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A method for finding the reduction of the direct products of the two irreducible
representations of SU(5), is formulated by the tensor method. This formula is
applied for some particular cases to classify the beautiful hadrons under the
frame work of SU(5).

INTRODUCTION
IT is now widely accepted that the newly discovered Upsilon resonance T(9.4)

[Herb, 1977]4is a bound state (bb) of a fifth quark “»” and its antiquark b, where
b represents the beauty quark. The observation of the T particle in the reaction

P + Nucleus - T + anything
- prps

immediately led to its interpretation as a bound state of a quark b and antiquark b
with the quark mass around 4-5 (GeV).

The purpose of the present work is to develop a method for the calculation of
the reduction of direct products of two irreducible representations of SU(5). As it
has rank 4, four numbers of lie Algebra, can be diagonalised simultaneously. Thus
the irreducible representations are labelled by four non-negative integers (p, g, r, s).
The dimensional formula of the representation is written as (Ahmad & Zadoo,
1978; Dalitz, 1975; Feldman & Mathews, 1977; Herb et al., 1977; Moffat, 1975) :

D=(1+P)(1+‘J)(1+")(1+s)(1 + 230 (14 q;rr)

(1+'J2rs)(l+u74_t_€)(l+&3'ii)

(1 + ”-ZL—"—;“—’i—f) (1)

We assume that there is another unitary irreducible representation p’, ¢’, r’ and s'.
We have to find the unitary irreducible representation occurring in the Clebsch-
Gordan series, which is represented on the right hand side of the expression :—

Pans)@W,q,r,s) = %e(a, 8, > A) —(2)
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We shall use the characterization of the irreducible representation of SU(S), as
the transformation induced on the irreducible tensorial sets by unitary unimodular
transformation, in the complex vector space bounded by hyper planes of SU(5).

IRREDUCIBLE TENSOR

The concept of an irreducible tensor, a tensor which transforms according to an
irreducible representation of SU(5) is an irreducible tensor. The direct products of
the irreducible representations are decomposed into direct sums of irreducible

representations. For this, an irreducible tensor X f’: is used with p, ¢ upper
contravaiant indices ; r, s as lower covariant indices. X7.! is denoted by (p, 4, r, 5)
and similary Y:’:’ being the other tensor is denoted by (p’, g°, r’, s').

We use invariant symmetric and antisymmetric tensors 8, €sp,c,a, €04 for
constructing tensors belonging to unitary irreducible representations that appear on
the right hand side of (2).

- The following processes are used to expand tensors into their irreducible
parts :—

1. Contraction of an upper index of X with lower index of ¥ any number of
times using &'s.

2. Contraction of a lower index of X with an upper index of ¥Yany number of
times using 3's.

3. Contract an upper index of X and an upper index of Y any possible
number of times using ebred,

4, Contraction a lower index of X and a lower index of ¥ using «*»¢4, any
number of times.

To get unitary irreducible representations on the right hand side of (2), process
(1) has been used k times on p and k' times on g where as process (2) is used / times
onr and !/’ times on s. Then the possible values of k, &, I, I' are :—

0<k<gp; 0k g
oigr; 0!I s (3

For a definite allowed choice of k, k', / and I, two sets of unitary irreducible
representations are to be considered, depending on whether we use process (3)or (4).

Set A

Let the process (3) be used n times, then n lies between :

O n<minf(p+qg—Kk—Kk;p +q—1I—) (@)
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Then

w=p+p —2k—1—mn,

g=q-+q +k—2k—n,

y=r+r =2l4+0'+n
and

A=s+ s —2I' +n. ...(5)
Set B

Let the process (4) be used » times (n = 0 is not allowed because it is included in
the Set A). Then the linear value of n lies between

I<nmin(r—1,s—1);(" —k, 5" — k) ...(6)
corresponding values of «, B, ¥ and A are

o=p+p —2k—-1—-2"4+n;

B=q+q +k—k+2+1'—n;

y=r+r +2—-21+10 —n
and

A=ys+ 8 +k—-2'—1+n, ..(7

The unitary irreducible representation in the direct sum of (2) falls into two
sets. The first set contains unitary irreducible representations («, 8, v, A) with
values of «, B, y and A given by (5) and &, k', I, I’ obeying the conditions (3), (6)
and (7).

No unitary irreducible representation of one set will coincide with any irreduci-
ble representation of the other set.

APPLICATIONS
The reduction is :

5@5=15+4+10
Then (,0,0,00® (1,0,0,0) =Z(«, 3, 1, A)
32

or r,qr,s)Y(pq,rs5) = EEB(a, 8, v, A)
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Here, from eqn. (3), we have :

0Kk 0K K0;0KI0;0KI'K0

Set A
o<ngl -k
k=0;n=0;0a=2;8=2;y=0;2=0ie,(2,0,0,0)
k=0;n=1;a=1;p=—1;y=1;2=1ie,(ni)
k=1;n=0;a=0;8=1;y=0;1=0ie,(0,1,0,0)
Set B
0 < n< 1 (n=0can not be used because of agreement).
k=0;n=1;0a=3;B=—1;y=—1;x=1lie,nil
k=1;n=1;0=1;p=0;y=—1;A=21ie,nil
Hence — 7
(1,0,0,00) ® (1,0,0,0) =(2,0,0,0) 4+ (0,1, 0, 0)
5 ® 5 = 15 + 10
b4
5 ® 15 = 40 + 35
(1,0,0,0) ® (2,0,0,0) =g(oc, B, v, A)
or (p'.lI',",S')®(P,q,’,s)=£(¢,l3s%)\)
pP=1;4gd=0;r=0s =0
p=2;9=0;r=0;s5s=0.
0€k<2;0€KkK0;0€7!0;07I'0
Set A

0 n< min (2 — k)
=0;n=0;a=3;p=0;y=0;A=0ie, 3,0,0,0.
k=0;n=2;a=1;p=—2;y=2;1=2ie,nil
k=1;n=1;a=0;8=0;y=1;2=11ie.,0,0,1, 1.
k=2;n=2;a=—2;B=2;y=0;A=0ie,nil
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Set B
0 ng 1 (n=0,isnot allowed as per agreement),
k=0;n=1;a=4;p=—1;y=~1;A=1ie,nil
k=1;n=1;a=0;8=0;y=—1;x=2ie,nil
Hence
(1,0,0,0) ® (2,0,0,0) = (3,0,0,0) + (0,0, 1, 1)
5 ® 15 = 35 + 40
117
5 ® 5 = 2441

(1,0,0,0) ® (0,0,0, 1) = g(% B, A)

pP=1;9g=0;r=0;5=0
p=0;9g=0;r=0;s5=1
From eqn. (3) we have :—

0Kk, €0;0IK0;0CI' L

Set A
og<ng1-10)

k=0 =0;1=0;I'=0;n=0;a=1;=1;y=0;2=1
ie,1,0,0,1,
k=0;k=0;l=0;'=0;n=1;a=1;=0;y=1;A=—1
i.e., nil,
k=0;k=0;1=0;1'"=1;n=0;a=0;=—1;y=1;1=2
i.e., nil.

Set B

0 < »n < 1 (n=0is not allowed because of agreement),
k=0;k=0;l=0;'=0;n=1;a=2;B=—1;y=—1;1A=2
i.e., nil.
k=0:;k=0;l=0;'=1;n=1;a=0;p=0;y=0;A=0
ie,0,0,0,0.
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Thus
(1,0,0,0) ® (0,0,0,1) = (1,0, 0, 1) + (0, 0, 0, 0)
5 ® 5 = 24 4+ 1
v
5 ® 24 =T70+4+45+ 5
(1,0,0,0)®(1,0,0,1)=é(cx,ﬁ,y,)\)
PP=1;9 =0;r=0;s"=0
=1;g=0;r=0;5=1
0CALT;0KEK0;0K!IK0;0K<I'K 1
Set A
0L nmin(l -k, 1-170)
k=0;I'"=0;n=0;0=2;=0;y=0;A=1ie,2,0,0,1
k=0;I'=0;n=1;a=1;8=—1;y=1;2=2ie,ni
Ek=0;I'=1;n=0;0=2;8=0;y=1;= — 1lie.,nil
k=1;I'=0;n=0;u=0;p=1;y=0;A=1ie,0,1,0,1
k=1;I'=1;n=0;a=0;8=1;y=1;2= — lie,nil
Set B
0 € n < 1 (n = 0 cannot be allowed as per agreement).
k=0;I'=0;n=1;a=3;B8=—1;y=—1;1A=2ie,nil
k=1;I'"=0;n=1;0a=1;8=0;y=—1;1=2i.e,nil
=0;I'=1;n=1;a=1;B=0;y=0;A=0ie,1,0
k=1;l'=1;n=1;0a=—1;8=1;y=0;2=1 ie, nil.
Hence

(1,0,0,0) ® (1,0,0,1) =(2,0,0,1) + (0, 1,0, 1) 4+ (1, 0, 0, 0)
5 @ 24 == 70 -+ 45 + 5

PHYSICAL APPLICATIONS OF C. G. SERIES

In SU(5) scheme, the g meson states belong to the 24 singlet representation of this
SU(5) symmetry. The 24 representation has SU(4) -reduction (Dalitz, 1975 ;

Feldman & Mathews, 1977),
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24 = 4 + 1541 + 4
L
B=1 B=0 =—1

These mesons can easily fit in the above derived representations which give beauti-
ful mesons.

TABLE 1

Quantum numbers of mesons

States I, Q Y (o} B Particle
(Meson)
T} $1ds -1 -1 0 0 0 -
T} Yoy +1 +1 0 0 0 nt
T} $rds -3 0 + 1 0 0 K°
T Yas + 1 0 -1 0 0 Ko
T Gy, -3 ) 0 -1 0 Fo
Ti Yy +3 0 0 +1 0 Fo
T} b5 -3 0 0 0 -1 B
T8 $sy + % 0 0 0 +1 B’
T Dals + 3 +1 + 1 0 0 K+
T3 bata -3 -1 -1 0 0 K-
T2 Yoy +3 +1 0 -1 0 F+
T4 Dby —% -1 0 +1 0 F
T2 Yabs + +1 0 0 -1 B
TS Yads - -1 0 0 +1 B”
T3 dabe 0 0 -1 —1 0 De
T4 Yebs 0 0 +1 +1 ] Do
T3 $ats 0 0 -1 0 -1 B
TS Vsbs 0 0 +1 0 +1 B
T Yebs 0 0 0 +1 -1 B

Yabe 0 0 0o -1 +1 B
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TaBLE 1la
Quantum Numbers of 3/2+ Baryons
B States Practical I I, Y Q c
Baryons

1ty At 3/2 -~ 3/2 1 -1 0
$1¢ada At 3/2 12 1 0 0
141 bAS 1 -1 0 -1 0
Y91t ATt 1 -1 1 -1 1
$19ads o 1 0 0 0 0
1%20s A: 1 0 1 0 1
LIA2ON A:c 172 - 1/2 0 -1 1

0 G1vada A° 32 12 1 1 0
$1¥ads =*° 1/2 - 12 -1 -1 0
$rbada zr 12 —1/2 1 -1 2
Yabata At 32 372 2 0
dadade i 1 1 0 1 0
Yadabe Af 1 1 1 1 1
Yabsba A:o 12 1/2 0 0 1
Pabals = 12 12 -1 0 0
$abats 2:; 1/2 1/2 1 0 2
Pava¥s Q- 0 0 -2 -1 0
LRURUN 22 0 0 —1 -1 1
AN ::; 0 0 0 -1 2
badaba zht 0 0 1 -1 3
19195 Ay 1 -1 1 -1 0
$1ads A 1 0 1 0 0
$1¥s¥s AF 172 - 1/2 0 -1 0
$1%ads A:*? 1/2 - 172 1 -1 1
Yatbads A-: 1 1 1 1 0

(continued)
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TasLe 1I(a) (continued)
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State Practical I I, Y Q C
Baryons
Yadralis Aro 1/2 i/2 0 0 0
$adats 330 12 12 1 0 1
Pabsbs Zt- — 1 0
Pabals b 0 0 -1 1
Pavas E;‘O () 0 1 -1 2
P1dsds Z0 1/2 - 1/2 1 -1 0
babshs 22,, 1/2 1/2 1 0 0
Dadsds Eop 0 -1 0
DaPsbs =¥ 1 -1 1
Ysbsds Ebbp 0 0 1 -1 0
TasLe IIb
Quantum numbers of 1/2 baryons
State Particle I I Y 0 fod
Baryons
$1d1da N 12 - 172 1 0 0
$id1ds z:o 1 -1 0 -1 0
$191ds De 1 -1 1 -1 1
$abaths z° 1 0 0 0 0
(1da) 4% A® 0 0 0 0 0
Prdadsde C;' 1 0 1 0 1
(‘1’14’2)4‘;‘4 C{," 0 V] 1 0 1
[CRA N S+ 12 - 12 0 -1 1
1da) ave A* 1/2 —~1/2 1 -1 1
$1¥ads P 12 1/2 1 1 0
$1vals A 12 - 12 1 -1 0
babade Xt 172 —-12 1 -1 2
Yadats z- 1 1 0 1 0
Yadata cy? 1 1 1 1 1

(continued)
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TABLE II(b) (continued)

B State Particie I I, Y Q
Brayons
(bads)sdy So 12 172 0 0
(babo)ata a0 12 12 0 0
Padate X% 0 0 0 -1
Pabss =o 12 12 -1 0
$odada Xt 12 1/2 1 0
bathate ™ 0 0 -1 -1
1% C;H' 1 -1 1 -1
($iba)sds C'; 1 0 1 0
$1¥a) a¥s (ors 0 0 1 0
(Wedbdsbs TS 1/2 - 12 1 -1
1% 4¥s T-‘;H' 1/2 - 172 1 -1
(V2v2)ds ) 1 1 1 i
@abo)sts 50 112 12 0 0
(92¥3) a5 § il- 1/2 1/2 0 0
(V¥ s¥s X3 1/2 12 1 0
1 (bata) 4¥s Xt 1/2 172 1 0
(P2ba)s¥s X+ 1/2 —1/2 0 -1
(1) 45 X;‘o 1/2 — 172 0 -1
batals Tg 0 0 -1 — 1
(Yada)sts T;' 0 0 0 -1
(SANS T:'+ 0 0 -1
$aPads A+ 1 -1
$ibsds Zt+ 12 — 12 1 -1
badss zy* 1/2 12 1 0
2 badsds Z§+ 0 0 0 -1
Pabsts Zz'*' 0 0 1 -1
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For baryons, there are 35-plet symmetric with J =3/2%, 40-plet mixed J = 12+
states which also fit in the above representations.
For 3/2+ symmetric baryons we have ;

35 = 20 + 10 4+ 4 + 1
B=0 B=1 B=2 B=3
For 1/2* baryons
40 = 20 + 16 + 4
B=0 B=1 B=2

The quantum numbers of these mesons and baryons are shown in the Tables
I, a, b.

CONCLUSION

In the present paper and formalism, the desired decomposition of the direct
products is obtained in the form of direct sum of all the terms on the right hand
side of eqn. (2). Thus we see that all the familiar results of SU(5) are obtained.
This method, based on irreducible, tensors is both simpler in its foundations and
more efficacious in its applications than other methods based on Young tableaux
and weight diagrams etc., which the present authors have established in identifying
the hadrons including the heavier ¢ and « particles and their families (Weiskopf,
1977).
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