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Effect of wall porosity is investigated on the stability of hydromagnetic
flow between two parallel plates under uniform transverse magnetic field.
It is shown that for weakly conducting fluids, critical Reynolds number for
the onset of instability is lower for two-dimensional disturbances than for
three-dimensional disturbances. A class of sufficient conditions is also
obtained for stability of the system.

TEE PROBLEM AND LAMINAR SOLUTION

Lock (1955) discussed the stability of a hydromagnetic flow between two
parallel plates in the presence of a uniform transverse magnetic field. The
main objective of the present investigation is to study the effect of wall poros-
ity on the stability of flow. Laminar hydromagnetic flow between two
parallel plates in the presence of uniform suction at one plate and uniform
injection at another plate when the external field is uniform and transverse to
the plate has been obtained by Mehta and Jain (1962). It is this laminar
solution which is being subjected to investigation for stability. Squire (1933)
established that it is sufficient to investigate two-dimensional disturbances
for the stability of Poiseuille flow between two parallel plates and Synge (1938)
obtained a class of sufficient conditions for the stability of these flows,

In the present paper, it is established that for weakly conducting fluids,
Squire’s result is still true when parallel plates are taken to be porous. A
class of sufficient conditions is also obtained. The detailed investigation of
two-dimensional disturbances and numerical work will be reported in a later
communication. .

We use Cartesian coordinates (z, y, z) taking the mid-point between
two parallel plates as origin. The plates are at a distance 2a apart. The
axis of  is in the main flow direction and the axis of y is perpendicular to the
plates. v, is the constant velocity of injection and suction and H, is the
uniform transverse magnetic field. It is assumed that there is uniform
injection at the plate ¥y = —a and an equal suction at the plate y = a.
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The basic equations (Cowling 1957) of hydromagnetics for incompressible,
viscous and finitely conducting fluid flow yield the following steady state
solution [Mehta and Jain (1962)] in non-dimensional form:

sinh mq(em2f —1)—sinh my(e™é—1)
(cosh m,—1) sinh my— (cosh ms—1) sinh m,

my, mo = 1 [Rci /Rf+4M2] L@

R S

w=1+ M

where

S

Uy =

2
P 1 [tanh ™1 _ tanh @]

pyv Mi—my 2 2

. . . ) Vot

Vz, velocity in x-direction; U,, velocity at ¢ = 0; R, = %, cross Reynolds

number; M = pHya A/ Pi’ Hartmann number; p, density; v, kinematic viscos-
14

ity; o, electrical conductivity; u, permeability; P = — %g, the constant pres-

sure gradient. This solution is true under the condition that ¢ €1 where
v
v’ 2 dmpo

units,

€= being the magnetic diffusivity. We use electromagnetic

PErRTURBATION EQUATIONS

Normal mode analysis is followed to study the stability of laminar flow
V= (Vg vy 0y and H = (Hy, Hy, 0). If A, B and p, are the disturbances in
velocity field, magnetic field and pressure, then linearized equations for pertur-
bations are:

Momentum equation

SV 914+ (4.9)7 = — S grod p1r v 2
+Zﬁ—p [(curl H) x B+ (curl B) xH]. N )
Induction equation
—aaﬁi—curl [VxB+AXH]=vyV2B. .. R )
Divergence relations
divd=0,divB=0. .. - . .o (D)

We assume
A = [A4z(y), Ay(y), A2(y)] exp [i(agx+ Boz—oCyt)]
B = [Ba(y), By(y), Bzy)] exp [i{xg2+Boz —0eest)] .. (6)
1= poly) exp [t(xpx+ oz —xgC1t)]
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and, therefore, the eqns. (3) to (5) in the component form can be written as:

v, 1. ,
—~iatgCrAgticgVeds+vod, + Ay ay”‘ = — ,—)mopo+v(—oc§Az+Ax—-B§Ax)

oH,
+zl%p [Bya— —Ho(/baoB?]—B )] . . N .. (7)

) . ’ p ” '
—2“001Ay+@“0VxAll+v0Ay = - ;O+v(_a§A”+Ay_B§Ay)

aH . ’
+£—5 [—Bxﬁ+Hz(zaoBy—Bx)] . . .. .. (8)

. , ' 1. "
~1rd001Az+’Ld.0VzAz+’U0x4z = — ;lﬁopo-"v[—agAz'{—Az—ﬁ(Z)Az]

+21%)[HO(B;—iBOBy)—Hx(iﬂon-—-iocoBz):] N )
dV,

—700013_1;— ZBO V,;Bz“f“voB VQ;B By ———+ZﬂonAz

+H,A;+A1,d—yﬂz—-H0A;=uH(—och,+B:—,8§Bz) .. (10)
~10gC1 By—1iBevo Bz +100(V 2By —voBz) +ifoHo A,

—iog(Hpdy—HoAz) = vi(—ayBy+ B, —B;By) .. .. (11
—itatge1BytiogVgBo+voB,—ingHpA,— HoA,

= va(—e2B+B—fB) .. .. .. .. .. (12
iagdz+ifodz+ 4, = 0 .. .. . . . .. (13)
i“oBz+'£BoBz+B; = 0 .. .. ‘s .. . . (14:)

Equations (10), (12) and (14) give

aoer B, +i00B,— %o VB, — g ddV" By+agHz4,

+ap dH"A,, —iH,A, = —ivy(acB, +B3B,~B,’). (1)
Equations (7), (9) and (13) give
dVy
MoclA —%VxA +'VUOA “+og —— dy Ay

_ia0+5§

po—iv(ayd +Brd —A)

dH , L
+1%; [mo —df By—z(a§+3§)HOBy+zHOBy—7,Hx(ﬂ§B,_aOBOBZ)] ,
(16)
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Eliminating p, from eqns. (8) and (16) one gets
agel (af+ ) Ay— A, J—oo Vel (g +B5) Ay — A, J+ive (g +B5) A, — 4]
d? V . 2 ” 1w
—% dyzsz = —if (2 +80) Ay —2ag +BG) 4, + 47

d2H
+4I:p [ —% d 2sz+ (a0+’80)H0B —ZHOB —'do(a +Bz)Hsz+d0Hz_B]
(17)

Equations (15) and (17) are two equations in Ay and By. We shall express
them in non-dimensional form with the help of the following substitution:

Ay = Uol,[l, BT = Hotﬁ, h = =Z

g= 2o _Uw o _Uws
0, - 14 ’ Vi
o
%o = Bo="-, ¢y = Upge
2
S._J‘_Ii’ g=12 4_14
—-471PU2, —a: dy adf'

The basic equations in non-dimensional form are reduced to
ach’ +10¢" ~awd’ — o't ahi’ +oh'th—i”
= — g HHE—¢) . . . (8
M
a(c—w)[(«2+B2)h— "] +i0[ («® + B2 — "] —aw"
= — ()%= 2+ B 445

+S[—al $ i@+ —id" —a(at+BHh$+ahd']. (19)
The plates are taken to be non-conducting so that perturbations in the

magnetic field due to its continuity vanish on the boundaries. This condition
with the help of divergence relation yields

p=¢ =0at&= £l I €1}
Similarly no slip conditions along with continuity equation give
y=¢ =0atf= 41 . . .. 2n
Integration of equation (18) gives
W=t = ooy ). 2

The constant of integration vanishes because of boundary conditions,
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By
R
direct factor (Mehta and Jain 1962), therefore, it is permissible to neglect
all the terms in (19) and (22) involving % and also the first and second terms on
the right-hand side of eqn. (22) (Lock 1955). Eliminating ¢ from simplified
form of eqns. (19) and (22), one gets

(s O)" — a2+ B — "y o [ — (a2 4 )

For most of the practical fluids = VL< 1 and % contains R, as a
H

U R D R

Equations (21) and (23) constitute the basic equation and boundary conditions
for the present problem. We note that the equations have been obtained for
weakly conducting fluids.

A THEOREM
If one substitutes

52 = a2+4B2 and &R = aR .. . . (29
in eqn. (23), then it has the same structure as with  =0. But =0 corre-
sponds to a ftwo-dimensional disturbance. Thus each three-dimensional
problem is equivalent to a two-dimensional problem. Hence it is sufficient
to solve this two-dimensional problem and supplement it with the conversion
(24). In fact (24) shows that the equivalent two-dimensional problem is
associated with a lower Reynolds number, since & > «. Thus the minimum
critical Reynolds number is given directly by the two-dimensional problem.
So we shall take g = 0 and the basic eqn. (23) reduces to

(=) —o2)— "= e gty

4 [¢i”—2a2¢”+a4¢}=%-2¢”. @)

Hence we have established that ‘for weakly conducting fluids, three-dimensional
problem is equivalent to a two-dimensional problem with a lower critical
Reynolds number when porosity of plates is taken into consideration’.

SUFFICIENT CONDITIONS FOR STABILITY
We multiply eqn. (25) by y*dé where ¢* is complex conjugate of ¢ and
integrate from —1 to 1, one gets
420212 4 at]® = —iaRQ+iaRc(I%+a2l?

1

+M"‘If+3cf @Y=ty de L. . L (26)
-1
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where
1
B=| lupa
-1
1

I?=f_1|¢'l2d§

1

B[ (wpa

1 1
0= wiwptorrarymat| iy
-1 -1
If we add to (26) its complex conjugate, then
(L2202 4atl7) = —iaR(Q—Q*) —2aRey(I5+a2l)
.Y O 1)

where ¢; is the imaginary part of ¢. Moreover the contribution from the
coefficient of R, is nil as can easily be seen.

1 1 1
[ ymwie—— | pwra| pw
Hence
1
f (9 +9 W) ag = o.
Also N

1 1 1
’ d 1
¥ d * bdé = — *) J& = * = 0.
f_lw £+f_1¢ pd¢ f_ldg(‘/"“ ¢ =[],

Thus there is no contribution from the coefficient of R,. Here
1 ’
Q—Q* = f o (W y*— g y) dé.
-1
Let the maximum of |w'| in (—1, 1) be ¢ then Schwarz’s inequality gives

1

0=t <2 [wll¥]191d6 < alel
Hence eqn. (27) reduces to
aRey(I3+a2l}) < aRqloly — (12420212 +at10) + M21.
Flow will be stable provided ¢; < 0 which in turn is satisfied if

1 .
R<oTT, [(I3+ 20212 -a4T2) — M2I}
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and
1,0, .
M2< (I2+ 20212 +adl}).

1

It is to be noted here that in the absence of magnetic field (M = 0), the form
of sufficient condition is not at all affected by wall porosity except that q will
be numerically different in this situation.
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