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In this paper we introduce a new concept of summasbility, i.e. Uniform
Né6rlund Summability, and establish two theorems on it of the Fourier
series corresponding to a function f(z), periodic with period 2#» and
integrable (L) over (—m, m).

1. Let the Fourier series corresponding to a function f(z), periodic with
period 27 and integrable (L), be
la,+ z (@n cos nr+by, sin nx). .. . .. (1.1)

n=1

Let Sz(x) denote the partial sum of the series (1.1). We shall use the following
notations:

$() = $(@, 1) = fla+t) +f@—t)—25,
o) = [ 16w)a
fol w)|du

[}

where [A] denotes the integral part of A.

2. The concept of uniform Harmonic summability as defined by the
author (Saxena, 1965) earlier is as follows:

Let

ug(x) +u () Fus(@)+ . . . .. .. .o (20)
be any infinite series, and
Uy(x) = uy(z) +uy(z)+ug(@)+ . . . +u().
If there exists a function U = U(x) such that

1 < 1
Tog 2 B (UnH) =T} = oAl

uniformly in a set £ in which U = U(x) is bounded, then we shall say that
the series (2.1) is summable by Harmonic means uniformly in & to the sum U.
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3. Let Za, be a given infinite series with the sequence of partial sums
{8n}. Let {p,} be a sequence of constants, real or complex, and let us write

Pﬂ =po+P1+P2+ s +.pn‘

The sequence-to-sequence transformation

_ > p,,_,,Sv_ > P,,Sn-v
t"—ZOT—ZO P (Pa0) ce .. (31

defines the sequence {¢,} of Nérlund means (Norlund 1919) of the sequence
{Sn}, generated by the sequence of coefficients {p,}. The series Xay is said to
be summable (N, p,) to the sum s if lim ¢, exists and equals s.

7-—=> ™

The conditions for regularity of the method of summability (N, p,,) defined
by (3.1) are
Py

nlin?»lTn:O .. .. .. .. (3.2)
and
Z[pkl=0(]P,,]),asn-—>oo. .. .. .. (3.3)
A=0

4. The object of this paper is to introduce the concept of uniform
Norlund summability, which we define as follows :
Let
up(2)+u ()4 ... .. .. .. .. (4)

be any infinite series and
Uyl2) = tg(@) + - - - +u(a).

Let {p,} be a sequence of constants, real or complex, and let us write
Pp=p,+p,+ ... +p,
If there exists a function U = U(x) such that

'pi,,z%{Un-v(x>—U}=ou>, e (42)
v=90

uniformly in a set E in which U = U(x) is bounded, then we shall say that
the series (4.1) is summable (N, p,) uniformly in £ to the sum U.

The conditions for regularity of the method of uniform (N, p,) summa-
bility defined by (4.2) are the same as they are in the case of ordinary (N, p,)
summability because they are independent of x.

In this paper we take {pq} to be a real, non-negative, monotonic non-
increasing sequence, such that Py — o0, a8 n—> 00, 50 that the regularity condi-
tions (3.2) and (3.3) are automatically satisfied.
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5. In 1965 the author (Saxena 1965) established the following theorem :

Tarorem A. If
D(t) = oft/log (1/t)) .. . . .. (8.1)

uniformly in a set E in which S = 8(z) is bounded, as ¢ — -0, then the series
(1.1) is summable by Harmonic means uniformly in E to the sum S.
In the present paper we genera.lize theorem A by replacing the special
sequence of coefficients p, = ————+1 by a more general sequence of coefficients.
6. We establish the following theorems :

Theorem 1. If a(t) denotes a function of ¢, a(t) and E:T) ulttmately increase
steadily with ¢,

log n = O(a(Py)), as n—> 0 ; .. .. .. (8.1)
and

&(t) = ot/a(Pr)), .. .. .. .. .. (6.2)

uniformly in a set E in which S = S(z) is bounded, as t - 0, then the series
(1.1) is summable (N, p,) uniformly in E to the sum S.

Theorem 2. If a(t) stands for a function of ¢ and ultimately increases
steadily with ¢,

S P 1 ]
flm-idt=0(P”),wn+w, .. .. .. (6.3)
and A
D(t) = oft/a(P-)), .. .. .. .. (64)

uniformly in a set E in which S = S(x) is bounded, as t— -0, then the series
(1.1) is summable (N, p,) uniformly in E to the sum 8.
7. In order to prove these theorems we require the following lemmas:

Lemma 1 (McFadden, 1942): If p, 18 mon-negative and mon-increasing,
then, for 0 <a <b < o, 0 <t <= and any n,

b
z p g
k=a

where K is an absolute constant and Py = py+-p,4 . . . +Dm-

Lemma 2 (Hardy and Rogosinski, 1944) : Suppose that f and g have period
27 ; that f is L and g is V; that A and « are real; and that —m <a <b <.
Then

< KP,

: b
J(a’s b, «, A) = f f(0+¢) g(0) e-dde -0

uniformly in a, b and «, when || — .



ON UNIFORM NORLUND SUMMABILITY OF FOURIER SERIES 505

8. Proof of Theorem 1. 1t is well known that

Sul@)— 8 = EI;J P Gk LD

sin ¢

-1([(s i

=___J' ¢()sm (n+3)

sin ¢

o ff () LA g
mn 3

1 sin (n+ 1)t
+s, f JE Ty @

_8 j”sin (nt3)t o,
s

sin 3¢
1 sin (n+43% )t
= 2 [uin et it
+L1+L2+L3, say. .. .. .. .. (81)
Now
L; = o(1), uniformly in E (by Lemma 2) .. .. (8.2)
=___f Fla— sm n+%)tdt

sin ¢

=~ —f fetn TRty

sin 2

——f fa+n Tt g

= o(1), uniformly in £ (by Lemma 2) .. .. (83)
Ly=— 8 ["sin (n+4)t

k1) sin ét
or

" sin (n+ 1)t i@

‘L!—"— sin 3¢

el

w

" sin (n4-3)t
s sin ¢ d

gince | 8] = | S(x)| < M for every z ¢ B, where M is some constant.

<
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Therefore
[Lg] = o(1), uniformly in E (by Lemma 2).
Hence
Lg = o(1), uniformly in E. .. . . .. (84)

Now from (8.1), (8.2), (8.3) and (8.4), we have
Bulz) =8 = 5- f #(t) “‘“Sf;";%)tdt +o(1), uniformly in E.

And therefore

Zp{s D=8 = g 2%2 fqb()s‘“‘" win (nr 4 bt g

sin ¢

+4-o(1), uniformly in %,

] " .
_ 1 sin (n—v+3)¢ . .
= fo é(t) 5P, { z P, } dt +o(1), uniformly in %,

& sin it

8
= f (1) tn(t) di+o(1), uniformly in E,
0

where
1 < sin (n—v+4)t
) =g, { Zof’v et }
(f f ) t) ty(t) dt+0(1), uniformly in £,
= Fy(z, n)+ Fo(z, n)+o(1), uniformly in E, say. .. .. .. (8.B)
Now

1
Fyz, n) = J‘n $(t) Bn(t) dt
0

1
=0(f:l¢(t>llnn<t>ldt)
=0(n fi!qﬁ(t)ldt)

gince K,(f) = O(n), a8 n— o0, uniformly in 0 < ¢t ;I-L(Pati, 1961, p. 88)

1
= 0( ?P )) uniformly in ¥,

= O(a—(;—;;)), uniformly in E,
= o(1), uniformly in E (by hypothesis). . . .. .. (8.6)
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Again
H
A, ) = f B(E) 1(t) dt
1

&
= O(f1 1¢<t>lm<t>ldt)

sicefr1<i 8 t-—OPT”=
n,O;‘b\ < <7T,lu’n()-—- F,;—t .

Now
13, P 1 I AL . :
P, fllgb(t)] - dt = P, [Qﬁ(t) TL-}-P f cb(t)ﬁ dt +0(1), uniformly in E,

n n

b1
==0(ﬁ; +o

(

o Pp)

n

8
) ( : ) (l f a(i) tdt)'*'o(l):,umformlym E,

1 P, (%1 ) . .
o(1) (Emf ~dt)’-,un1formlymE,

"

by the hypothesis that a(f) and t/x(¢) ultimately increase steadily with ¢

( 1 (%1 1
o(l)+o ———)f idt +, uniformly in E,
n) J1

!
'(

-l

1 . .
( )+ ( c()g :;) }, uniformly in E,

o(1), uniformly in E (by hypothesis).

Fo(z, n) = o(1), uniformly in E. (8.7)

Hence
Now from (8.5), (8.6) and (8.7) the theorem follows
Proof of Theorem 2. The proof of theorem 2 runs parallel to the proof of

theorem 1.
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