ON THE TEMPERATURE DISTRIBUTION OF A VISCOUS LIQUID
UNDER EXPONENTIAL RATE OF HEAT ADDITION SUPERPOSED
ON THE STEADY TEMPERATURE OF INCOMPRESSIBLE FLUID
BETWEEN TWO CONFOCAL ELLIPTIC CYLINDERS

by S. N. DuBE, Engineering College, Banaras Hindu University,
Varanast

(Communicated by M. Sengupta, F.N.I.)

(Recetved October 13, 1966)

In the present paper the temperature distribution in a channel bounded by
two confocal elliptic cylinders is obtained when viscous incompressible
fluid is flowing through it and the exponential rate of heat addition is super-
posed on the steady temperature., Solutions are obtained for the two cases:
(i) When the rate of heat addition is exponentially increasing; (ii) when
the rate of heat addition is exponentially decreasing, The solutions are
obtained in terms of Mathieu functions and from them results for the two
extreme cases of very small and very large frequencies are deduced.

INTRODUCTION

Solutions for the temperature distribution in a circular pipe have been
given by many authors, namely Graetz, Nusselt, Goldstein; all these have been
cited in Goldstein’s book (1938, §266). Lal (1964) has considered the
temperature distribution in a channel bounded by two co-axial circular
cylinders when viscous incompressible fluid is flowing through it and the rate
of heat addition is an exponential function of time. In the present paper
the expression for the temperature distribution in a channel bounded by two
confocal elliptic cylinders is discussed when viscous incompressible fluid is
flowing through it, the dissipation due to friction is neglected and the ex-
ponential rate of heat addition is superposed on the steady temperature.
Solutions are obtained in two cases:

@) When the rate of heat addition is exponentially increasing.
(ii) When the rate of heat addition is exponentially decreasing.

The solutions are obtained in terms of Mathieu functions and from them
the results in the two extreme cases of very small and very large frequencies
are also deduced.
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1. EqQuaTioN oF ENERGY AND ITS SOLUTION

The equation of energy (Pai 1956) in the present case reduces to

oT 1 aQ (32T 6’1’), 1)

5= 50, ot T \amE T o

where k' = C, is a constant and the dissipation due to friction is neglected.

2. Frow uNDER EXPONENTIALLY INCREASING RATE oF HyAt

ADDITION
Let us assume

LR _ <,

LY = 2
o0, o nzla,,e (2.1)

and
T = Tyt zTne"‘, N . 2))
n=1

where ay, T and T, are real, and 7T, and 7', are functions of z and .
Substituting (2.1), (2.2) in (1.1) and comparing the terms of the same
family, we get the differential equations for the coefficients as

02Ty  0*Ty _
—éx—2+—a—yz =0, .. .. .. .. (2.3)
and
02 02 n
where
V= —-T k’ .

If the boundary of the tube be given by
x2 yz
aZtE="h
we introduce elliptic coordinates ¢, 5 defined by

41y = ¢ cosh (§4+in), c= ,/az—bz.
In these coordinates, (2.3) and (2.4) transform into

02T, 02T,
a§°+ anz"_ s .. .. .. .. (2.5)
and
E;::_i_g 2 —2p%(cosh 2£—cos 2n)v = 0, .. .. (2.6)

IB
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where

2p=c % .
Integrating (2.5) we have
Ty = cos 2-q[Ae25+Be"2f], .. . .. (27

Before superposing the exponential rate of heat addition we must have
the fully developed steady temperature. With this condition and with the
following boundary conditions

g = 51’ TO = T13
and
f = 52: TO = T2,
the unknown constants 4 and B in (2.7) are determined. Hence

g _ T1sinh 2(6,—£)+Ty sinh 26—¢,)

0 sinh 2(£,—£,)
For the integration of (2.6), let us put
v = ¢(£) . (n)

ag a solution of (2.6); we see that ¢ and ¢ will satisfy the differential
equations

2
%‘é —(a+2q cosh 2£)¢ = 0, N X )
and
d? - ,
an-é+(a+2q cos 29) = 0, . . .. (2.9)

where a is a constant and ¢ = p2.

Hence ¢ is a periodic Mathieu function and ¢ is the modified Mathieu
function. ,

The complete solution of (2.6) is (McLachlan 1947, p. 160)

v= Z D}, Ceam(£,—q)ceom(n,—g)+ Z E, Fey, (£,—q)ceom(n, 1),
m=0

m=20

where (McLachlan 1947, pp. 21, 27, 165)

Ceam(n,—q) = (—l)ﬁ z (—'I)TAZ:" cos 2ryp,
=0

Cegm(é,—q) = (—1)m (—1)'Ag" cosh 2r¢,

@
r=0

and

Feylt—0) = (=1)m 220 D" 4207 o (2ip cosh £),
0 r=0
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where Y, is a Bessel function and the coefficients A::" are functions of ¢ and
are real. Thus (2.2) gives

_ T, sinh 2(§2~£)+T2 ginh 2(5—51)
N sinh 2(§2'—£1)

@0

+Zl [%‘+ Z Dsz’ezm(E,—q)cezm(n,—q)+m=0E2mFey2m(£,—q)oezm(n,—q)]e"‘.

ma=0
(2.10)

The boundary conditions are
E=¢, T=TemtT,
} @.11)
and E=¢§,, T="Te"+T,.

By applying the first of these boundary conditions we have

7,22 = ,,.Zo DymCezm(§,,—9)cezm(n,—9) + Z Bam Feyam(€1,—g)0cam(n,~9).

m=0
Now multiplying both the sides by cegm(,—¢) and integrating with respect
to 5 from 0 to 27 and using the orthogonality relations and normalization
(McLachlan 1947, pp. 23-24), we have
(Tl"' %:")Lzm = DymCeom(£,,—9)+ EomFeyom(€,,—9), . (212)
where
Lom = 2(=1)"42".
Now by applying the second condition of (2.11) and proceeding exactly
in the same manner as before, we have
(Tz— ‘—‘;;‘)Lm = DunCeam(€y—a) +EsnFeysm(Ep—q). -+ (213)
From (2.12) and (2.13), we have
anLom Feyom(E:—9) —FeYym(£—9)
n Cegm(£,,—9)Feyam(£y—q)—Cezm(Ee — 1) Feyam(£,,—9)

+L T\ Feyyn(€3—9) —FaFetom(€1—9)
2% Oeam(€,5—9)Feyzm(€yr—9) —Oegm(€,—9)FeYem(1,—9)

Doy =

and
G“Lgm . Ce2m(£2’ —Q) “Gezm(fp _q)
n Ceam(§,—q)Feysm(£, —q)—Ceam(€s —2) Feyem(£,,—9)

+Il T2062ﬂ(51: —9)"‘T1032m(52’ —q)
m Oegm(fp _q)FeyZﬂD(fgs '-9) —Cezm(fz»“‘Q)Feyzm(fla -q) )

EZM=
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Hence (2.10) becomes
T, sinh 2(¢,—¢)+1T; sinh 2(¢—¢,)
sinh 2(52“51)
nl1— z L {Feyzin(fg"—Q)—Fe?lzm(fp—‘Q)}Cezm(f,—Q)cezm(‘ﬂ, 9)
m Cezm fp—q)Fey2m(§27_9) Oe2m(§2:—9)Fey2m(§1a_9)
{Ceem(é,,—q)—Ceom(£y —9) } Feyem(é,—a)cesm(n,—q) ont
) Oe2m(§1:—q)Fey2m(§2’—9) 062m(£2’~q)Fey2m(£1"'9)
+ i i {TlFeyZﬂl(fz’_Q)—'TZFey!m(fla_q) }Oezm 57_ )ce2m(7]: _q)
C’ezm(fp—Q)Feyzm(fz,—Q)—OGZm(f ,*Q)Fe?/zm(fp-Q)

+ i L {Tzoezm(fp—'Q) —T'1Ceom(€5,—q) } Feyem(€, — 9)ceom(n,—q) ont
am Oe2m(£1’ Q)Fe?lem(fz,-’Q) 0621”(527 —Q)Fe.’lzm(fp—Q)
. (2.14)

When ¢ is small, we have (McLachlan 1947, pp. 15, 382) as ¢ —~ 0
ceg(n,—q) = (1+3g cos 29) A7,
ces(n,—q) =2 co8 29 +q(y cos 49—1),
Ceq(€,—q) == (14 1¢ cosh 2£) 4,
Cey(¢,—q) == cosh 2£4-q(1)5 cosh 4£—1),

Feyy(6,—g) = Y2 (jmi+ €44 log, 9)

and

16e~2%
Fe.'/z('f,—'Q)u qu °

Also we have (McLachlan 1947, pp. 25, 46)
45 = 1g+0(), 45" =0(gm),

=1/2 and L, = —~q.
Substituting these values in (2.14), and putting 7, = T';, we obtain
_ sinh 2(£,—£)+sinh 2(6—¢£))
=TT sk 2(E,—E)

+2 3, [ 2q{sink: 2(¢,—£) +sinh 2(6—4,)}

-1
=7

sinh 2(¢,—¢,) — (cosh 2£+cos 27)

cosh 2¢,

+T Z [H%{(cosh 264-cos 2m)—¢ 3

sinh 2(£, -—£)+smh 2(é— §1)}
—cos 29 winh 2(4:2 51) I ,
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when both the walls of the channel are at the same temperature, and

cosh 2§,  cosh 2£,
& &

cosh 2¢, cosh 252 }
The importance of =% has been given by Verma (1960).
1 2 :

For large g, we have the asymptotic formula (McLachlan 1947, pp. 230, 385)

Ceo(€,—q) = }C, [eXP ((:ifhc;;h §) iexp i ;12‘1; ;:osh f)] ’

) exp’ h —2p cosh
Feyo(f,—q)mwo[’ exp (2P ‘;‘; §) _exp (smf;;s f)]’

C .
ceolr,—q) & - [oxp (2p 05 ) sin 7+ exp (~2p cos )],

and
w

ce(0)ce ( 2)
(McLachlan 1947 p. 201)

* = Al 2pm)

-
Vmp’

2p=c %

where

Substituting these in (2.14) and again putting 7'y = T's, we have

_p sinh 2(§,—¢)+sinh 2(£—¢))
- sinh 2(£,—¢,)

< anent cosh ¢
+n21 n [1_{ cosh g; exp [ —2p(cosh £,—cosh £)]

sinh 3£,
+m exp [ ~2p(cosh £—cosh fl)]} ceo(-q,—-q)]

< cosh 3¢
*h Zl ~ [{ cosh 552 exp [ —2p(cosh £,—cosh £)]

sinh }¢, .
+ inh 32 P [—2p(cosh £—cosh f,)]} ceo(n,—9) | -

Therefore maximums of temperature distribution exist in the neighbour-
hood of the wall when g is large.
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3. Frow UNDER ExXPONENTIALLY DECREASING RATE oF HEar

ADDITION
Let us now assume
1 aQ .
pC,,at 2 ape~nt, .. .. .o (3)
and
o«
T="Ty+ Tpent, .. .. .. .. (3.2)
nzl

where ap, T, and T, are real and T, and 7', are functions of x and y.
Substituting (3.1) and (3.2) in (1.1) and comparing the terms of the same
family, we get the differential equations for the coefficients as

2T, 3T,

GEtaE =0 e 39
and -
621) v n
GEtarte? =0 o . B4
where
=2 T,,+%’,l.
If the boundary of the tube be given by
Til=n,

bZ
we introduce elliptic coordinates £, n defined by
2piy = ¢ cosh (E4in), ¢ = Jar—b%.
In these coordinates (3.3) and (3.4) transform into

2Ty 2Ty _

“a~§—2_ a'i]z = Y (3'5)

and

Z;'; 0 "’+2p2 (cosh 2£—cos 2n)v = 0 .. (38)

where

2p—ch,.

TIntegrating (3.5) and applying the boundary conditions in & way similar
to that in the previous section, we have
T sinh 2(¢,—£)+ T’ sinh 2(£—£))
°= sin 2(E,—Z,)
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For the integration of (3.6), let us put

v = ¢(£) . (n)
as a solution of (3.6); we see that ¢ and ¢ will satisfy the differential equations
2
% —(a—2q cosh 2£)¢ = 0, .. .. .. (3.7
and
a2
d—'ﬁ-{-(a—Zq cos 2n)yp = 0, .. .. .. (3.8)

where g is a constant and g = p2.

Hence ¢ is a periodic Mathieu function and ¢ is the modified Mathieu
function. The complete solution of (3.6) is (McLachlan 1947, p. 160)

= Z D;m0e2m(§, Q)cezm(ﬂ, q)+ Z Elngeyzm(g’ Q)cezm("% q):
m=0 "

=0
where (McLachlan 1947, pp. 21, 26, 159)

o

o ) = S 42" 008 2,

r=0
@

Ceom(é, 9) = Z AZ:" cosh 2r¢,
7=0

and

ceam(0, - o . .
Fey, (6, 0) = 2';‘2,,, ? 2,43 Yu(ep sinh ), (|sinh £]> ),
where Y, is a Bessel function and the coefficients Az:" are funetions of ¢ and
are real.

Then (3.2) gives

Tl sinh 2(§,—£)+T'; sinh 2(£—§))
ginh 2(52 1)

+’Zl [— Sy Z DynCeam(€, q)oezm(, q)+mz_o BomFeysm(€, q)ceam(n, q)]e-"t

. (3.9)
The boundary conditions are

f=t, T=TemiT,
g = £2’ T= Tze‘ﬁ#.’_ Tz.

Proceeding in exactly the same way as in the previous section we can
easily obtain D, and Eom.
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Thus
_ Ty sinh 2(¢,—¢)+T; sinh 2(¢6—¢,)
sinh 2({-‘ f)

< % z L {Feyzm(€gr 9)—Feyem(é;> 9) ) Ceaml€, g)ceom(n, q)
- Z n am Ge2m(§19 Q)FeyZm(fzx 9) 0621"(&2) Q)Fe?lm(fl, q)

i I {Cesm(£y> 9)—Ceam(Eyy 9) ) Feyomll, Qoeam(n @) | _,
T L T Cem(€, 9)Feyam(E, 9)—Ceem(€y 0)Feyzm(€) 9)

@

i z {T1Feyom(§sr @) —ToFeyom(€,> q) } Ceamlé, q)ceam(n, q)
pA T Oeym(E,s 9)Feyom(€,s 4)—Ceom(E,s 9)FeYam(€,: )

< {T2062m(§1, q)— TICezm(Fz, 9)} V Feyom(€, g)ceam(n, @)
+2 Lmo g Feyom(Z,r 4)—Oeam(E,, ) Fetiam(E
—, am(§ Q) Feyam(€yr 9)—Ceam(Eys Q) Feyam(€), 9)
When g is small, we have (McLachlan 1947, pp. 15, 382)
ceo(n, 9) o Ag(1—14g cos 27),
ceq(n, g) =2 cos 2n—gqly’y cos 417—}),
Ceo(¢, g) 2 A)(1—13g cosh 2£),
Cey(€, g) =2 cosh 2 —q(+y cosh 4£—1}),

/3

Fe.%(f: q) =~ T(§+é logg q):

]e‘"‘. (3.10)

and
16e~2%
mq?

Feyz(f’ q) o
Also we have (McLachlan 1947 pp. 25, 46)

Ay ==, A} =1g+0(¢%), 43" = O™,
\/
and
=1/2 and L, = 1g.
Substituting these in (3.10) and following the same procedure as that of
the last section, we have

sinh 2(£,—£)+sioh 2(£=¢;)

T=T1

sinh 2(52—51)
2 cos 217{si_nh 2({2—§)+sinh 2(&—&1)} _
+W”ZI an[ stnh 9(¢,—F,) {cosh 2¢4-cos 2¢)
cosh 2511 ot
&

—(cosh 2£+ cos 27)

+e cosh 2¢, } ]

S [1.9 sinh 2(¢,—¢)+sinh 2(—¢,)
+1T, Z[l+§{cos 24 s SE=E)

et

&
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when
cosh 2¢£,  cosh 2¢,

f1 B 52
For large ¢ we have the asymptotic formula (McLachlan 1947, pp. 229, 385)

Tl = T25 and

Cey(¢, q) == (cosh f) Cp cos [2p sinh £ —tan~1 (tanh }£)],

Fey,(¢, q) =~ (cosh 5) C) sin [2p sinh §—tan~1 (tanh $£)],

Co . .
oeoln, g) = 0 [ exp (2p sin ) cos (én+ )+exp (—2p sin 7) sin (%n+£)],
where
ce(0)ce (g)
00 _ 0—' .
A0(2wp)*

Substituting these in (3.10) and again putting 7', = Ty, we get

sinh 2(¢,~¢)-+ sinh 2(¢~¢,)
sinh 2(52_51)

_ i an [1_ {cosh ¢,
n cosh ¢
n=1
sin 2p(sinh £—sinh £,) cosh }(£+4-§,)~cos 2p(sinh £ —sinh £,) sinh §(§—¢,)
* sin 2p(sinh £,—sinh &) cosh 3(£,+&,)—cos 2p(sinh &,—sinh £,) sinb (&, —£,)

=T,

cosh £, sin 2p(sinh £, —sinh &) cosh }(£+£,)—cos 2p(sinh £,—sinh £) sinh §(£,—£) ot
cosh ¢ sin 2p(sinh §,—sinh £,) cosh §(£, +£,) —cos 2p(sinh ¢,~sinh £)) sinh W&t ceo(n, q) |e

r d cosh §, sin 2p(sinh {—sinh £, ) cosh §(£+¢,)—cos 2p(sinh £ —sinh £,) sinh }(£—§))
+1h "Zl cosh ¢ sin 2p(sinh £,—sinh {-‘l)‘cosh §(§l+52)—cos 2p(sich ¢,—sinh £,)sinh %(gz—gl)

cosh ¢, sin 2p(sinh £, —sinh ¢) cosh }(£+€,)—cos 2p(sinh £, —sinh £) sinh }(£,—$) —at
+cosh " 5in 2p(sinh £,—sinh £,) cosh §(¢,-+£,)—cos 2p(sinb £,—sinh £,) sinh 3(£,—¢,) | "o D€
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