cases conformal
electromagnetic fields exist and that in the last three cases no such electro-
magnetic fields are possible. The solutions (29) and (43) obtained in the
sequel have singularities in the finite region of space-time; and as we proceed
to infinity the metric shrinks and finally vanishes indicating that there is an
impassable barrier at infinity. Hence, if at all such electromagnetic fields
physically exist, they will be valid only within a finite region of space-time
excluding the singularities; and they will have to be continued with an appro-
priate field of a different kind. The electromagnetic field tensors Fi; have
been calculated and it is found that the fields represented by (29) and (43)
are uniform electromagnetic fields. These metrics differ from other well-
known space-time metrics of electromagnetic or gravitational fields in the
sense that, in the latter cases when the sources are annihilated, a flat substra-
tum of space-time remains behind as a residue. But here, in the cases (29)
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and (43), when the sources are removed the space-time is also annihilated.
This is not unexpected, for here we have not formulated our problem from an
analogy of the classical electromagnetic theory in which the Minkowskian
space exists independently of the sources. The starting point in this investi-
gation is the Rainich Equations of the ‘already unified field” which have no
classical analogue; and the question under investigation is to find if non-
trivial solutions of these equations exist which are conformal to space-times of
well-known gravitational behaviour. Here we find the most general solutions
of these equations when the symmetries are specified. The significance of
such solutions, as has already been pointed out, is that, if such electromagnetic
fields are physically possible, their behaviour with regard to gravitational
radiation is the same as that of the gravitational field to which they are con-
formal. Thus the space-time that is conformal to (49), discussed in section
IV, represents one of plane gravitational wave. The Rainich geometries
given by (29), (43) and (48) escape classification in respect of gravitational
radiation according to Pirani criterion, as the Petrov-Pirani matrix vanishes
identically. But a common feature of the solutions is that if the original
space-time is suddenly deformed into a conformal space-time by certain
disturbances, then a certain influence in the field is propagated with the
fundamental velocity.

_ PARTICULAR SOLUTION OF B = 0
As a particular solution of (7) we consider

%, Fo 0 =0. .. .. .. .o (14)
In this case

T rs
Ry, = -4“;1°;p+g1p9 0.0 .

s

(15)

Substituting (15) in (12) when = is set equal to ! we find that for a null electro-
magnetic field g™, ,0,; must vanish. In that case B;, takes the form

1—3;1,=—40';10;P, .. .. . .. (16)
0., being a null vector. If the field be non-null electromagnetic it is necessary
that

BB #£0
which requires that

K = g0 50
The condition (9) then requires that
a;la;m = iglm ‘a;ro;s
which leads to
’ —Elm = 0.
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~

Hence the condition (14) is incompatible with a non-null electromagnetic field.
The integrability condition of (14) requires that

o R =0 .. .. .. .. o1

sm” kin

Hence if the conformal space be null electromagnetic the empty space is neces-
sarily self-conjugate.

If ¢, is not a null vector but a time-like vector with magnitude %, viz.

g, 1= U,

4, being a unit vector, then the field is one of disordered radiation with
pressure k°/8z and density 3k*/8m. The condition (17) then requires that
R}, should vanish, i.e. the empty space is necessarily flat.

The above discussion suggests the consideration of a relation more general
than (14), viz.

O m = PO 10 my .. . . .. (18)

where p is a function of the coordinates. The case p = —1 has been discussed

above. If p=1 we find that Rin vanishes. The integrability condition of
(18) requires that

o, mB, to P w0 1=P 10 ) =0 .. . .. (19)

If p be a constant or a function of @, then (19) reduces to (17). That is to
say, the empty space has to be self-conjugate if the conformal space is electro-
magnetic and (18) satisfied. From (19) we find that

gl'”G'; P;m= 0.

If o ; is null p,,, must be space-like and orthogonal to it. From (19) we also
have

-Rklmanlm" = O,

Rlclmn*Rklm" — O.

It may be noted that when p = —2 and o is non-null, the field is one of
incoherent matter.

SpACE-TIMES CONFORMAL 10 Frar METRIC
When V, is flat equation (8) reduces to
7™ (€%), im = 0, R 1)

where Ty, is the metric tensor of Minkowski space. Here a suffix succeed%ng
a comma indicates ordinary partial differentiation. We consider the following
cases:
Case (i): -
e? = F(lx+my+nz—t) and Pimi4nz=1 .. .. (1)
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This leads to
= d? df\?
Bpg = {ET—fé_(a{)}zplq, @

where lp, = (I, m, n, —1), 1 = lx+my-+nz—t, and f=log F.
The conformal space represents a null electromagnetic field unless (d%f/d+?)
— (df/d=)? vanishes, in which case it becomes flat.

Case (ii): Let o = o(r, t). Then
€% = %f(r——t)+-:;F(r+t). .. .. .. (23)

Using spherical polar coordinates,

Bl — pto ~2(futFoo) (£ Fv+FDN} 2 [, +F, 1]
1= [ f+F (f+F)? T f+F T
Bt = e-20 —2(fuv_Fuv)+4{ (fu)z—(Fv)z} _ gfu—Fv

1 f+F (f+F)® r f+F |’
o 5 9 —4quv 1
R; = Rg = e’~0|:(f+F)2+772:, )

g oo 2wt Po) _ HUS DA ES) 2 f4F, 1
. f+F (f+F* rf+F
where u = r—t, v =r4t, fu=df/du, fuu = d*f/du?, ete.
For an electromagnetic field we have, from (9), R’lﬁ’f =0 which is equivalent to
(BI+EB)R; =0.
Thus either
(a) Bi#£0, R +R}=0,

] , o (24)

or ®) R} =0.
In case of (a), we have by virtue of (24)
4f F
fu ”(,=-1§. .. .. .. .. (25)
(f+F)y° ”

This shows that the eigenvalues of R}’ are zero. Equation (9) further
requires that

which leads to

[fm—ifu - f—ff (fu)2] [Fw+ 1F,— f—fﬁ (F.,)Z] =0. .. (20)
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Equations (25) and (26) are not compatible.
In case of (b), since R: = R§ we have R, = R} which gives

B |
fw+FmJ f+F {(f”) (Fv)z} +; (fu+F‘D) =0, .. .. (27).
Also B} = 0 leads to

fw—F,,v._FET{(f“)Z_(Fv)‘z}_}_%(fu_Fv)=0. @)

Equations (27) and (28) have a non-trivial solution only when f and F are
constants. The metric of V, in that case has the form

ds? o 2 __yr2d@* — 12 sin? 24 72
=;§(—dr~——rd0 —172 sin? 0 dep"+dt”). .. .. (29)

The electromagnetic field tensor F; corresponding to the metric (29) has the
non-vanishing components given by

A .
F14=;‘2—, F23=Bsm0,
2
where A2+ B? = .
47
The electromagnetic field thus reduces to a wrench in the given coordinate
system in the terminology of flat space-time. It has been verified that the

tensor Fy is a covariant constant, which implies that the electromagnetic
field is uniform.

Case (iil): ¢ = o(p, ). Using cylindrical polar coordinates,

e el G-
= -eelfE) -G

Fi= - {%%+( ) (i)}
= e fa(52) - () - G

2
Bl = 2 @1_%%}
Ry= =2\ 5om ~ o ot
where
(P, 2, ¢, 1) = (z1, 2, 28, z4).
Now

R'R:=0,ie. Ej(R\+E;)=0.
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Hence either
5} ] 54 Bl Hé
Bt=0 or Ri#0,E+Ei=0.
It 1_2: = 0 we have

820' aO’ aO’

0t~ 3p 9t (30)
so that

o =fO)+FE). .. .. .. .. (1)
Hence

R} = 2(f+F) fo—(fo) +(F)",
B = — () +(F)’,

2
?

Ry == (J+5)f,— ([ +(Fo),

B = —2(f+ ) Fu—(f,) +(F)*

For non-null electromagnetic field, we have the following alternatives:
1 2 2
(a’) fpp = 0’ I;fp = Fth 2(f+F)(fpp—'Ftt)-2(fp) +2(Ft) = 03

(b) fpp = %fp’ Ftt = O: 2(f+F)(fpp—Ftt)_z(fp)2+2(Ft)2 = O:

(©) fp+Fu=0, f,=0, 2f+F)fop—2 ) +2(F)* = 0.
In case (a), f = 0, F = constant and hence it is trivial.
In case (b), F; = constant. Hence
(f+a)fop—(f)*+a2 =0, Fy = a.
But
1, . bo?
Jop= ’—)fp, ie. f = bp+c.
Thus

2(bP% +c+a)b—4b%P% +a2 = 0
which requires that

a =0, b=0,ie. f= constant, F = constant.
In case (c), f = constant, F = constant. Hence when I‘Bi‘ = 0 the field is

not non-null electromagnetic. However, the field turns out to be one of
disordered radiation when we choose

e® = a4 bt. .. .. . .. (32)
If R} # 0 we must have

B 4+R;=0 N & )
for an electromagnetic field. Since R = 0 this requires that

RZ-{-R;:O, .o .o .. .. (39
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and
=2 =1\2 =12
(R) = (B) —(R)"

Equations (33) and (34) lead to
% 9% _
[

90\ 1ac (30)2
(a—,,) o \w) =0

Equation (36) has the solution
o = flo+t)+F(p—1).

0,

and

Using the new variables
p=p+t, v=p—t

as independent variables, equation (37) can be expressed in the form

Jds  do do 0o

Substituting from (38) in (39) we have
S AP A 2Aptn)f,Fy =0
which requires that

1 1
—+2u =~ =20 =m,
A

where m is a constant. Hence
f=a—1}log (m—2u), F = b—1} log (m+2v).
Equation (35) leads to

2 2

G - (G =15 G- G a5 5t

The equation (41) is satisfied by virtue of (38) and (40). Thus
o = C—1log (m—2u)(m+2v)

(40)

(41)

(42)

and the metric for the non-null electromagnetic field turns out to be of the

form
4

ds2 —_—
(t—B)*—p?

(—dp2—dz2—p2dd®+de2).

(43)

The electromagnetic field tensor Fy; for the metric (43) has the non-vanishing

components given by
Mp Np(t—B)
= e Flg= ————"—0 ’
Fie = oo™ 0 (B
__ M¢-B .
= =™ T B
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where
A

M2+N2 =,

4w

In this case also F;,; = 0, i.e. the electromagnetic field is uniform.

Case (iv): o = o(p, z). Using cylindrical polar coordinates,

1 o[, 0% (602 (00
B= - 5= () + (3

B2 =20 aG
By = e [2622 (8P) ( ]

3 g |2
R3=—e - ;

51 —20 30)2 do\>
Ry=—e (a’p Hz,

— 9% do 0o
1 __ _9p,-92f -~ __ 77271,
By=—2 [apb‘z %

As in case (iii) for an electromagnetic field, either

Bl=0
or

B#0, R +R,=0.

If By=0it is easily seen that the field is neither electromagnetic nor one of
disordered radiation. If R+E; = 0 we must have R}+R;=0. Hence

9% 0% .
et ="
and

do 196  [00}" _
(ap) 5 ap+(a_z) -

Equation (44) shows that o is a harmonic function.

Hence

o = f(p+iz)+ F(p—i2).

From (45) and (46) we find that

o = a—} log {P2+(z+n)%}.

For an electromagnetic field we also have

(BY = (B +(B)

which leads to

(T~ T2

(46)

(47)
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The last equation is easily seen to be satisfied for o given by (47). The metric
thus takes the form

ds? = 4 s (=t dp2 4 de2 4 p2dg?) .. .. (48)

- p2+(z+mn)
which can be reduced to the spherically symmetric form

4
ds? = — =5 (—di*+ de? +dy2 +dz2)

by a translation in z and which thus is identical with (29). It is verified that
the solutions (29) and (43) satisfy the conditions (10).

SPACE-TIME CONFORMAL TO THAT OF PLANE GRAVITATIONAL WAVE
The field of plane gravitational wave is described by the metric
ds? = d’ —da?—erdyt—efde2, .. .. .. (49)
where a and g are functions of x—f. The condition that (49) is an empty
space leads to

Byt ) +(8)2 =01

, (50)
ot )£ 0|
where A = x—t.
The condition (8) leads to
9%(e°)  9(e°) .
4ot = (HB) =kt . (8]
which has the solution
e? = " MBI f(A) + F(7)]. e e (B2
The non-vanishing components of B)" are
- 2f T F.)
R = e [—%(aM+BM)+§(aI\+5A)2— T

4{(fA)'2+f,\Ff+(FT)2}L(aA+BA)fA]

R +F )

_ 2(f,—F,.)

R: = 8*20[—'%(am+ﬁl\/\)+%(%\‘*‘B})zh ;-I):{_Fm
4o‘(f,\)2-(F7)2}+(“A+f?,31~§]
RRNTESE fFF L

o, ] 2. 4FfJ

2 el T A T TIA

Bl R a)

- [ P8y _ ;’-’ifz&_]
3 =€ "?__}__F‘ (f+F)2i"
: 2 o)
s e-za[é(“/\)\"'pm)"%(“,\*‘ﬂx)z‘{” (JA’I\+F -
_A{(H)HE A ) (“A“L’gk)fA]. (53)

=
I

(f+F)2 f+F
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For an electromagnetic field we have either R; £ 0 or B} = 0.
In the former case we have
Ei+R;=0 and R4+Ri=0
which lead to
fF, =0
and

2f, )
(et i) = 0
Hence F,. = 0. The field in this case turns out to be null electromagnetic,

If R} = 0 we must have B{—E; = 0 and Bo—FE, = 0. The latter condi-
tion leads to

%, =F)
which violates the conditions (50). Hence Rt cannot vanish if the field is
to be electromagnetic. The only possible electromagnetic field is obtained
when o is a function of x—¢ alone and in that case the resulting field is null
electromagnetic.
SPACE-TIMES CONFORMAL TO SOME WELL-KENOWN EMPTY SPACE-TIMES

Case (1): The Schwarzschild metric—
ds? = —eMdr2 —r2d0®—r2 sin? 0 dg® + A%, et = 1— 2’:2. .. (64)

Let o = o(r, t) so that the conformal metric is also spherically symmetric.
The eigenvalues of R;; are Ry, Es and the roots of the equation

N—\(R+R)+ER,—RE=o0.

For a null electromagnetic field

R+E; =0,
RE-RR =0,
Rl=R=0
These lead to the equations
2¢ a—+re (3:) "‘(aa‘:) =0, .. . o .. (b5)
0%  (3\% (dr 2\d0 _g§0% , (00\2
5‘734‘(—6‘;) +( +- )ar — {5‘:—2'{'(55) }-—0; .. (56)
aze—a -2Aaze'°}2_ -2)‘{ a’e'o d,\ae"o}z
e = o "ar a | - 6D
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Equation (55) gives
1,/ ————5
o = at—log r:{:J; \/1+a2r2e‘z’\ dr. .. .. (88)

This value of o does not satisfy (56) and (57).

For non-null electromagnetic
field we have either

or
In the first case

which lead to

92 (90)*  1dA do 20 -(90\7)
i i —_ -»‘)’\ - -l — -
or? ( r) +2 dr (L—e )6r+e ;atz (at) f = 0, - (59)

020 dx 2\ do do
il -2 =
ar2+(+)are2(at) U ')

Also B = 0 leads to (56). Equations (56) and (59) give

020 3 dx 2 26'?A “) do

2&_24.(2(”-}- Z=0 .. . .6

which on integration gives

3o _ L(t) (1_ 2m) -t (-2

and

-9

or r \ r
From (60) and (62) we get

do 1\VL ¥ (,1__"1
a=2§—f‘t‘)%(l ) i )~/ - (89

It is easily verified that the integrability condition is not satisfied.

If B} 0 we have B;+R; = 0. This requires that R: = R} =0 so that the
field ceases to be non-null. We have already seen that null electromagnetic
field is not possible in this case.

Case (it): Einstein-Rosen metric—

ds? = — e - W(dp2—dp)—eWd2—pe~Hdgt. .. .. (64)
y=v(p,t), ¥=4¢r 1)

The functions § and ¥ satisfy the equations

Py 1o _ P _ e 9)

o PO o

[0 R

W _ M 6D
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Let 0 =o(p, {). For a null electromagnetic field, since the eigenvalues of

E] are all zero, we get

o0y 803 aa)z aa)z_
2apap—2ﬁﬁ+(ﬁ &) =9

dody _, 2004 (60)2 (60)2 200

deop” “dtot \op ot pop’
0% (90\2 1o 8% do\2
'a?é*(”a'ﬁ) toor T e (‘a?) =0
Hence
9% 9%
ot o
and

80)2 100 % _
(G2 +35 - (5) =0
which have the solution (42). (68) gives

a‘/’ —m—2% _ ¢

ot
which has the solution
p
$p=1loge (t- “) 't‘f(t——;ﬁ),
T2
where f satisfies the equation
d"'f 1—2u2 df
(1—%) 7z du2 u + =0

by virtue of (65), u being the variable

P —

Substituting the values of ¢ and ¢ in the equation

(Rn)2 = (Ru)z

we find that it is not satisfied.

For a non-null field either B = 0 or Bt 0, B+ R, = 0.

must have

(a) I—Ei = I_E:, R: = Rg, and R} = —1—32
or

(b) Rl = —R! Ri= —E, and Rl =R

(68)

(69)

(70)

(71)

(72)

(75)

If R} = 0 we
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Case (a) leads to

g@+&_2@(y_gg)_2@ A AN CLA N (A S
op2 ' otz “op\op  op at\at ~ac) ~\aw) ~\&) =

do 0y _O0coy 10o

(o)l P (o,

2 \op) Tpop orr \&
o de(or ) (o m) _a
ot e\t ot) “at\ee op) “pa_ " - - - (70
From the second equation,
e’ = F{f(p, t)}, .. .. o .. )]
where
of _ 5,0 of _,, 0
=X w="5p L

It is verified that (77) does not satisfy the other equations.

Case (b) leads to
Fo P
op? o

d0\* 1 o 9o \>
(%)+5%—(a)=ﬁ

% oo (8)’ 6¢) oo (ay a¢.) oo Oo

0,

i p\a o) " a@\em ) “ma

The first two equations have the solution (42). The last equation is not satis-
fied for this value of o.

If R} % 0, we must have

R1+R: =0 and ]—Z§+R§ = 0.
Hence
& _ 0% —0,

o o’

d0\? 1do 30)2 _
() +35- (5) =
which have the solution (42).
We have also the equation

and

(BY? = (B): - (BY?

which gives
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Equation (78) together with the field equations for empty space, viz. (65) to
(67), imply that V, is flat. The corresponding conformal space-time which
represents an electromagnetic field has already been discussed in Section III.
Hence there is no cylindrically symmetric non-flat empty space-time corre-
sponding to which a conformal cylindrically symmetric electromagnetic field
can exist.
Case (4i1):
ds? = —e P Y (dp2 4 dz2)—p2e” 2 dg? 4 e2¥di?,
g = (P, 2), ¥ = 7(p, 2).
Since we can go over from cylindrical symmetry to static axial symmetry by
the substitution
T=4zand Z=1il
we can conclude that static axially symmetric spaces conformal to static
axially symmetric empty fields cannot represent an electromagnetic field.
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