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Transient. waves, generated in a homogeneous transversely isotropic half-
space by a line source of an impulsive pressure moving uniformly on the
surface of the half-space, have been studied with the help of Laplace trans-
form technique. Closed form solution of the problem has been obtained by
using Cagniard’s method of inversion of the Laplace transform.

INTRODUCTION

For a few decades, the effect of moving blast waves on the surface of the
earth has drawn the attention of many investigators. The problem of distri-
bution of stress produced by a pulse of pressure moving uniformly on the
surface of an isotropic elastic half-space has been studied by Sneddon (1952)
and later by Cole and Huth (1958), when the motion is steady. Chakraborty
(1958) has studied the problem when the medium is transversely isotropic.
Recently Dang Dinh Ang (1960) has studied the transient effect of a line
load moving uniformly on the surface of an isotropic elastic half-space. The
present paper proposes to study the transient effect of a line source of pres-
sure pulse moving uniformly on the surface of an elastic half-space, when the
medium is transversely isotropic. In this connection, particular reference may
be made to Abubakar’s (1961) paper which studies the disturbance produced
by a buried line source in a semi-infinite transversely isotropic elastic medium.

Formulation of the problem :

A rectangular Cartesian system of coordinates O(z, y, z) is introduced in
the semi-infinite elastic medium so that the axis of symmetry for elastic prop-
erties coincides with the z-axis and the semi-infinite medium oceupies the
space z > 0. We assume that the axis of the moving line load is in the
direction of the y-axis and that its initial position coincides with the y-axis.
On the assumption that the strength of the load is constant throughout, the,
problem reduces to one of two dimensions in (z, z).

The strain energy function W in a transversely isotropic medium involv-
ing the strain components in the z-z plane only is

W = &cueiv+§cssefz+clsezzeu+§c“ei . . .o (1)
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Since the strain energy function is positive definite, we have
11 >0, 033>0 C44>0 011633—0 > 0. . . (2)

Stress components in terms of displacement components (u, o, w) are
given by

ou d
Tzz = C11 ax+013 aL:
ou 0
“=°44(a—:+a—:) : B
ou

Tm= sty

Equations of motion in two dimensions in the absence of body forces are

0% o%u o2y
011ﬁ+(013+644) a o Caa 5z =P

2w 02 02w

(C13+0C44) 35— aza ~ +e Cagmztlanmy=p e

Initial and boundary condition :

We assume that a line source-of pressure pulse varying as $-function is
moving with uniform velocity ™1 in the direction of z-axis on the surface of
the medium 2z = 0, the line source initially coinciding with the y-axis. Thus
we have onz =0 forall ¢ > 0

1
Ty = — P8 (x—at), Whenx>0} - 5)
=0, when z < 0
Tez =0, for all «, .. .. .. {(6)

where & denotes Dirac’s delta-function.

To the conditions (5) and (6) we must add the condition that the waves
may be outgoing.

Now applying Laplace transform

q = f u exp (—pt) dt, = f wexp (—pt)dt, .. N )
0 0
eqn. (4) gives
o2 0240 0% _
11 ﬁ+(013+044) ‘5;5%4'0445”2‘ —pp2i =10

(8)
024 02 0%
(c13+¢44) 3 ax+044 ax2+°33 55z PP = 0

Let us seek the solution of eqn. (8) in the form

ﬁ:Aexp(—pqukpz)}_ S ()
o = B exp (—pgz+ikpz)
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Substituting the values of % and % in eqn. (8), we get

A(cqyq®—c11k2—p) — Bikg(ciz+cyy

\ V=01 o
— Aikq(cr3+cas) + Blcgaq®— gk —p) = 0

A non-zero solution for 4 and B is possible if
C33Ca49* —[C3(c11k2 +p) +C4a(cys k24 p) — (c13+Cy4) 2R2]g2
+(011k2+p)(044k2+p) = 0‘ . .. . . (11)

Let ¢} and ¢} be the roots of eqn. (11). Then q; and ¢} are given by

2033%44?
o | = GR2+PH L J[(Gh2+PH)2~40z5cq4(crik%+p) (cask2+p)], .. (12)
203304442
where
G = c11033'|"’Z4—(013+044)2 } (13)

H = cg3+cyy

Now solutions of eqn. (8) can be written formally as

@ = f {4,(k) exp (—pgz+ipkzx)+A4(k) exp (—pgoz+ipkz)] dk (14)

1

® 2
. 044!11—011"72—P .
== -—zf ————— A;(k) exp (—pqz+ipkx
_w[ #41(033 %00 1(k) exp (—pqz+ipk=)

2
044!12"011"72—/’

————— A,k - ok ]dk, .. (15
kgo(c13+c44) 2(k) exp (—pgqoz+ipkz) (15)

where the path of integration is along the real axis of the complex k-plane.
If the solutions given by (14) and (15) are to satisfy Sommerfield’s radia-
tion condition in space z >> 0, we must take Re ¢; and Re ¢, > 0.

Roots of equation (11):

If the expression under the radical sign of eqn. .(12) be a perfect square,
that is if

(G2—40; 103465, ) (H2—4dcg9044) —[GH —2e35¢44(c11+€40) 2 =0, .. (16)
the roots of eqn. (11) are of the form
qi 5 = ak2+pB.

This case is similar to the case of isotropic medium of Dang Dinh Ang (1960).
Here we shall be concerned with the general case in which the relation (16)
does not hold.
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Determination of Ai(k) and Ay(k):

Applying Laplace transform to eqn. (3) and substituting the values of @
and @, we get '

: i ” .
= 2| [ m04,8) exp (—pe)4mlBAsh) exp (—paey PGP |
13T CalJ _
(17)
P [+2]
Tap= — a‘%’; U {n1(k)A,(k) exp (—pgiz)+n3(k)A5(k) exp (—pgs2)} exp (ipka) dk]
(18)
where
my(k) = 03304&?"'(0?3‘1' €13C44 —C11C33) k2 —C33P
mg(k) = Caacuﬂg+(C§3+C:3044“011033)70'2"0339
1
ny(k) = Py (013Q?+011k2+»°) (19)
1
ng(k) = . (013q§+c“k2+p)
Laplace transformation of the boundary condition (5) yields
[T22)z — o0 = —Pv exp (—~pvz), when x>0
=0, whenz <0 .. .. . .. (20)
[%2zlz — ¢ = O. O 1
Comparing eqn. (18) with eqn. (21), we get
ny(k) A, (k) +no(k) A o(k) = O. @
In accordance with eqn. (22), let
ny(k)A,(k) = R(k) } 23)
ny(k)Ao(k) = —R(k) )

Substituting the values of 4;(k) and Ag(k) in eqn. (17), we get

i ip * R(k) (my(k) ma(k) .
T = [J—wT (nl(k) exp (—pg,z)~ 19 (F) €Xp ("'PQ-zZ)) exp (ipkx) dk}‘

(24)
Comparing eqn. (24) with eqn. (20), we have

exp (ipkx) dk = — Pv exp (—pvr) when x > 0

ip 7 Rk) my(k)na(k)—my(kiny (k)
013+C44 ~ k n, (k)nz(k)
== () when z < 0. .. (25)
By Fourier inversion formula, we get
R(k) my(kyng(k) —ma(k)ny(k) _ (cig+cag)?P l

% g (e (k) =%, Pl (26)
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Hence eqns. (23) and (26) yield
(C13+Ca)vP ne(k) k
25 “my (k)ng(k)—mo(k)ny (k) * p(k—iv)

(c13+Ccog)vP ny(k) k
25 “my(k)no(k) —mo(k)yn, (k) " p(k—ro)

Substituting the values of 4;(k) and 4,(k) in eqns. (14) and (15) we get

_ (c1g+Ceq)vP [ J“” k) k- .
b= D) —ip P (—pez+ipkz) dk

Aglk) = —

27)

® omk) k ,
_.J. ?Ek)) 7 OXP (—pq2z+zpkx) dk]

2

i 2
s U s~ P my(k) 1 .
2p 4 o k) k—iw exp (—pgi2+ipkz) dk

04492—011702"'P n, (k) ]
- f Alh T exp (—pgzz+ipkz) dk[, .. (28)

where
A (k) = my(k)ng(k)—mo(k)n (k). .. .. .. (29)
Now substituting the values of 4 and @ in eqn. (3) we get

P [ nylmy(l) 1 .
Tzz = '—2;' [f_mW m €Xp (—pqlz+zpkx) dk

_ c4gvP [ f‘” no(k)ny(k) K

_ f ”I(k“(k) o exp (—pq22+wpkw)dk] e e BD)

- i?}P @ P n (k) 1 N
Tze = 5 [f_w (°18°44ql+°11°44k2*°13”)Zg(]‘c“) T—m © - ) de

nyk) 1
"'J. (01304492+G11044k 013”) ]( ) T

exp (—pgsz-+ipks) dk]. (32)

Singularities of the integrands :
The integrands are four-valued functions. Since we put the restrictions
Re ¢, > 0 and Re ¢; > 0, we can make the integrands single-valued on

Riemann’s surface by introducing suitable cuts joining branch points of
the integrands.
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The integrands have branch points at points given by

(ii) (Gk2+pH)2—dogseaa(cik2+p)(caaki+p) = 0. .. (34
Case (i). The equation ¢, = 0 yields
(011k2+p)(044kz+P) =0 . .. . (35)
which gives the branch points as
. P .y
k= —, — . .. .. .. (36
Ei Jon E » (36)

Case (ii). Equation (34) can be written as
F4(G2 — 404401565, ) +2p[GH —2053644(011 + C4) 1K2
+ p2(HE—40540,4) = 0. T G 13
Now we make certain assumptions about the elastic constants of the

medium. We assume
G2—doyioecs, >0. .. .. .. .. (38)

The value of the expression (38) is zero in isotropic media.
We further assume that
[GH—2633°44(011+C44)]2—(Gz—‘icsscnci)(Hz“403304;) >0 - (39)

and
GH—2033C44(011 +C44) > O, . ‘e . (40)

50 that the roots of eqn. (37) are purely imaginary. These assumptions are justi-
fied because, if eqn. (37) has complex or real roots, the medium admits of
harmonic waves whose amplitudes vary as (4-Bz) exp (ax+-pz) or as 4+ Bz.
Let the branch points arising from case (ii) be denoted by +ik;, 4¢k,. Hence
the roots of eqn. (11) can be written in the form

20330440} 5 = G2+pH £ [(G2—doyiopady) [[(R2+E)(k24+KD)] .. (41)

We also assume that
C13 > Cg3 > Cyy. . .. . .. (42)
It can be easily verified that
G < oy H. R ' T
Now if ¢, is to be zero at the points =44 G—P—, the value of the expression
44

Gk2+pH must be negative at these points. Thus we have
cas < G. N Z 7

Both the branch points ¢k; and tke are above or below the point ¢ bp— in
44

the complex k-plane according as 1164412 is greater or less than (2. Now in
conformity with the isotropic case, we assume that

611644H2 > G2 .o .. .- .. (45)
8o that both the branch points ik; and ik, are above the point ¢ E& in the

44

complex k-plane.

2
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Now we consider the poles of the integrands. These are given by
k—iv =0 and A(k) = 0. The expression for A (k) can be written as

(91 —g3)(C35¢44)4 (€13 + C4a)
k) =
a® (cadk®+p)t
(c4ak?+p)t
(C33044)?
The factor ¢;—¢, == 0 does not give the poles of the integrands since the
equation ¢*—g? = 0 yields k = ik, ik, which are branch points of the

X [P(°11k2+P)*+ {(Clxcaa—ci)kz'*'Pcaa% ] .

integrands.
The other factor
(cedk®+p)t 2 _
. P(anz'*'P)*+W{(011033—013)k2+P033} =0 .. (46)
yields
€33644p2(C11K2 +p) — (Cgk %+ p){(C11Ca3— f3)k2+P°33}2 =0. . (47)
This is a third degree equation in k2. If we write k2 = — 215 , eqn. (47) reduces
to .
f(c?) = 033044P2(P02"‘Cll)04—(P02—°44){P03302—‘(011033-033)}2 = 0. (48)

Equation (48) corresponds to the equation giving velocity for Rayleigh waves
in isotropic case. To find the position of the roots, we note that

(=) =+
f(0)>0

f@)<o L
()
f(0) <0

This shows that at least one root of eqn. (48) lies between 0 and c—;;‘ . Now in
analogy with the isotropic case we assume that only one root lies between 0 and
9;—4 and the other two lie between % and . Let ¢ = v} be the root that lies
between 0 a.nd%i* . Since eqn. (47) has been derived from eqn. (46) by squaxi-

ing, all the roots of eqn. (47) do not satisfy eqn. (46). If we put k% — — -
C

in eqn. (46) we get

3 - t 2
2(c2— ‘_’E) A/E‘.‘E( 2 &4) ( 2 011033—013) _ ,
¢ (c P + Cqq © P ¢ ) PC3s 0. .. (50)

Now a value of ¢ greater than both %‘ and %i satisfies eqn. (50) on the

2B
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appropriate Riemann’s surface if

. 2

C11€33~—Cy5
PCs3

2L ,

that is, if
2 < n1
<z
Hence the roots of eqn. (48) which are greater than C—;)l do not satisfy
eqn. (46). Also eqn. (50) cannot have a root in the interval c—;i‘ <2< 6171.
Hence the singularities of the integrands are

(1) branch points at k = 41 ~—, :tzA/-w Fiky, Fikg;
(2) poles at k = iv, ;|:—i— .
Ur

Now the integrals given in eqns. (30), (31), (32) can be transformed into

_vP o [ f‘” na(k)m, (k)
Tez = . .

1 .
AR P ©XP (—pgqz+ipkx) dk

* mo(k)n, (k)
o Ok

P Z ny(k)ng(k) Kk
T = T 6440 Re [f %25(“) k—w
0

_f (k) "2(7‘)
Ak

1 . . -
= OXP (—pgoz +ipkx) dk], .. .. .. (81

k . .
i °XP (—pgoz+ipkz) dk] R .. .. .. (52)

@

vP o(k 1
Frz= —— Im (‘31304491'i'011¢744k2 013”) (3 exp (—pgiz+ipkz) dk
7 0 INGIR

n 1 . A
— f (013044q2+cuc44k clap) Al((k exp (—pgoz+ipkz) dx]. (53)

A typical integral of the above set is

F =Im U Fy(k) eXP(—pqlz+ipkx)dk+f F(k) exp (—pqzz+ipkx)dk]-
1] 1]

(54)

Inverse Transform :
To find the inverse transform of the expression F, we apply Cagniard’s
method. The method consists in transforming the integral to a form re-
cognizable as a Laplace transform of some function of time. We introduce a

new variable .
t = qz—ikz .. .. .. .. (55)
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in the first integrand of eqn. (54). Next we deform the path of integration
from real k-axis to the curve on which ¢ is real positive.
Now we examine the values of the function ¢, given by eqn. (12) on the

imaginary k-axis. At the pointk =0, qf = gp__ > 0. The expression Gk2--pH
44

in eqn. (12), monotonically decreases as k moves from origin along the imagin-

ary k-axis, it bemg positive in the segment (-—z P g, ) A/ %I‘—I) and negative

outside this range. Now since — < Pl

cl] G

zero at =+i1/pjc;; and is less than zero at +iv/pjc,. Also the expression

< c— , the expression is greater than
44

(62—de1ycay0s, ) (B2 4+ B2) (k24 K2)'  monotonically decreases in the segment
(—iV/plegs, 1A/ plesg) Of the imaginary axis as |k| increases. Hence as |k|
increases ¢; gradually decreases from the value p/cy to zero at +iy/pjc,, and
then becomes negative. Consequently ¢ is real on the portion of the imaginary
k-axis from —iy/pjcy, to i4/pjcy, and becomes complex outside this range.
Now when z > 0, as k moves along the positive imaginary axis, from the

point £ = 0, ¢t increases from A/ — to a maximum at a point between 0 and
44

i [-£, since g,(k) gradually decreases while —ikx monotonically increases.
Caq
Similarly when x < 0, ¢ increases as ¥ moves along the negative imaginary

axis, having a maximum at a point between (0, —iv/pjc,,)-

Now to find the position of the point on the imaginary k-axis where £ is
maximum, we put k£ = iy. Differentiating the expression for ¢ in eqn. (55),
we get

dt . MGL+cri(cam®—p)+caa(crin®—p)
pln) =~ = — o4, 5 ]z+x: .. (56)
1 q1[ 2¢336449, —pH + %]
When z > 0, we have
$(0) >0
#(V/ plegs) <0, since g —> 0+0 as 7>/ plcgg~0.
—— Gle11H —G) —€11635C44(C11 —Cay)
#$(V ple) = — L 83 4 2.
V essCaaler1 H— G
_ G(thH—ﬂ:_cllcsscu(cn—044) it B N .. (57
'\/033044(01 IH—' G)é
the value of 5 corresponding to the maximum of ¢ lies in the intervals
Vplen <m < A/pleg OF 0 <7y <fpjey; according as f(z, z) 2 0. Let the
variable ¢ attain its maximum ‘value ¢’ at the point & = é5’. Therefore ¢ is
given by '

Writing f(z, z) =

V= q'z47'x, .. .. Cee .. (68)
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where ¢' denotes the value of ¢; at the point k = é’. The determination of ¢
twelve-degree equation in ¢.

95
as a function of x and z is very cumbersome as it involves the solution of a

By a similar method, it can be proved that when z is less than zero, the

value of 5 corresponding to the maximum value of ¢ lies in the intervals
—V plegs < < —Vplers O —4/pjey; < m < 0 according as

G(c11H —G) —c11035044(C11—~Cay

)
z4]z| 2 0.
033024(011H —G)t

iky |\ E
ik |0
% [¢ M
. ’/ .
) \
I&) 216 -7 \\
/’ AN
Py \
(d "2 A v" '\
i E,,) L o
inif

A}
]

\
+

Y

[}

1

[

> |

:

Real K-axis

R }/
-ifg)*

>

]

_,'(c_g“)’i

ik §pf

‘ikz EI

F1a. 1. Path of the integration of the function F,(k) in the complex k-plane

in the case x > 0 and f(z, 2) < 0.
when £ is large,

To examine the case when t—> o through real values, we observe that

; [G + (Gz —4011033024)}

3
. kz—tkx.
2cg3C44 ]
If we write k = £+, t is real on the line

.. (59)
[G+(Gz—4:0110336i4)}
U

2=tz = 0.
2933044 ]
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Thus when x is greater than zero, the path on which ¢ is real positive is a
curve in the first quadrant of the complex k-plane having an asymptote making

an angle tan™! Fj 2003044 3 i}} with the real k-axis. Similarl
z l G+(G2—4011033044) ’ ¥

when « < 0, the path for real ¢ is confined to the fourth quadrant of the complex

. . z 2¢q4€ 3
k-plane having an asymptote mak n le tan~! | - 33744 }
P g symptote making an angle tan [z {G+(G2_4011033034)§

with the real k-axis.
The paths are shown in Figs. 1 and 2.

Real K-axis
-ife ’QA
l(_.)

4
- i(cfa)/z 8

—i/(, D’

~iky } £

Fia. 2. Path of the integration of the function F,(k) in the complex k-plane
in the case x > 0 and f(z, z) > 0.

Now we consider the second integral of eqn. (54). In this case we put

t = goz—ikux. .. .. .. .. (61)

At the point k£ = 0, g, = 4/pjcgs and hence ¢ = éﬁz. As k moves along
33
the imaginary axis from the origin (either in the positive or negative direction),

gs decreases from the value 4/p/cgs t0 zero at the point +i4/pjc;; and then
becomes imaginary. Hence ¢ is real on the portion of imaginary axis between
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—14/pfeyy and 14/pjey; and has a maximum at a point & = iy” in the segment
(0,iV/pfey;) when 2> 0 and at the point k= —iy” in the segment (—i/p/ey;, 0)
when # < 0. Let the point k = ip” correspond to the value ¢” of . Proceed-

ing exactly as in the case of the first integral, the path on which ¢ is real
can be constructed. It is shown in Fig. 3.

iky €

Real k-axis
it ’4 AI
ﬂ(Cn)

_i(g_;‘)"z 8’

-ik; }0'

. [
~1ky £

Fie. 3. Path of the integration of the function Fy(k) in the complex k-plane
in the case z > 0.

Now the integrals can be transformed according to the requirements of
Cagniard’s method. Let us consider the first integral of eqn. (54) when z > 0.
Since the integral, taken along the arc of a large circle with centre at the

origin, joining the real k-axis to the path for which ¢ is real, tends to zero, we
get from Cauchy’s integral theorem

@

f F(k) exp (—pgqz+ipks) dk = f F (k) exp (—pgiz+ipke) dk
o

curve OLM
g ® dk
=[  mporg et | Foor% exp (~ma
V/Fleass ¢

+H(y' —v)niR exp (—~p(qoz+v7)), O (7))
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where R denotes lim F;(k) (k—iv), go denotes the value of g, at the point
ki

k = v and II(z) represents Heaviside’s unit function. Here in analogy with

the isotropic case, we have assumed that the expression ;—Z [given by eqn.

(56)] is not zero on the transformed path of integration except at ¢’

Since ¢y and g, are both real on the segment (0, i4/p/c,;), the imaginary
part of the first integral of the right-hand side of eqn. (62) is zero if ' < 4/p/e;,
i.e. if f(z, z) < 0 and it becomes

v
dk . —
Imf Fyk) 7 °XP (—pt) dt if 0" > A/ pjey;, ie. if f(x, 2) >0,
T

where
T, the value of ¢ at the point & = i4/pje;;, is given by

i
T=[M]z+\/,7a;x. N )

€11033C44

Hence the first integral of eqn. (54) can be written as
Imf Fi(k) exp (—pgiz+ipkz)dk
0

® dk .
Imf Fl[k(t)]%exp (—pt)di+Im H(np'—v)niR exp (—p(gez+2vx))
¥

when f(z, z) <0

v dk ® dk
\ Im f Fy(k()) Z; exp (—pt)di-+Tm f Fi(k(t)] 5 exp (—ph) dt
T t v dt

+Im Hiy —v)iR exp (—plaez-+v2))
when f(z, z) > 0. .. .. .. . .. .. (64)

By an exactly similar method, the second integral of eqn. (54) reduces to
Imf Fo(k) exp (—pgoz+ipkz) dk
0

= Im f Fz[k(t)]%l:exP (—pt) dt
.

+Im H(n"—v)niR’ exp (—pl(go'z-+vr)), .. .. .. (65)

where B’ represents lim Fy(k) . (k—iv) and g, represents the value of ¢, at the

kE—iv

point & = iv.
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Hence the inverse transform of eqn. (54) is obtained as
HE~¥) T F[k(0)) oo He—0) Tm Fof()

+H(n'—v) Im 7iR3(t — vz —~gy2)
+H(n"~v) Im wiR'S(t——vz—q;z),
when f(z, z) < 0
dk dk
H(t—t') Im Fi[k(?)] ET*-H(t_t”) Im Fg[k(t)]'ﬁ

+{H(E—T)— He—1)} Tm Fy{k()] o

+H(y'—v) Im niRS(t— vz —qqz)+ H(n' —v) Im #iR'8(t —vz—q 2)
when f(z, z) > 0. . .. .. .. .. .. (66)

In F,[k(#)], the relation between % and ¢is given by ¢ = ¢q;z—ikx while
in Fo[k(t)] it is given by t = qo2—tkx. The two %’s appearing in #,(k) and
F,(k) are the two roots of
Gk24-pH 2

2
5 ] —24[(Gk2+ pH )2 — 435044 (C11 K%+ p)(Caak24p)] = 0, (67)
C33C44

[(t T

having positive real parts.

In the case z < 0, the expression for F is similar to the one obtained in
eqn. (66), the terms containing Dirac’s 8-function being absent.

For the case z = 0 eqn. (55) becomes ¢ = skx, so that the path on which
t is real coincides with the imaginary k-axis. Proceeding exactly as above we
get a similar result for F with an additional term

Im i lim (k— i) [F1(k)+ F ()18 (t— i) ,
.- i Ur Vr
¥R
which corresponds to Rayleigh wave.

Equation (66) shows that in the region f(x, z) < 0 the motion is the
superposition of two waves represented by the first and the second terms,
arriving at the point (z, 2) at times ¢’ and ¢". These times correspond to the
arrival times of the P- and S-waves for an isotropic medium. However, for
large velocities of the moving load, there is a discontinuous change (for x > 0)
in the motion due to the terms involving Dirac’s delta-functions. This
change is due to the arrival of a ‘super wave front’ at the point (z, 2).

If f(z, z) > 0, the main difference is that one wave represented by the
third term arrives at time 7', earlier than #'; in the isotropic case this may be
explained as due to the conversion of the S-wave into the P-wave at the -
boundary. The phenomena have been interpreted in terms of results for an
isotropic case, since the expressions are too complicated to be capable of
direct interpretation.
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In fact, when 7., is prescribed on the boundary z = 0 by

72; = —Pf (x— %t)’ when z > 0

= (), when z < 0,
we can determine the stress components from the corresponding stress compo-
nents given by eqn. (66) with the help of convolution theorem.
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