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The unsteady viscous flow past a flat plate at zero incidence with uniform
suction in the presence of a time varying pressure gradient has been investi-
gated by the application of the Laplace transform. The case of steady
flow when the pressure gradient is zero has been deduced as a special case.

1. INTRODUCTION

Mithal (1960) has discussed the unsteady flow of a viscous incompressible
fluid in a tube of circular cross-section under a timé varying pressure gradient.
In the present paper, the author considers the case of unsteady viscous flow
past a porous flat plate in the presence of a time varying pressure gradient.
As a special case, the time varying pressure gradient has been taken to be
the Dirac delta function. The case of steady flow in the absence of a pressure
gradient has been obtained by taking the time from the start of the motion to
be infinite.

2. EquaTtioNs oF MotioN AND THER BoUNDARY CONDITIONS

Consider the two-dimensional unsteady flow of an incompressible viscous
fluid past an infinite plate at zero incidence with uniform suction. Take the
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Fi1a. 1. Flat plate with uniform suction at zero incidence.

axes as shown in Fig. 1. Let u and v be the components of velocity at a
point (z, ¥) in the directions of the z- and the y-axes respectively. Then the
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equation of continuity and the two equations of motion are
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Here p is the density of the fluid, v is the coefficient of kinematic viscosity, ¢ is
the time measured from the start of the motion and p is the pressure at the
point (z, y).

Suppose that the initial and the boundary conditions for the problem
under consideration are

t<0:u=0andv=0 fory>0}

l>0:u=0and v==v,=const <O fory=0 3)

In view of the conditions (3) it is evident that the velocity distribution is
independent of x. This implies that du/dx = 0. Substituting du/ox = 0 in
eqn. (1) and using the second of the conditions (3) we obtain v = v,. Putt:ing
v = vy, the eqns. (2) become
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From the second of the eqns. (4), it is obvious that p is independent of y

and from the first of the eqns. (4) it follows that op/ox is a function of ¢ alone.
1 ap

Let — = = Hence the first of the eqns. (4) becomes
ou ou o%u
§+voé—?}=f(t)+v5?7§. N ()

3. SoruTiON OF THE EQUATIONS

Applying the Laplace transform to eqn. (5) (i.e. multiplying the equation
by e=* and then integrating from zero to infinity) and using the first of
the conditions (3), we get, after simplification,
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where
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and
foy = f f@exds. .. .. .. .. 8
0
The solution of eqn. (6) is
v+ o4 4 vo—Jv2+4Av
T I ™ +@, N ()

A

where ¢, and ¢, are arbitrary constants.
The second of the boundary conditions (3) becomes

i=0aty=0 .. . N ¢ ()]
As @ should be finite at y = co, we must have ¢, = 0. ' Hence eqn. (9)
becomes
y%— /v:+4)v f(A)
u = Cqf 2v +T . (11)
Applying the condition (10), we obtain
fo
G- e
Hence eqn. (11) reduces to
vo— Jv§+4hv
a=[f\i)-[1—e” 2 R ¢ )
Hence, by the inversion formula, we have
1 Y+t
w=o aeddy, .. .. .. .. (13
e Y-t

where v is greater than the real part of all the singularities of 4.

4. A Srrcian Case

Suppose that the pressure gradient is the Dirac delta function multiplied
by a constant, i.e.

—— =08, .. .. .. .. (19
p ox
then
fo) = f Ust)e-¥dt = U.
0
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Hence from eqn. (12) we have in this case
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To evaluate the inverse Laplace transform of e W Awheny >0,
we proceed as follows:

From the table of Laplace transforms of Thomson (1950), we have:

A =y
-1 _y"/; ye v

By the first shifting theorem,

2
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By the integration theorem,

—y M+v(2)/4v ——yz(1+’_’;f)
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Hence for y > 0, u, which is the inverse Laplace transform of 4, is given

by:
2
_y! 1 72
W, “47(#5"?)
2
u=U|ll—e Y g-e————___—:—‘
1) 2‘\/1’1”28
And at y = 0, % is clearly zero. Therefore in this case u, the inverse
Laplace transform of 4, is also zero, i.e.

=0, .. .. e .o .. (18)

Thus the solution of the unsteady problem is given by eqns. (15) and (16).
Since the motion starts impulsively, the whole mass of the fluid will start
moving with velocity U while the fluid in contact with the plate at y = 0 is at
rest. Therefore there is some sort of discontinuity in the flow for small values
of the time . This is exhibited by eqns. (15) and (16).

dz.

(15)
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Now after time ¢ = o, i.e. after an infinite time has elapsed since the
start of the motion, the flow will become steady and the pressure gradient
will be equal to zero. Hence the steady flow in the absence of a pressure
gradient for y > 0 is given by:

2
—y2f1 vz
%Y » 4v (E+‘y%)
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Substituting z-! = 6, we have

o Vv

Hence we finally obtain

Y
u=U(1—e”). .. .. .. G L))

Now u, as given by eqn. (17), vanishes at y = 0. Therefore % as given by
eqn. (17) is the solution of the steady problem for y > 0. It may be asked
why eqn. (17) should hold for y = 0, when it has been derived from eqn. (15)
which is valid for values of y > 0 and not for y = 0. The answer to this
question is available if we look upon the process of the start of the motion.
At the time of start of the motion, the velocity is w = U throughout the
liquid except at y = 0. But as time passes, the velocity u in the extremely
close vicinity of the plate decreases and tends towards zero due to viscosity.
Therefore at time ¢ = co, the velocity » in the extremely close vicinity of the
plate (i.e. for very small values of y) will be almost zero. And by continuity
it follows that u should be zero for y = 0 at time { = 0.

The result (17) is one which is identical with the result of Schlichting
(1955) if U = U,
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