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Misner’s field equations (1965) for spherically symmetric gravitational collapse
with escaping neutrinos have been considered in some particular cases. It is
shown that spherically symmetric gravitational collapse with neutrino
emission is not possible if the congruence associated with the matter field
satisfies any two of the following properties: (i) it is geodetie, (ii) it is
expansion-free and (iii) it is shear-free. Also the field does not permit neutrino
emiggion if the null congruence associated with neutrino emission is expansion-
free. A case has been worked out with geodetic matter congruence where the
possibility of neutrino emission is demonstrated. Similarly it is shown that
neutrino emission is possible in the case of shear-free matter congruence.

1. INTRODUCTION

It has been suggested by Colgate and White (Misner 1965) and also by
Chiu (1964) that in case of gravitational collapse of supernovae and quasi-
stellar radio sources the emission of neutrinos is possible. Misner (1965) for-
mulated the field equations for a spherically symmetric case of gravitational
collapse with escaping neutrinos. It has been assumed that the neutrinos
after emission travel in the radial direction. In the absence of neutrino emis-
sion the field reduces to that obtained by Misner and Sharp (Misner 1965).
The internal field of collapsing matter is continued with the field of pure radia-
tion such as the one obtained by Vaidya (1953). In this paper we discuss
some of the special features of the field equations of spherical gravitational
collapse with reference to the possibility of neutrino emission. It is shown
that spherically symmetric gravitational collapse with neutrino emission is not
possible if the congruence associated with the matter field satisfies any two of
the following properties: (i) it is geodetic, (ii) it is expansion-free and (iii) it is
shear-free. Also the field does not permit neutrino emission if the null con-
gruence associated with neutrino is expansion-free. A case has been worked
out with geodetic matter congruence where the possibility of neutrino emission
is demonstrated. Similarly it is shown that neutrino emission is possible in
the case of shear-free matter congruence.
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2. TaE Firrp EqQuatioNs, KINEMATICAL QUANTITIES AND
OrTICAL PARAMETERS

We give below the system of field equations and define the various sym-
bols involved. The meaning of the symbols is explained subsequently.
The field equations are as follows (Misner 1965):

A= (), o=0 .. .. .. .. .. @l
B= —netutly, =0 .. .. .. .. (29
D= B8 R+8a(Ti4N) =0 .. .. .. (23)
where
E=wug+1=0 .. .. .. .. .. @29
TZ = (e+p)u"ub+8:p . .. .. .. .. (2.6)
Ne=gkthy, .. .. .. .. .. .. (28)
and
F = kkg = 0. e
Next we consider the following kinematical quantities associated with u:
VI=Usa .. .. .. . . .. .. .. (2.8)
w® = Jmabedyyu,. 4 R o)
—wgp = $(Ua; p—Up; o)+ 3(RaUp—tipua) .. . . - (2.10)
oap = $(%a; b+Up; o)+ F(dattp+ripue) — %I(gab‘*‘uaub) .- (21D
where
Ug = Ug; puP .. .. .. .. .. .. .. {212)
and »%b¢d ig the pseudo tensor density with 51234 = ~\/—1_- .
Also the ‘optical parameters’ are ’
vir=3 . .. . .. . .. .. . (2.13)
o= (Jha, p—ko; )k OB . . L. (214)
Z=tke, ol .. .. .. .. .. ..(@215
Q=Yg plomd .. .. .. . .. .. (216
where
Ge=k,kb=0 .. .. .. .. . o217
Pla=0 .. .. .. .. ... (218
o, =0 .. .. .. .. .. .. .. (2.19)
mima =0 .. .. .. ... (220
Pke=0 .. .. .. .. .. . .22

1oky =0 .. .. e e .. (2.22)
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lmg=0 .. .. .. .. .. .. ..(229
[omg = 0 .. - .. .. .. .. .. (2.24)
19],—1 =0 L)
Fmg—1=0 .. .. .. .. .. .. ..(22)
and
Hap = gao—(lalo+lola)— (kamp+loma) = 0. .. .. (2.27)

Equation (2.1) is the ‘equation of continuity’ for matter, eqn. (2.2)
correlates the cooling rate of unit volume of matter with the rate of decrease of
internal energy due to neutrino emission and eqn. (2.3) represents the
space-time structure in terms of total stress-energy. Here n is the baryon
number density and ¢ the cooling rate of unit amount of matter. The assump-
tion of perfect fluid distribution form of the stress-energy tensor 7.4 for
matter is inherent in (2.5) while (2.6) gives the ‘geometrical optics’ form of
the stress-energy tensor Ngp for neutrinos. Here ¢, p and ¢ are respectively
the matter density, pressure and neutrino energy density.

The kinematical quantities (Witten 1962) for an observer following one of
the curves of the time-like congruence and using Fermi-propagated axes are
described as follows: v;, wap, o4p are respectively the velocity of expansion,
rotation and shear of the neighbouring cloud of particles. The vector «® is
the angular velocity in the infinitesimal rest-space of the observer. The
‘optical parameters’ (Witten 1962, p. 58) v;;, w, 2 and 2 are called the ex-
pansion, twist, shear and rotation of the null congruence with respect to the
observer. A semi-colon (;) preceding a suffix indicates covariant derivative.
Here we have 37 equations:

1(A4)~+1(B)+10(D5) +1(E) +1(F)+4(G%) +9{eqns. (2.18)~(2.26)}-+10(H )
in 356 unknowns:

1(n)+4(u%)+1(c) +3(e, p, g)+16(12, 12, k3, m2)+10(gap).

3. THE CASE OF SPHERICAL SYMMETRY
We consider the spherically symmetric metric
dst = —e= 2+ P drt+yt(d02+sin? 0dg?) .. .. (3.1

where «, B, y are functions of r and ¢. The coordinates r, 6, ¢ and ¢ will be
denoted by 2!, 22, #3 and 24 respectively.

w=0 fora=1,2,3; ut=e= .. .. (3.2

Next we choose the orthonormal tetrad given by
| {5, = diog {V75, VB, Vi, v/ =g}
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and pseudo-orthonormal tetrad (12, 12, k%, me) is defined as

= 1 a a
‘/-(Az|+’ ) o= ;/‘;(’\21_”‘31)
. (3.3)
ke = \75(1\;&/\:1)’ me =750 %)
where a suffix followed by a vertical stroke indicates the particular vector.
Equation (2.27) can equivalently be written as

Hopp = gap— 2 3z\vlaMb+A4rat\4lb =0.

V= y &y

For the metric (3.1) the non-vanishing components of (l“ Ie, k3, m%) are

12=ls/’l: sin 0=i2 = —i3/7: sinB— —_—=

1/_
. o2 e (34)
1=M = —\/_Q ’ \/2
and due to (3.2) and (3 4) eqns. (2.1) and (2.2) reduce to
e—B/2
n=F0)0 .. . . . (35)
€
c= e""(e+p)+n4—e““ 74 .. . .. (3.6)
where F(r) is an arbitrary function and n, , = %7; .

The non-vanishing components of D3 in (2.3) are

Dyy= —8n -|-2e"“""/2 (‘)% - ‘%’} 52—‘"— );—4061) =0 .. .. . (3.7)
2
1_ q —on(ZVas  2Ys Vi), _ 7 2y, ) 1
D= ‘8"(“9) = ”"(7 - 7“4%‘2)“ "(y‘z+7°‘1 —p=0
3.8)
D; = D: = -Swp—e-za(‘&;;% 4+74 B4 B44+’82 ﬁ4)
- Y 7 B Y B
—e ﬁ(— 7ty 3y atuy— af—au) =0 .. (39
»: »:
¢ ) _ -2 2y % sl _2u_Nin
pj = se{e+ 1) e =(r5428,) o (-2 Talip)- Lo
where . (3.10)
oy 74
1= 'a-;, Yy = ﬁ,etc

Equation (2.17) reduces to
W%+e«a1-_—o. R - % § )

2B
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Here we observe that for spherical symmetry % wg and X vanish
identically, whereas « and £ vanish due to (3.11). Consequently, the con-
gruences associated with «2 and k2 are necessarily normal. The non-vanishing
kinematical quantities and parameters are given by

2
or =e‘°‘(§2}+—;—‘) R G 3 D
28 2 oy  efc 2v,
o= =y 8= ( - . (3.13)
12'1:“13 ‘d2=d3=‘d4=0 . .. . . .e (3.14)
1 Y1, _.7a
_ -82°2 x = . .. .. .. .
vrr '\/5 (e y+8 '}’)' (3 15)

Thus we have seven equations, viz. (3.5) to (3.11) in eight unknowns, viz.
m, ¢, € P, ¢, &, B, ¥, along with v;, vy, 033, %;. In the next section we study
the consequences when some of the quantities v;, v;;, o, and 4%, vanish.

4. SproIAL CAsEs
The eqns. (3.7), (3.8), (3.9) imply

—a-pief¥1e Y1Bs 74 - ( Yas , ¥4 Y4 Ba 'yf Bas 'Bi /34)
—9g-a-g2{ 714 _ V1 Ps_ Y4 onf T4, 74 YaPe__ T4 Pas Pe Py
2e ( y “1)+e y Tyaty 3 —mto g~y

Y1 By

y n 4 1
u+—,}7 §+71a1+,y—;+a1%1 - af—-an)— ya = 0. 4.1)

]
reo-%
Now we consider the following cases:

Case (’I:)‘—vr = 0y = 0.
Equations (3.12) and (3.13) give

Ba, 2Ys _
aty =0
2y

Bi— 7:1 =0
which imply

Ba=74=0
and hence from (3.7) we get

qg=0.

Since e~*¥, is the velocity of the fluid surface, ¥, =0 implies no collapse
while ¢ = 0 implies absence of neutrinos. Hence expansion-free and shear-
free (or rigid) congruences associated with matter field imply no spherical
gravitational collapse with escaping neutrinos.

0&86 (ii)—“dl =03 = 0.
Equations (3.14), (3.13), (3.11) and (3.7) imply
@=L =7,=¢q=0.
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Hence geodetic shear-free congruences associated with matter field do not
permit spherical gravitational collapse with escaping neutrinos.

Combining cases (i) and (ii) with »® = 0 we have:

Spherical gravitational collapse with escaping neutrinos does not admit a
space-time which is the direct product of a time-like line and a 3-space (Witten
1962, p. 58).

Case (#11)—ui; = v, = 0.
Equations (3.14), (3.12), (3.11) and (3.7) imply

=By =7i=g=0.

Hence geodetic expansion-free congruences associated with matter field imply
no spherical gravitational collapse with escaping neutrinos.

Case (W)—v;; = 0.
Equation (3.15) gives

e"ﬁlz‘)’1+e")’4 = 0. . . .. .. (4.2)
From (4.1), (4.2) and (3.9) we get
o 1
e—za(’?-;i ’34)+e 5(:11'32 _311) = .. .. (4.3)
and
(T o 7B L
8np=e (y y %4 +e +'y2 +5- .. (44)
Equations (4.2), (3.7) and (3.10) give
— o2 V8t _ Vs ) ( Y1 7131) 1
8re=e (y +erf| = T )4 .. (4.5)

which along with (4.4) implies
€= —p.
Since € and p both should be positive we have
e=p=0;
then field equations (8.7) and (3.8) give

e anf?1a Y Y o2V 27
_2eaa/2(%4__1l3_4__5a1)=92a(_#_ 4 ) 2¢- B—¢1+

which by virtue of (4.2) reduces to

1o

7 =0
This is not compatible with the metric. Hence geodetic expansion-free null
congruences associated with neutrino emission imply no spherical gravitational
collapse with escaping neutrinos.
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. Case (v)—i, = 0.
Equation (3.14) gives

and (3.11) gives

Then (3.1) can be written as
ds® = —f(¢) dt2+-g(r) dr2+72(r, t)(d6%+sin? 6 d?)
which can be transformed to
ds? = —di2+dr2+2(d62+sinZ 0 dd2). .. .. (48)
For this metric we have

- I 7 U |
l2“isin9*12‘—@sme_\7§’ kl‘"—k"‘ml_m‘_v‘é
F 1
n = —(:—) » C=F {14170+ Y (Y114 + Y160}
2nq="—;} S 7 )
q) T Y M1
—8w(p+2) == +72 - 'y2+'y2 . (4.6b)
—8mp = ";4 ’%l . (4.6¢)
2
2y P Y 1

81r(€+-2q—) = —--——Y-Ll— -}7;4-‘)—,-;-'-’7—2- .. . .. . (4.6d)

Yy = 274/7

011 = —2090[¥2 = —204,/¥? sin® § = —27,[3Y

=L (1%

w7 (5+Y)

and (4.1) reduces to
YY1+ 27144 Y4d) +'y42-...‘y§+]_ = 0. .. .. (4
One solution of (4.7) for which neutrino emission is possible is
Y = f(lr+mi)
where I, m are constants and function f satisfies the equation
U+ m)2ff + (m2—8)f"241 =0 .. .. .. (48)

where

f’E:il—‘Z, u = lr4+mi.
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For this value of 7, ¢, p and ¢ are given by
2nq = Imf"[f
8ap = (2—mA)f*[f
f' f” f’2 1
8me = — 202 %~ —2lm —f-+(m2—lz) mtE
If p = 0, which implies a distribution of discrete particles, we have from
(4.6¢)
Y4—Y11 =0
for which the most general solution is
Y = flr+t)+g(r—1).
Equation (4.7) reduces to
Af*(f+g)—4f'g+1 =0 ce 49
where
df dyg

=G =y
Differentiating (4.9) with respect to (r—%), we get

F9=1 =0
or
o _a_
F =g k (constant).
Then
olkr+)+h1} olk(r—)+Fs}
=—'-"‘k———+ 2 = ‘—“T“+k4-

Equation (4.9) becomes
4e2rr b th 4 (kg - k) ebr iRl L] = 0

which implies exp {k(r4-t)+Fk;} = constant.
The above equation on further examination leads to the conclusion that
discrete particle distribution with geodetic congruence associated with matter
is not consistent with spherical gravitational collapse with escaping neutrinos.
In particular, when g =0, ¢ and ¢ can be calculated directly from
(4.6a, d). In this case it is found that ¢ turns out to be negative.
Case (vi)—oy; = 0.
Equation (3.13) gives
2,4
Bs= >
which on integration gives
&2 = g(r)y(r, 1).
Now (3.1) becomes

ds? = — €2 A2+ y2{g? dr2-+de+sin? 0 dp2}
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which can be written as
ds? = —e2 diz+¥2 {dr2+d62+sin? 0 dg?}. .. (al0)

For this metric we have

LS SO S
lz—zsine—lz——isino_kl_ml_—,\/_é
e¢
k4——m4———\/_2_
F(r)
Ex)
e“a

{ }'4('—- 1 +46_2¢W44'— 66—2“¢4W4+ 3€_a714— 28—3“773

472
+2¢72; — i);,il"l‘ 72‘1 —2e~ 2174+ 26'2“7714) +27114

2Y1’)’14+2e TYY144—2e” 71744}
8r 127 Y1a ViYa -a’j)
S e="7 ( y Ty 7y
q 20 V2 2 1 (¥ 1
~8 ( ~) =e—2«(_7;44 74 __ Vs, )__(_1_27174e_¢) 1

= 2‘}' ) 4 2‘)’4 1 '}’11
—8mn = ¢ ”( 44.’. o} — +e_¢’p

9\ _ 327t l( 2y ) 1
8“(€+2) 3 y2+72 y ¥E +72
vy = 3e~Y,)y

=L (Y1 -aY
= ey
and (3.11) and (4.1) become
')’4-[-6"11 =0 .o . .o .o (4.11)

2y:
e “}’14+2e—9¢)’2+yu S+1=0. .. (412

One solution of (4.11) is
Y=—Ff e=Ff
where

If'sF(r f =1, F'Eg, 's‘g.
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Equation (4.12) reduces to

Fl'l 2F'2 F’ 2F'2

T o Ft =t
and

1 1 FIII F12 Fl
snp =~ gt g (7~ )

1 1 2F"  F*2 1
sre = Pt - )
which demonstrates the possibility of neutrino emission in this case.

REFERENCES

Chiu, H. Y. (1964). Supernovae, neutrinos and neutron stars. Ann. Phys., 26, 364.

Misner, C. W. (1965). Relativistic equations for spherical gravitational collapse with escaping
neutrinos. Phys. Rev., 137, B 1360.

Vaidya, P. C. (1953). ‘Newtonian’ time in general relativity. Nature, Lond., 171, 260.

Witten, L. (1962), Introduction to Current Research. John Wiley & Sons Inc., New York,
pp. 57, 58.



