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This paper is concerned with the evaluation of the stresses and displacements
in an isotropic, elastic, semi-infinite disc due to arbitrary heating of two
equal strips on its boundary while the remainder is insulated, a constant
pressure being applied on the strip. It is shown that the normal surface
displacement is not affected by heating except on the pressed portions and
the region between them. The stresses, apart from the component required
to maintain the body in a state of plane strain, are independent of the
temperature.

INTRODUCTION

The solution of boundary value problems of elastostatics involving tem-
perature changes for an isotropic, elastic, semi-infinite disc has been carried out
by various methods. Melan and Parkus (1953) studied the effect of a concen-
trated heat source inside the disc while Sen (1951) considered that of a nucleus
of thermoelastic strain in a semi-infinite solid. In this paper, we consider a
mixed boundary value problem when two equal strips on thd boundary are
maintained at arbitrary temperatures, the remainder being insulated. A
normal pressure is applied on the surface only on the strips. In such a situa-
tion, the thermal problem leads to triple integral equations while the usual
mixed boundary conditions lead to dual integral equations. These triple
integral equations can be reduced (Tranter 1960) to dual trigonometric series
which were solved by Tranter (1959).

The above procedure gives the temperature as the sum of two terms
involving a series of Bessel functions, The displacement components and the
stress are then obtained in the form of Fourier sine and cosine transforms.
However, it is found that some of the integral transforms are divergent.
Finite results are obtained by taking the finite parts of these integrals, the
final results in almost all the cases being expressed in terms of elementary
functions. It has been verified that in the particular case, when temperature
effects are absent, the results obtained by taking finite parts of divergent
integrals agree with those deduced by the complex variable method. It is
believed that this solution has not been obtained previously.
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STATEMENT OF THE PROBLEM

The z-axis is taken along the boundary of the half-plane and the y-axis is
taken perpendicular to the boundary and directed into the medium. The
boundary conditions on y = 0 are thus

o7
-a—y-=0, 0<[z]<aorb<|z]< o0,

T = 0(2) = f@)+9(2), a<|z|<b,
where :

o) = 2+

g(z) = 0——~—(z)—20(_x) ;

Tyz =0,
= —P, a<iz|<b .. .. .. 3]

=0, -elsewhere.

SoLuTioN OF THE THERMAL PROBLEM

The temperature change 7' can be expressed as the sum of T'; and T,
both satisfying the heat conduction equation, with 7'y and 7', satisfying on
y = 0 the boundary conditions

o,

3 =0, O0<|z|<aorb<|z|< 0, i=1,2,

T)=flr), a<lz]|<b,

Ty=gx), a<|z]<b.
Let

R
0
The boundary conditions give

fngz(n)smmdn=0, l<zr<a,
0
[ e sinaman =g, a<o<,
0

®
J- née(n) 8in wpdn =0, b<x < 0.
0
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The solution of these triple integral equations has been reduced by Tranter
(1960) to that of the dual trigonometric series

Z (—=1)n-1c, cos >

= (—1)n-1 on—1
(2n-)—1 ¢, COS n2 0=g(bcosg), 0<l<ec

0—0, c< <,

n=1

by the substitutions

1
§2("7) = ;) ”Zl Cngn-.l(b?]) .o . . e (2)
8 c
z_bcosé, a=bcos§ .. .. . (3

Tranter (1959) has also given for ¢, the formulae

(—1)?"1¢, cosec %
5 = (I),.(sm )+DP,, wcos ¢), .. o 4)

where

GD,.(sm )—-g—‘(l) (n, 1—n; 1; sin2 ) f £ (s) (n, —n; 1; 2 sin2 2)d8

s S
4 pg'[bA/l—p2 sin2%]dp
£(s) = = s
w 0 '\/82—[12
and D is a constant.

Substituting in the second of the dual series and putting § = 0, we obtain
D from the resulting equation

[
DK(cos ) = g(b) cosec 5 ¢ _2 z ?n—(——?), )

2n—1
using the result
S Py_,(cosc) c
”Zl o = 4K |cos 3

in the usual notation for Legendre polynomials and complete elliptic integrals.
Equations (4) and (5) determine £,(7) and thus T',.
We now proceed to determine £,(7), where

T, = f &1(n)e~1 cos zn dn.
0
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The boundary conditions yield the triple integral equations

fﬂfl(n)cosxndn=0, 0<z<a,

0

f €1(n) cos andy = flz), a<z<b,
1]

f 7€1(n) coBndn =0, b<z< .
0

The substitutions (3) and the expression

Z'd,.Jzn(b-q) L ®

n=1

enable us, following Tranter’s procedure, to reduce the triple integral equations
to the dual series

&i(n) =

&3 -

aw

z (~1)md, cos n8 = 0, c< i<,
n=1

< 1)7d,, cos nf 0

z (__Z_O_ =2f(b cosé), 0<f<ec.
n=1

On integrating, with respect to 8, the first equation between 8 and # and the
second between 0 and 6, we obtain

o]

(_1),1‘171_%‘13‘?___0, c<f<m
n=1
fee]
d, sin n8 :
> (=R = 1), 0<b<e,
n=1

where

f1(0) = 2f0f(b 08 g) de.

0
The constants d, are given by (Tranter 1960)

(—1)2d,7 cosec g ! o * pf1{2 sin“l(p sin g)}dp
= Fin, —n; 1; s2gin2 || — ds
4dn? 2/ 1ds .
0 OA/(Sz—pz)(l —p2 sin? 5)

(7)
Thus the temperature change 7 is given by

F= f e~Y1[£1(n) cos zn-+E£y(n) sin 2n] dn, . - (8)
o

where £,(7) and £,(7) are given by the equations (2) to (7).
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If y > 0, it can be shown (Watson 1958, p. 386) that

@
T= Z 2n— b2n Ty I [V =) 82— (y—im) !

n=1

+Z oo Re[V =B B—(y—im) . . .. .. (@)

If y = 0, using known integral transforms (Erdelyi 1954, pp. 43, 98) we obtain
- 20—
n=1

Z _] n=lg,b2n—1 Z nd pen b
) . 9
Va2 gy srse 00

lsin [(Qn——l)sm 1 } 22 cos [2nsm 1b}’ 0<x<bh,

DETERMINATION OF STRESSES AND DISPLACEMENTS

Using the usual stress-strain relations for the plane-strain problem and
substituting

U= f [f1(y, m) cos an+fo(y, 1) sin zn]dy
0 (10)

v= f [fs(y, ) cos xn+faly, n) sin zq] dy
0

in the equations of equilibrium (Timoshenko and Goodier 1951, pp. 421, 433),
it is found that they are satisfied if

(A —=20)D2=2(1 —v)n2]f1(y, ) +2Dfs(y, 7) = 2(1 +v)ana(m)e~"" ) (1)
[2(1—v)D2—=(1 —2v)9%] fuly, ) —nDf1(y, 1) = —2(1+v)anéa(n)e="1
and
[(A=2v)D2—2(1—v)n?]fe(y, ) —1Dfs(, ) = —2(1+V)°“7'f1(77)€"”7} (12)
[2(A—v)D2—(1—2v)12)f3(y, n) +2Df2(y, n) = —2(1+v)anéi(n)e=""
where
d
D = E:l; -
Solving (11) and (12), we obtait
u= f [(e;4-egy) cos xn+(eg4-e4y) sin anle~"7 dy .. .. (13)
0
v = f }’[{’733+(3"'4';)344"7343/—2(1+V)¢§1(7))} 08 I7)
0
—{nes+(3—4v)eg+negy+2(1+v)aty(n)} sin anle=?7dy .. (14)
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where the constants €1, €g, €3 and e,, determined from the boundary conditions
(1), are given by

e == (1+v)xfq(n)
1= —
N
€y = 0>
P(1—2v) (gin an—sin b 1 (15)
o= PUZR) (sl bn) (A4 oy, >
_ P _ sin ap—sin by
64 _ - %ax—‘——‘n*— .
Hence from (13), (14) and (15), we obtain
® 1 .
w= f e [‘ £ 1¢,(0) sim am— afn) 08 on}
0
P (sin gn—sin b‘r]) (1——2v ) 3 ]
w—é( - m —y ) sin 27| dn .. .. .. (16)
= Uy +us+ug,
® gy —
v==] . [{;,% (sin an —sin by) (y+2 n2“)+<1+v)afl(n)} cos &
+(14)agq(n) sin x'q] dy A O k0
= ¥;+Vz+0s,

where (u;, v,) are the displacement components due to surface traction,
(#g, v5) due to the surface temperature f(x) and (ug, vg) due to g(x).
The associated stress components are obtained in the forms

w
Tog = gl—) e‘J"?(1 —-y) (sin gn—sin by) cos zn dy,
m 0 n
Tyy = %Jf e"”’(%+y) (sin ap—sin by) cos 2y d;;, } .. (18)
: 0
oy = g? f ¢~¥(sin an—sin by) sin 2 dn. J
0

2Py - 2ay - 2by
Ty = —2G(1+V)¢T+—T‘—_— [ta.n 1 W—_az —tan-1 m] .
This completes the solution of the problem. We note that the expressions for

the displacement components «, v involve divergent integrals.
3B
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EVALUATION OF THE STRESSES AND DISPLACEMENTS

The contributions to the stress and displacement components arising from
the surface traction and from the prescribed temperature on the surface will now
‘be evaluated in terms of series involving elementary functions. It is clearly
sufficient to evaluate the integrals for positive values of x.

Contributions from the surface traction:

The stress components and the displacement component u, are easily
evaluated by integration in the following forms:

2P
Tany+7yyy = ——[03—04—0, 4],

o 4Py a@—p—a) bla?—y?—b2)
LLo I 2] 7 | (z2—y2—a?)244a2y2 T (@2—y2—b2)2+4b2y2 )’
R 4Pxy? [ @ b
2 B (22492 —a?)2+4a2y2? - (x2 442 —a2)2 4 4b2y2)’
P
W= —5-n [(1—211){92[-’2 cos 8y — 9P cos 0;405p5 cos §5—6,P, cos 04}

where the meanings of 6, P4, etc., are
clear from Fig. 1. The integral
determining », is, however, diver-
gent so that we must take its finite
part. For this purpose, we use
the result (A4) proved in the
appendix and obtain

)! (x»Y)
Fia. 1.
P
N =55 [(1—2){6; —0; — 05+ 0,} +4(1—v)(1—y)(b—0a)

+2(1—»){P, cos 8, log p;—P cos B, log Pp—P3 cos b3 log pa+pP, cos 6, log P4}
where ¥ is Euler’s constant. As a check, these results were compared, after
putting @ = 0, with the corresponding results obtained by the complex variable
method (Muskhelishvili 1953, p. 388). It is found that the two sets of results
agree apart from the fact that uy, as obtained by the complex variable method,
does not tend to zero at infinity on the real axis. It is worth noting in this
comnection that for comparison we have used the additional condition that u,
is an odd function of  while v, is an even function, in order to evaluate the
arbitrary constants of integration obtained by the complex variable method.
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Contributions from the symmetric surface temperature distribution f(z):
These are

0

n=1

sin am dy,

vy = (14 Z dnf LJz"(b17—)cos zn dn.

n=1

vy and u, are the real and imaginary parts of

o ® o= (y=iz)y
= (I1+v)a Z d,,f ?_%Mﬂ
(1]

n=1

_ = dnd ben-1F(n—3%, n+1; 2n+1; 2)
= (14 ”Zl In(n—1) . o2n [ {(y—iz)2+ b2yt

where the substitution
b2
= y—wErer o o o @9

and the value of the integralf et (bt)tr-1 dt (Watson 1958, p."385) for posi-
0

tive values of Re @ have been used.
The following results are particular cases of known formulae (Magnus and
Oberhettinger 1954, pp. 8, 9):

Fn—%,n+1; 2n41; 2) = (l—z)‘"”F(n-—%, n; 2n+1; z_i—l)’

: .M - : .
F(n—%: n; 2n+1, (1-|-_§)2)‘= (1+C)2n lF(2n—'l, —]., 2n+1, g).
Using these results and substituting

%11 R 1)

it is easily seen that

Fin—}, n+1; 2041; 2) = (l—i)z"“‘[l— g:: c]'

Therefore,

M H2n44/1—2)
= (1+v)ab Z 2n(4n2 [ 1+ 1=2)" ]

z being given by (19) and vy, u, being the real and imaginhary parts of this
series. The above result is true provided y > 0. If y = 0, the results are
obtained as follows from the tables of sine and cosine transforms (Erdelyi
1954, pp. 44, 99):

fug, 92} = (14+9) > dnfuza(®), V2n(@)}

n=1
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where
\/172—-az:2 sin [27& gin~1 %] x co8 [ 29 sin-1 %C]
. _ 0 b,
Ugn(®) = -1 2n(dn?—1) <¥<
b2s[ x4 201/ 22 — 2]
(-1 2n+1 b ,
R Y -y STS®
b cos [(2n-—l) gin~1 JE] b cos [(2n+l) gin~1 E]
Von() = b + b 0O<ao<b
4n(2n—1) 4n(2n+1) ’ ’
0 ,b<x < oo,

The component of the displacement normal to the boundary is thus seen to
vanish outside the region —b <z < &.
Contributions from the anti-symmetric surface temperature distribution g(x):

These are

E "
(ug,v3) = —(14»)a Z f E—y—Jf;;—l(—r]{cos oy, sin xn} dy.

As before, vs is obtained (for y > 0) to be

Cub

—(+4v) Zzzn Bn—T1)(2n—2)

Im[zr-1F(n—1, n+%; 2n; 2)}.
Now (Magnus and Oberhettinger 1954, pp. 8, 9)

Fn~1,n4%; 2n; 2) = (i—z)-n-}F (n+%, n+41; 2n; z*i*—l—).

= (1= @En+1, 15 205 9)
by substitution (20).
Since (Magnus and Oberhettinger 1954, p. 9)

PEntl, 1; 205 O—F@n+1, 1; 2m41; ) = - F@n42, 2; 2042; D)

F@nt+1,1; 2nt1; ) = L; and F2n+2,2; 2n+2; {) = (—:1—5)—2
it is seen that ‘
2n—(2n—1
F(n—1,n+1%; 2n; 2) = (1—{)2*H ._”é#?)z_);,
and
© enb zn—1(4n—l+\/1_:'—z)
Vg = —(1+v)aﬂzl2n(2n__1)(2n_2) m [ (1+\/1_——z)2n

The expression for ug (y > 0) is the real part of the expression of which the
above is the imaginary part, except for the first term which is a divergent
integral; its finite part has been calculated in the Appendix (A5).
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Therefore,

1 [=e-
up = —(1+v)ab[—,y—; log (22449 +; f T )=t dn
0

o Cn z"‘1(4n—1+'\/1 —z)
R — .
+”ZZ 2n(2n—1)(2n—2) © { (144/1—2)%" }:l

If y =0, we obtain from the tables of integral transforms (Erdelyi 1954,
Pp- 44, 99), the expressions

enUgn(@) —yb— ,glog (x2+yz)+f°° €08 27 {Jgébn)—bn} d’)] ,

0

Uy = —(1+v)ot[ i

=2

@

vy = —(14)a > cnVsnle),

n=1
where
b cos [(2n—2) sin~1 %] b cos [2n sin—1 'g]
3 + = s 0
Ugn(@) = 2(2n—1)(2n—2) 2(2n—1)2n <z <b,
(—1)n~1p2n—1 (—1)n=1p2n+1 ,
2En—1)2n—2) ety L2 2@n—1)2n[aty b
V/ b2 —22 sin [(27&—-1) gin~1 %] z co8 [(2%—1) sin—1 %]
Van(z) = 1 2n(2n—2) - 27&(27&—1)(27[—2) s 0< < b,
0, b<z<oo.

Thus, we find again that vy also vanishes on the boundary outside the interval
—b<z<h

The solutions obtained above are purely formal since, in general, it is very
difficult to examine the convergence of the series obtained. However, in
particular cases when ¢, and d, have simple forms the question of convergence
may be studied. Thus f(x) = sin = (see Tranter 1960), we have

2Pp_,(cos ¢)
K (cos %)

and the series may be easily shown to be convergent since

(=1)mle, =

[Py_i(cosc)|< 1

— .
‘ A/1+ (y-;za:) +y—bzx

and

>1 if y>0 or|z|>b.
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If y = 0 and | x| < b, the convergence is obvious from the forms of the relevant
series. Lastly, we note that the stresses, apart from r,, which contains a
term —2G(1+v)aT, are independent of the temperature.

APPENDIX
Since

1

o — 1 a

J‘ cos Ay dn = J’ cos \n d’H’f €08 )y dn—log <,
€ K € 1 1 n

A
FPJ‘ cos,\nd _J’ costdt_J’ 1‘— costdt
o o !

= y—log A, T .4 )

by a well-known formula (Magnus and Oberhettinger 1954, p. 97); v is Euler’s
constant.
Integrating by parts, we have

@ . . o @ oy s
e~¥ gin 1 e~ Y€ §in re e~¥ ¢os 77 e~ sin 7y
f ndv; = +rf dn—y o dn
€ €

72 € " ¢
so that
®  _ . C[® -y
FP f ¢ BT e = r—y tan~1 s FP f T (A2)
0 ? y 0
On integrating the relation
? y
- =
fo e~¥1 cos ) dy R
and using the result
) PPESY
lim 1—e™ cos Tpdn =20
y=+0J ¢
we obtain
aQ —p— 77 2
f 1—e™ cos T dy = 2log +y
0 7
Therefore,
«w Ul 2
pr wd-q=FPf 908 T Gy —1} log ( ty )
0 K o "
= —y—1} log (72+4y2), .. .. (A3)

using (Al). Hence

FP'f e”77 8in 7 N ity = (1—y) T~y f,an—l;—; - glog (r2422). .. (A4)
n
0
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Finally, we have

D ey © _ ® . :
FPJ e Jl(:? cosan ;- ___J‘ e~ cos xné;ll(bn) bn}dn+Fbe e~ S’os 0
0 0 0-

= —yb— glog (y2+xz)+f e~ cos 76’7{;71(577)—517} dn.
0 7
.. .. (Ap)
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