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In this paper the notion of the index of a curve is generalized for a higher
dimensional curve and by means of this generalization the distribution of
elliptic and hyperbolic periodic orbits of different orders in a swmall neigh-
bourhood of the generating solution for sufficiently small values of u has
been studied. The results of the paper are valid not only for the circular
case of the restricted problem of three bodies, but also for the elliptic case.

INTRODUCTION

This paper which is based on my earlier three papers (Choudhry 1964,
1N press a, in press b hereinafter referred to as I, IT and III respectively) has
many objectives. In I, we had established the existence of symmetric periodic
orbits of Schwarzchild’s type for a circular restricted problem of three bodies
for a fixed p. Here we have first examined (§ 2 and 3) how these orbits are
distributed for a continuous increase or decrease in the values of u, making
use of Poincaré’s theory of indices. Secondly, the notion of indices has been
generalized for a three-dimensional space in order to simplify further study.
Though Poincaré (1879) and Lefschetz (1963) had also generalized this notion,
their generalizations were mostly topological as contrasted to our generali-
zation (§ 1) which is for a geometrically higher dimensional space. Thirdly,
we have studied in this paper the distributions of periodic orbits not only of
the second order but also of higher orders, as distinet from Merman (1961)
and Birkhoff (1936) who had considered only first order symmetric orbibs.
Also the problem has been studied for a three-dimensional space. Fourthly,
it is shown that all the results obtained for the circular restricted problem of
three bodies are equally valid for the elliptical case. 1In II, the periodic¢ orbits
of the third kind had been shown to be equivalent to symmetric periodic orbits.
Finally, it is suggested that the distribution of symmetric periodic orbits
plays an important role in the existence of almost periodic solution in a
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restricted problem of three bodies (circular or elliptic). (This latter point will
be the subject of the author’s next paper).

For the sake of convenience, we have used the Delaunay variables with
the usual notations. These variables simplify the study a lot. Although the
symmetric periodic orbits of different types and of different orders have not
been distinguished, these terms have been freely used everywhere. We use
the words ‘frequency of right-hand side’ to mean 2x/7 where 7 is the period
of r.h.s. expressions of the differential equations giving a periodic motion.
The meanings of all other concepts used in this paper are the same as those
given in I, IT and ITIL

InpEX oF POINCARYE

We denote by V(M) the vector whose initial point is M(x, y) and whose
components are P(x, y) and Q(x, y). The totality of such vectors is the vector
field defined by the system

dr dy _

The point M(x, y) is & singular point if and only if ;(M )= 0.
Consider a closed curve C not passing through a singular point. Take a
point M on C. As M describt_as C once, say in positive sense, the vector

f/:(M ) may go through a number of complete revolutions, some in the positive

and some in the negative semse. In the process, the angle which ;(M ) makes
with a fixed vector changes by an integral multiple 2#J; of 2. The integer
Je(+ve, zero or —we) is called the index of C relative to the vector field

vV = {7

If M be a point, then we shall choose a circular neighbourhood S(M, €)
containing no singular points with the possible exception of M itself. Let C
be the circumference of 8. Then J, is called the index of M.

In a three-dimensional generalization, let the components of the vector

I—;(M) be P(z, y, 2), Q(z, ¥, z) and R(x, y, z). A point M(z, y, z) will be a
singular point if and only if
P, y, 2) = Qx, v, 2) = R(x, y, z) = 0.

If M be a singular point in the three-dimensional space, then its projection m
on the plane z = 0 is a singular point on the z-plane. It is clear from the
study of two-dimensional curves that the index of a curve or of a point
depends on the singular points enclosed under it. Let us extend the definition
of the index for a plane to a three- or higher-dimensional space; but, for the
given curve, we shall consider its orthogonal projection on an arbitrary plane.
Since the index of a point is independent of the .orientation of the plane
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(Lefschetz 1963), the word ‘arbitrary’ can be replaced by a suitable or a
fixed plane. The properties of indices were studied in detail by Poincaré
(1879), Merman (1961), Lefschetz (1963) and many others. These properties
were applied to the plane circular restricted problem of three bodies by
Birkhoff (1936) and Merman (1961). We shall assume the following theorem
(Nemytskii and Stepanov 1960) as it easily yields an extension suitable
for the solution of the present problem.

TaEOREM.—The index of the invariant point of a transformation =%
corresponding to a periodic solution of a canonical system of two equations,
whose right side depends periodically on ¢, is equal to:

(i) —1 in the hyperbolic case,

(i) 41 in the elliptic case, if the characteristic exponents are not
either integral multiples of the frequency of the right-hand
side or zero, and

(iii) zero in the parabolic case.

DistrIBUTION OF SYMMETRIC PERIODIC ORBITS OF ELLIPTIC AND
Hyrersoric Tyres oF THE FmsT ORDER

To study the distribution we shall establish the following theorems which
will explain how these periodic orbits are distributed for different values of .

Theorem 1.—For sufficiently small [p|5£0 the symmetric periodic
orbits of the first order, holomorphic in g, and belonging to one of the two
types of each category, are elliptic with purely imaginary characteristic
exponents and the orbits belonging to the other type of the same category with
the same characteristic numbers will be hyperbolic.

Proo¥: Replacing m' by p, the differential equations of the restricted
problem of three bodies can be written as (II):

dG _ 8451 d_q aQpl

B S PR S T
dH  od, dh  db, 9d,

&P s T aE MR
where ’

k‘l
V20=2nH’
and @, g, H, b and = have the usual meanings. The generating solution
may be written as

QDO(C, H) = (Pl = @1(0, G: H: 7 9, h)

GKO) E—1 GO’ H(O) = HO

0w _ _ " '
g(O) =gO’ h( ) = - ”7(‘0—)1"‘"50
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(20 — 20 HO)}

where n(0 = 7 Let Ty be the period of this solution, then

7(T) —7(0) = 2kx and so KO(Ty)—r9(0) = — ™ o = —2L.
( n(0)

nO(Hy) = n' ’_; , where (£, I) are the characteristic numbers of this periodic

solution. The general solution for g 3£ 0 in the neighbourhood of the generat-
ing solution may be given as

G(T) = Go+ﬁ1+x1: g(T) = g()+y1 +y1

H(r) = Ho+Bytos, br) = — o r+ho+72+y,

and
G(O) = G0+ﬁp g(O) = g()+y1

H(O) = H0+32’ h(O) = h0+72.
Let
xl(ﬁ: 7, /‘") = G(TO)—G(O)a y1(ﬁ) Y, P’) =g(T0)'—g(0)

23(B, v, 1) = H(To)—H(0), y,(B, 7, p) = M(To)—h(0)+2kn;

and so by Taylor’s theorem up to the first order of 8, v and w,

Ty = 2]011#(8[@1] . )
0

—_ € a[(151] )

xz = an'p,( aho + P
CCAN
Y, = —2kn ( aGl )
EoyHy) | [ 00,60, Hy, g, BY)
y2 = —2kn s TM F) dr
' dH; 0 H,

dooHy) (7 ( " 00y
e ), faho"” -

The condition of periodicity, viz. z; = 2, = y, = y, = 0, gives the equations

o[P,] _ 9[P:] _ 9[P4]

29, ~ Ohy G, —°
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Which“ detern.lim.e 9y ko and Gy The characteristic exponents of the corre-
sponding periodic solution holomorphic in  are given by the equation

% -8 ail a_xl 2

9B, a8, Yy 7,

0y 0%y _ S Oy 0y

aﬁl 8182 28 07z
RO 7T T
0B, 9B, oY1 Y;

% ?.‘Z‘-i a_‘% a_y" S

aﬁl aBg a‘h a‘)’?

where 8 = ¢¥m*—1.
Neglecting the terms of O(p2), it is found that

S
S = +2kmp a[‘p’],izknJ 4P PP L o).

" 39,06 dH, ok

As S is very small, we may replace S by 2k7a, then

2P} V3n'k D]
= H 0,0, ’1(20—-27;'30)% / on +0) -~ ()

where
[@,] = Z Ciy. 4y, ia)(Cs Gor Ho) €08 (iago+isho).

i1, 19, U3
¢ynl0) = ign’
1 8

It is clear that [@,] is a continuous function of Ay and g,; and so, it must attain
its maximum and minimum in the closed interval [0, 2a] for each %y and g,
i.e. in the open interval (—e, 2m+-¢) for an arbitrary ¢ > 0. Thus [®,] has
got in the interval [0, 2x] for each g, and &, at least one maximum and one

minimum. The corresponding values %, will satisfy the periodicity conditions

o[P] _ o[P] 92(P,]
aho = ago —OandW;éO

0

9°[P,]

It will have maximum value when < 0 and minimum value when

0
02[D,] 2%[®]
a;ﬁl > 0. The condition ahg

maximum value the characteristic exponents « will all be real and corre-
sponding to the minimum value they will all be purely imaginary. It is
clear that the elementary divisors are simple and that if the characteristic
exponents are restricted up to O(4/p), then the maximum value would corre-
spond to an elliptic periodic orbit and the minimum value to an hyperbolic

periodic orbit.

= 0 is not possible. Corresponding to the




90 RAM KISHORE CHOUDHRY

Remembering the condition tha,t where k, I are the characteris-

l H
tic numbers of the solution, we can erte down the necessary conditions of the
periodicity in the form

o[P] _ 9[®4] e
ag: = -%L;l- = - z 1’20 (24, g, ’53)(0’ GO: HO) sm (7’290+’L3k0)

== > iy iy (O Go, Ho) sin (ing,-+isho) = 0. (2)

ik = igl

The conditions (2) show that either
go=0=hgor hy =0, g, == or
go=0hg=morhy=1m, g, =m.

Let us consider them separately.

We shall classify our study according to the various values of the characteristic
exponents (k, 1) and of g, and he.

(A) Let us consider the case when k is even and [ is odd

(i) go=0=bho
Let us assume that k = 2mk; where m is an integer > 1, and %; is an
odd integer. In this case in the series written above the terms corresponding
- to the indices ¢35, containing the factor 27(p < m) must be absent, as 45l will
contain 27 (for I is odd) and 4,k will contain 2¢ where ¢ > m which is not
possible since 4k = igl. Inmitially 7= 0 and so hy = 0 means that the
moving point lies at the ascending node which coincides with the perihelion
and that it is in conjunction with Jupiter, i.e. the intersection is of (y3) type.
After k/2(= 2m~1k;) revolutions the point is again at the perihelion and

. —1 . . e -
Jupiter completes % = l—-2—+% = n+3} revolubions, i.e. Jupiber is in opposition
with the point and so the intersection is of the type («8). So we shall get
periodic orbit of one of the types («8, ¥8) of the second category.

(i) go = 0, by = =

In this case, 13 will have, as in case (i), the factor 27; and so, vmtmg k

for 2mh, and afterwards dropping the dash, we sha.ll have hy = 27"z, Let us

express k/l as a continued fraction and let Q P" be the penultimate and
n- 1 n

the last convergents of the corresponding continued fraction. As k and 1
are mutually prime numbers, so I{ is in the simplest form, Py'=Fk, Qn=1.
Let us put 2 = (—1)#Py_1ky, y = (—1)*Qn—1k;. Then, by virtue of the relation

PaQn-1—Pp-1Qn = (—1)*"3, we shall have lx—ky = k;, whence lz = ky+k,;
and so z is an odd number for k is even and k, is odd.
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Initially (i.e. when = = 0), the moving point lies at the ascending node
which coincides with the perihelion by virtue of g, = 0 and its angular dis-

tance from Jupiter is 2-mz,  After §(= 2'2114.%) revolutions, the point lies

at the aphelion and during the same time Jupiter completes Elg revolutions.

y

!
Since B 2 =5tsmm +1 therefore Jupiter will complete revolutions. As

1
9 2m+1
1 . 1 . .
Gt revolutions = 2-mz = hg, so after St revolutions Jupiter appears at the

conjunction with the perihelion and if y is even, then even after y/2 revolu-
tions Jupiter continues to be in conjunction with the perihelion. If y is
odd, then Jupiter is in conjunction with the aphelion. Since the point lies at
the aphelion, the orthogonal intersection will either be of the type (y'8’) or be

of the type («’f’). In the first case after 123(: 2m-1k;) revolutions and corre-

spondingly after %(;—. £T2_1+% = n+%) revolutions of Jupiter, we shall get
another orthogonal intersection of the type (x’8’) and in the second case of
the type (¥'8’). In either cases, we get periodic orbits of the type («'8’, ¥'¥'),
i.e. the second type of the second category.
(iii) g, =, ho=10

Initially » =0 and hy= 0 means that the moving point lies at the
perihelion and that it is in opposition with Jupifer, i.e. the intersection is of
the type (xB). After g(: 2m-1k,) revolutions, the point will again appear ab

the perihelion and Jupiter completes é(—_— %-g.% = n+%) revolutions, where

n is an integer. Thus the point is in conjunction with Jupiter and the inter-
section is of the type (¥8). We thus get one of the types («f, v8) of the
second category, corresponding to £ even and ! odd.

(V) gy =m ho =

As in case (ii), we shall have hy = 2-m7 and z is an odd number. Ini-
tially (i.e. when r = 0), the moving point lies at the perihelion and its angular

distance from Jupiter is (2-741)=. After g(= 2) revolutions the point

: l =z
lies at the aphelion and during the same time Jupiter completes %2 revolu-
1 1 . 1
tions. Since -,é . ; = g/+—2—m—,1.1, J upiter will complete g +omti revolutions. As gor;

revolutions = 2-mn = h,, so, after =—- revolutions, Jupiter is in conjunction

2m+1
with the aphelion and, if y is even, then even after y/2 revolutions Jupiter
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continues to be in conjunction with the aphelion. If y is odd, then the
Jupiter is in opposition with the aphelion. As the point lies at the aphelion,
50 the orthogonal intersection will be of the type («’'8') or of the type (¥'8’).

In the first case after g (== 2m-1f,) revolutions and correspondingly after

£(= !_—2_1_;_% = n+§) revolutions of Jupiter we shall get orthogonal intersec-

2
tions of the type (¥'8'); and in the second case the intersections will be of the

type («'8’). In either case we get periodic orbits of the type («'8, ¥'d'), i.e.
the second type of the second category.

(B) Let us consider now the case when k is odd, 1 s even
(l) gy = o =0= kO
Here initially the point lies at the perihelion and at the same time it is in

conjunction with Jupiter (orthogonal intersection is of the type (¥8)). After

k ( k— 1+ 1= n+%) revolutions the point lies at the aphelion and as Jupiter

2
completes é revolutions, the point is in opposition with Jupiter (orthogonal
intersection is of the type (¥'8’)). Thus we get periodic orbits of one of the

types (¥8, ¥'8") of the third category corresponding to £ odd and I even.
(i) g, =0, b= =
In this case initially the point lies at the perihelion and the perihelion is
in opposition with the Jupiter (orthogonal intersection is of the type («g)).
After g= n+3% revolutions the point will lie at the aphelion and Jupiter
will be in conjunction with the point and thus the intersection will be of the
type of («'8’). Thus we get the periodic orbit of the second of the types
(B, «'B’) of the third category.
(iii) gy =m . hg =0 »
Initially the point lies at the perihelion and the perihelion is in opposition
with the Jupiter (orthogonal intersection is of the type («g)). After ]g = n+t+1
revolutions the point will lie at the aphelion and during these revolutions
Jupiter will complete ! revolutions and thus Jupiter will be in conjunction

2
with the point and the intersection will be of the type of («'8’). Thus in

this case we get the periodic orbits of the second of the types (a8, «'8’) of the
third category.

(iv) g, =7, hy=m

Here it may be seen that this case corresponds to the periodic orbit of
the first of the type (¥8, ¥'8') of the third category.
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(C) We shall now consider the case when k is odd, 1 is odd
(i) hozo,goz 0
Here initially the point lies at the perihelion and it is in conjunction with
Jupiter and so the corresponding orthogonal intersection is of the type (v8).

k
After 5 revolutions, the point will lie at the aphelion and correspondingly

l
after 3 revolutions Jupiter will be again in conjunction with it. Thus the

orthogonal intersection is of the type («'8)). We shall get the periodic
orbit of one of the two types of (¥8, a'f') of the fourth category corresponding
to both k and [ odd.

Similarly in the cases (ii) 9o = 0, by ==, (iii) g, = =, by = 0 and (iv) 9, =,
hg =, the periodic orbits correspond to one of the two types of (¥8, a/f)
or (ap, ¥'8’) of the fourth category corresponding to both k and I odd.

Thus, for all the three conditions for all the values g, = 0, =; hy = 0,
m, the periodic solutions of the first order and of the two types are given not
depending upon the coefficients Ci,,s, ¢,, corresponding to the minimum and
maximum value for R, as the preceding ones always exist. Now suppose

R oR .
that there are solutions of the equations P 0= =~ depending on the
4] 0

coefficients Ci,, i i5). Here again for suitable variation of C(i, i, i) We can

2
make 3—1: Dositive or negative which will correspond to the maximum or
% 2R
minimum value of R. Thus, corresponding to the two signs of 520 e
0

shall have two types of periodic orbits of each category. -

Theorem 2.—In the general restricted problem of three bodies for a fixed C
and the initial moment, each invariant point of the transformation 7%, corre-
sponding to some periodic solution, holomorphic in #, is isolated at the point
# =0 for all p = p, 0.

Proor: By virtue of the holomorphism at the point g = 0, the initial
conditions of our periodic solution satisfy the necessary and sufficient conditions
of periodicity xi(Bi, ¥i, #) = yi(Bi, ¥i, #) = O written in the preceding theo-
rem, if |p| (and consequently |B| and |7|) is so small, that |p|, |B(w)],
|7(#) | do not exceed the corresponding radii of convergence. The condition
&*Po(Hy)

dH;
the solution of the equation y, = 0 with respect to 8, as a holomorphic fune-
tion in g, By V15 Y2 reducing to zero for p =8, = 7; =7, =0. As tl‘le un-
known quantities v;, ¥, enter in the equations together with 9 and %, in the
form of (0) = g,+71, #(0) = hg4-¥s, then without losing any generality we
can put vy = ¥, = 0, taking g, and %, to be the unknowns. Then for ¢ =0,

# 0 which holds good for the problem under consideration guarantees
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we have B,(0) = 0 = B,(0) and for p# 0 the equations for the determination
of G, and H, take the form

=By (1) By, 0,0, k] m[B,(w), By(w), 0, 0, 4]
p p '

Taking the limit when p-> 0, we shall find that a—g;i] and —a?g? are infinitely
0 0

small together with p whence it follows that ?%?gl = %‘_}j;_l] = 0. This necessary
0

0
condition permits us to calculate the possible values of g, and hy As
o[P1] o[®,]
39 and ok,

]

are not identically zero, then, by virtue of the analytic

[P o[
dependence of [agl] and gh:] on g, and Ay, it is clear that the roots of the

0
equations g[a?—}—] =0 and o) _ 0 will be isolated. A root is said to be
70 oh,

isolated if in a small neighbourhood of the root there is no other root. Thus
our periodic solution defined by the initial conditions B8, , 8, g, ko for|n|# 0,
but sufficiently small, corresponds to isolated invariant point of the transfor-
mation % (Merman 1961, pp. 71-72). During the course of the increase of | u |
to | #o | the functions B, (), B(1), ¢,(1) and hq(p) can pass through singular point
and then they will cease to be holomorphic. However, by virtue of the
analytic continuation on the corresponding branch of Riemann surface, each
branch of these functions will be single-valued and all the points of the periodic
solution (correspondingly invariant point of the transformation -*¥) will remain
isolated, which is what is required to be proved.

Theorem 3—To each 3 0 and the characteristic numbers (£, 1) satisfy-
ing the conditions of theorem 2 (I), there corresponds an invariant point of the
transformation 7% with the index, either equal to 41 or to —1 for an ordinary
point and to an odd number for a multiple point.

Since the concept of the index for a higher dimensional space is not
different from that for a plane, so this theorem will hold good for a space of
any dimension. For this plane case the proof may be referred to Merman
(1961).

Theorem 4.—For all p3£ 0, excepting countable values of x and for all
integers k and ! satisfying the conditions of Theorem 2 (Choudhry, I) except a
finite number of values of I, corresponding to a given k, the symmetric periodic
orbits of the first order, belonging to one of the two types of each category,
are elliptic with purely imaginary characteristic exponents, not being an
integral multiple of the frequency of the right-hand side, and the orbit
belonging to the other type of the same category is hyperbolic. Symmetric
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periodic orbits of the first order and of the first of the types mentioned corre-
sponding to excluded set of values of g, k& and [ are elliptic.

Proor: Let us take arbitrary numbers k, [ and ¢ 3£ 0 satisfying the condi-
tions of Theorem 2 (see I) and let us consider any two periodic orbits of two
distinet types with the characteristic numbers £ and I whose existence shows
that they are functions of u (Theorem 1). For sufficiently small | 1|, accord-
ing to Poincaré-Schwarzschild’s result, both the orbits will be holomorphic in
#; and by virtue of Theorem 1, one of them will be elliptic with purely imagin-
ary characteristic exponents, not equal to the integral multiple of the
frequency of right-hand side and the other will be hyperbolic.

We know from § 1 that the index of the invariant point of the transform-
ation ¥, corresponding to the elliptic periodic orbit, will be equal to 41 and
corresponding to the hyperbolic orbit it will be equal to —1. By virtue of
the preceding theorem, this result will not change so long till they do not
coincide with other invariant points. Also it is well known that the sum of
indices of the invariant points before their coincidence will be equal to the
index of the singular point formed by coincidence and it will be equal to the
sum of indices of the invariant points formed after coincidence.

Under the conditions of Theorem 2 (Choudhry, I), there exist an odd
number of symmetric periodic orbits from which it follows that under the
variation of p they can appear or disappear only under the coincidence of
even number of periodic solutions of the first order and of the same type.

Now there may occur, one after another, many coincidences of the
invariant points under consideration with others. Let us take up the first
coincidence. This coincidence may be of the following two kinds: the form-
ation of new invariant points after the coincidence of an even number of
invariant points and the coinecidence of the given point with an even number of
invariant points arising for less values of g, i.e. up to the coincidence.

In the first kind the sum of the indices of all invariant points after the
coincidence must be equal to 41, as, up to the coincidence, in a sufficiently
small neighbourhood of the invariant point under consideration, with the
index -1, there is no other invariant point. By Theorem 3, for each interval
without coincidence, the index of each invariant point will be equal either
to -1 or to —1 and so without difficulty we can conclude that the number of
the invariant points with the index 41 formed after coincidence must be
one more than that of the invariant points with the index —1.

In the second kind, up to the coincidence there are other invariant points.
They can exist only in groups, each of which consisting of an even number of
invariant points formed simultaneously. Up to the moment of the formation
of such a group there existed an ordinary point of the domain, whose index is
equal to zero. Consequently, the sum of the indices of the points of such a
group is equal to zero, and as, after the formation of such groups, the index
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of a point of such groups must be equal either to --1 or to —1, so each such
group can be divided into two sub-groups of which one consists of invariant
points with the index +1 and the other with the index —1, under which the
number of the points in both of the sub-groups must be the same.

Thus, all the invariant points, distinet from the point under consideration,
are divided equally into two parts consisting of the points with the index 41
and of the points with the index —1. Let each part consist of m invariant
points. Now assume that p points with the index 41 and ¢ points with the
index —1 coincide with the invariant point under consideration and let there
remain r points with the index -1 and s points with the index —1 after the
coincidence. By the properties of indices it is clear that 14-p—¢ = r—s.
The points with index 41 not coinciding with others are m—p and the non-
coincident points with the index —1 are m-~g. Thus after coincidence, the
number of the points with index +1 will be m—p-}-r and the points with the
index —1 will be m—g-+s. The difference (m—p—+7)—(m—g-s) = (g—p)+
(r—s) = q¢—p--(14+p—¢q) = 1. In other words, similar to the coincidence of
the first kind, the number of invariant points with the index 41, formed
after the coincidence is one more than the invariant points with the index —1.

# If now we take an arbitrary invariant point with the index --1, then all
the remaining invariant points may be divided into two parts equally, con-
sisting of points with the index -1 and of the points with the index —1.
Thus the succeeding possible coincidence can be only of the two kinds similar
to the first coincidence and the situation will go on repeating. Consequently,
‘the conclusion on the relation of the points with indices -}-1 and —1 holds
good for the succeeding moments prior to an arbitrary coincidence. Thus for
all u, k and [ satisfying the conditions of Theorem 2 (Choudhry, I), there will
exist at least one invariant point with the index -1, if those pairs (k, ) are
excluded for which the invariant points for the given y coincide. Under this,
amongst the excluded multiple points, there is at least one point with positive
index, as the sum of indices of all invariant points of the given types, multiple
and simple, is always equal to 1 and so the corresponding periodic orbit will
be elliptic. .

Exactly in the same way we may prove the existence of at least one
invariant point with the index —1 with the same restriction on the possibility
of the exclusion of those pairs (k, ) for which the invariant points coincide for
a given p.

By virtue of Theorem 1, these singular points will correspond to elliptic
periodic solution with the characteristic exponents, neither equal to zero,
nor to the integral multiple of the frequency of the right-hand side and hyper-
bolic periodic solution if we exclude the elliptic periodic solution with the
characteristic exponents equal to zero or the integral multiple of the frequency
of the right-hand side from our consideration.
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For the latter the root of the characteristic equation is equal to -1,
which by virtue of the analyticity in p can hold good only for a finite number
of values of u. This argument is valid for arbitrary pairs of integers (£, 1),
on which the periodic solution depends and which forms a countable set. As
finite number of countable sets is a countable set, so the set of values of pu,
excluded from our consideration, is not more than countable. As the number
of the pairs of integers (k, 1) excluded earlier for each u, which corresponds to a
multiple invariant point of the transformation 7% corresponding to elliptic
golution, is finite and so the theorem may be considered to be completely
proved for a dynamical system with one degree of freedom.

Bw the introduction of the transformations of the paper (Choudhry, 1T,
§ 6) we can always reduce a dynamical system with two degrees of freedom to
one with one degree of freedom. Here all the conditions for the above trans-
formations are satisfied, i.e. the characteristic exponents are zero and finite
and the elementary divisors are simple. Thus the distributions taking place
for one degree of freedom will hold for two degrees as well as we can pass by
means of the above transformations to a dynamical system with two degrees
of freedom.

DISTRIBUTION OF THE SYMMETRIC PERIODIC ORBITS OF THE
Sgcoxp ORDER FOR SMALL VALUES OF p

In the previous section we have examined the distribution of symmetric
periodic orbits of the first order. It is seen there that'one of the two types of
periodic orbits of each category is elliptic, while the other one is hyperbolic
and only symmetric periodic orbits of the second, third and fourth category
exist and that of the first category does not exist. All the results of
Theorem 1 of § 1 will hold good except the difference in category. For this
we shall prove the following theorem :

Theorem 5—There exists no symmetric periodic orbit of the second
order exbept that of the first category. .

Proor: Let k and ! be the characteristic numbers where (, 1) = 2.
Suppose that &k = 2k, and 1= 2l; where (k;, I;)=1. Let us consider the
different cases according to the different values of g, and hq.

(i) go = 0= h‘O
Here initially, i.e. corresponding to = = 0, the point is at the perihelion

which is in conjunction with Jupiter and this corresponds to the orthogonal
intersection of the type (¥8). After k/2 = k; revolutions the pomt will again

' . l
lie at the perihelion and Jupiter in the same time will complete 5 = I, revolu-

tions and thus Jupiter will again be in conjunction with the perihelion. Hence
in this case we find that the symmetric periodic orbit is of the first category.

7
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(ii) g, = 0, k=10
Here initially the orthogonal intersection corresponds to the case («8) and
after 5 revolutions of the moving point and §l revolutions of Jupiter the

orthogonal intersection will again correspond to («8). Thus the symmetric
periodic orbit will be of the type (a8, «B), i.e. of the first category.

(ill) g():ﬂ” k():O
Here initially the orthogonal intersection corresponds to the case («'8’) and

the consecutive orthogonal interseetion, i.e. after 3 revolutions of the moving

. l . , . .
point and 5 revolutions of Jupiter the orthogonal intersection will again

correspond to (a'f’). Thus the symmetric periodic orbit will be of the type
('8, &’f'), i.e. of the first category.

(iv) go=m by=1m

Similarly, here the consecutive orthogonal intersection will be of the type
(¥'¢’, ¥'8") and thus the symmetric periodic orbit will be of the first category.

Now let us show that the symmetric periodic orbit of the other categories
donotexist atall. Let us prove that the periodic orbits of the second category
do not exist. On the contrary, let us assume that they exist. Suppose
that g, = ho = 0. Initially the orthogonal intersection will correspond to
the type (¥8). For the second category the consecutive orthogonal inter-
section should be of the type (), i.e. the perihelion should be in opposition
with the Jupiter. Let to this position there correspond the numbers of
revolution %’ and I’ and so 2k and 2I'--1 will be the characteristic numbers
which clearly do not have 2 as a common divisor and it contradicts the state-
ment that the symmetric periodic orbits are of the second order. Thus the
symmetric periodic orbits of the second order and of the second category do
not exist. Similarly, it can be shown that neither periodie orbits of the third
category nor of the fourth category exist. The same result can be examined
in all the remaining cases correspondlng to the values g, = 0, ko = m; g, =,
ho = 0 and g, = 7 = hy.

Also it may be seen under the conditions of Theorem 2 (Choudhbry, I)
similar to the periodic orbits of the first order that there always exists an odd
number of such orbits for a small x4 for symmetric periodic motions of the
second order and they appear or disappear in pairs for a continuous increase
or decrease of u.

So far as the distribution of these orbits is concemed we find that it is
given by Theorem 4 of the previous section for in the whole proof we never
take the help of the periodic orbit of the first order and so the theorem will
hold good for symmetric periodic orbits of the second order as well.

7B
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DISTRIBUTION OF THE SYMMETRIC PERIODIC ORBITS OF THE
HicaEr ORDER

Here also similar to the symmetric periodic orbits of the first order and of
the second order the following theorem can be established.

If k= sk, and I = sl; (s > 1) be the two characteristic integers where
(k1, 13) = 1. When s is odd, the symmetric periodic orbits will be of the
gecond category, third category and of the fourth ecategory according as
(i) k1 even, I; odd, (ii) k, odd, I, even and (iii) k, odd, I, odd. When s is even,
all the symmetric periodic orbits will be of the first category alone.

In all the cases whether s is odd or even, there will exist odd number of
periodie orbits and for an increase or decrease in u these orbits can appear or
disappear in pairs only.

For different values of u the distribution of these orbits will be similar as
in Theorem 4 of section 2 for the proof is independent of the order of the
symmetric periodic orbits.
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