
Introduction

For their application to the design for crashworthiness
of road and air vehicles, mechanics of axial crushing
of thin metallic tubes and frusta has been extensively
studied in the past experimentally[1-3]. The aim is to
absorb the kinetic energy dissipated in a crash or an
accident of these vehicles in plastic deformation that
occurs during crushing of these thin walled structures
and consequently save human beings from injury and
costly equipment from excessive damage. The mechanics
of crushing phenomenon is quite complex and not
amenable to complete analytical solution. Experiments
on tubes have shown that under axial loads when these
deform in axi-symmetric mode, the fold formed is partly
inside and partly outside the initial tube diameter[4-6].
Analytical solutions available are not many and those
available have made several simplifying assumptions
which include the deformation to be inextensional and
the fold to be only outside[8] or inside[9,10] the initial
diameter of the tube. These analyses only determined
the mean collapse load for which mean circumferential
strain was enough. There is hardly any analysis available
which determines the inside/outside folding of the frusta
or the tubes. Available analysis[4,11], which considered
inside/outside folding in tubes assumed that both parts
are equal in length and those available for the load-
deformation computation assume the fold shape.
Experiments have shown that this is not true and the
inner fold is smaller than the outer fold[5,6,11-13]. Such
analysis for conical frusta does not exist, and those
available[7] consider the folding to be only outside.

In the present paper, a mathematical formulation
is presented for axi-symmetric crushing of frusta with
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partly inside and partly outside folding based on energy
considerations. The model developed considers the
variation of circumferential strain during the formation
of a fold and the difference in yield strength of material
in tension and compression. The existing total outside
fold model of frusta[7] and the partly inside and partly
outside fold models[6] have been derived from the
proposed model. The mean and the variation of crushing
load for frusta and tubes have been computed. The results
have been compared with experiments and good agreement
has been observed.

Analysis of Frusta

For the analysis, we consider a thin frustum of thickness
t, smaller end radius R1, and angle of taper α, as shown
in figure 1. The axi-symmetric crushing of the frustum
is also shown in this figure, by the formation of partly
inside and partly outside straight folding. The undeformed
portion a’-b’-c’-d’-e’ of the frustum takes the shape
a-b-c-d-e after axi-symmetric crushing. The length of
first and second limbs of first fold is denoted by h1 and
h2 respectively out of which mh1 and mh2 are inside
the initial line of frustum for first and second limb
respectively, and m is the folding parameter defined as
the ratio of the inside portion to the total length of the
fold. The angle of inclination of the limbs of the fold,
θ1 and θ2 have been measured from the initial line of
the frustum; their initial value in the undeformed state
is zero and their maximum value after complete crushing
is (π/2-α) and (π/2+α) respectively. In the present
analysis, complete crushing of the fold has been assumed
because the consideration of effective crushing distance[10]

would lead to the lower values of the energy dissipation.
The yield strength of the material of the frustum in
compression and tension has been taken as fyc and fyt

respectively, and r = fyc/ fyt.
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The plastic moment of resistance of the material
of the frustum has been taken as

Energy Absorption in Crushing

The radii of the points a,b,c,d and e in the deformed
state of the frustum (Fig. 1) are given by,
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Figure 1: Axial crushing model of a frustum
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The relationship between the length of the two limbs
can be obtained from the geometry in complete crushed
state as,
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For the nth fold (n = 1, for the first fold considered
in Fig. 1), the above radii will be such that the new

value of R1 is ( ) αsin)1( 211 hhnR +−+ .

The energy dissipation in flexure has been assumed
to be localized at the hinges which is in the form of
rotation at lower, upper and intermediate plastic hinges.
The energy dissipated in plastic bending Wbθ, in the
rotation of the lower limb upto angle θ1 and upper limb
upto angle θ2 is given by:

∫∫∫ +++=
122

0

1

0

2

0

2 222
θθθ

θ θπθπθπ dRMdRMdRMW cpcpepb

∫+
1

0

12
θ

θπ dRMa ap … (10)

( ) ( )











+++= ∫ ∫

2 1

0 0

122
θ θ

θθπ dRaRdRRM caecp … (11)

During the formation of first fold, lower hinge does
not exist, whereas it exists in subsequent folds. It has
been incorporated in the above expression by introducing
a constant, a. Its value will be zero (i.e. a=0) for first
and unity (i.e. a=1) for rest of the folds. Evaluating
the integrals, Wbθ is obtained as

= πθ 2 MW pb
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putting, απθ −=
21  and απθ +=

22  in the above

equation gives the total energy absorbed in flexure
during complete crushing of the fold as,

= π2 MW pb
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which for m=0 is reduced to the total outside fold model
of frusta[7], in which case the total energy dissipated
in flexure is,

( ) ( )









 −++= αππ 1

2
32 1RaaMW pb

( ) ( ){ }



++

−
− αααπ

α
cossin2

sin1

2 2h
… (14)

For α = 0, a = 1 and h1 = h2 = h (say), equation
(13) describes the partly inside and partly outside model
of a cylinder of radius R1 and the energy dissipated in
flexure is given by[6],
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The energy dissipated in circumferential stretching
for the portion of the fold inside the initial diameter
of the frustum and circumferential compression of the
portion of the fold outside for rotation upto an angle
θ1 of the lower limb and θ2 of the upper limb of the
fold, Wcθ, the total energy dissipated in circumferential
deformation can be calculated by,
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Considering an element of width dy1 at a distance y1

from point b in the inside portion of the lower limb
and another element of width dy2 at a distance y2 from
point b in the outside portion of the lower limb, the
energy dissipated in circumferential deformation can be
calculated as,
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where, dA1 and dA2 are the area of elemental rings, given
by
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and ε1 and ε2 are the circumferential strains in the two
elements, given by
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Differentiating the above two equations, we get,
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Using equation (18), (21) and (22), equation (17) gives,
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Considering an element of width dy3 at a distance
y3 from point b in the inside portion of the lower limb
and another element of width dy4 at a distance y4 from
point b in the outside portion of the lower limb, the
energy dissipated in circumferential deformation can be
calculated as,
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By differentiating equations (27) and (28) we get,
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Using equations (26), (29) and (30), equation (25)
reduces to,
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Using equations (23) and (31), equation (16) gives the
energy absorbed in circumferential deformation during
the rotation of lower limb upto θ1 and upper limb upto
θ2 as,
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Substituting, απθ −=
21  and  απθ +=

22  in the

above equation, we get the total energy absorbed in
circumferential deformation during complete crushing
of the fold as,
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which for total outside fold model (i.e. m=0) reduces
to,
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Equation (34) is not valid for α = 0. This is the case
of a cylinder, and to derive the expression for energy
absorbed in circumferential deformation, we begin with
equation (16) and after integration substitute θ1 = θ2

= π/2 and obtain,
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Comparison with Experimental Observations

An Aluminium frustum, 1.85 mm thick, 130.3 mm long,
and with end diameters of 43.9 and 57.5 mm, tested
in axial compression[7] has been taken for experimental
validation. The value of yield strength of the material
of the frustum was found to be 92.0 MPa. The crushing
load variation obtained experimentally for first fold has
been plotted in Fig. 2. The variation of non-dimensional
crushing load Pθθθθθ/P0 for first fold (i.e. a = 0) and for
folds other than first fold (i.e. a = 1) has also been plotted
in this figure, where, P

0 
= πDfytt. The analytical load-

deformation curves do not start from zero load level
due to the neglect of the elastic deformation in the
beginning. It is observed that the consideration of first
fold brings the calculated curve close to experimental
curve.

Figure 2: Load deformation curves for frustum

One steel cylindrical tube of 43.0 mm diameter and
1.8 mm thick tested in axial compression[6] has been
used for the validation of the analysis presented in earlier
sections. A parametric study has also been carried out
for studying the influence of the difference in the
compressive and tensile strength of both the materials
by taking the parameter r as 1.0, 1.5 and 2.0. The values
of size of fold and folding parameter were first determined
numerically and these values were used for finding out
the variation of crushing load. The variation of non-
dimensional crushing load Pθθθθθ/P0 with r = 1.0 along with
the experimental curve has been plotted in figure 3.

Figure 3: Load deformation curve of a steel tube of
D = 43.0 mm, t = 1.8 mm

which is same as that given in Ref.[5] for cylinder of
radius R1 and size of fold, h.

Average crushing load

Assuming that the energy dissipation in the axi-symmetric
axial crushing of frusta takes place in the form of
flexural and circumferential deformations, therefore,
the external work done can be equated to the energy
absorbed in bending and circumferential stretching. The
average crushing load, Pm, can, therefore, be calculated:
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where, Wb is given by equation (13) and Wc is given
by equation (34) for frusta and equation (40) for tubes.

Size of Fold and folding parameter, m

Determination of the size of fold, h1 and h2, and the
folding parameter, m, requires the minimization of
external work done for crushing unit length of frusta
during the fold formation or the minimization of average
crushing load of the fold i.e.,
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Variation of Crushing Load

The variation of crushing load can now be found from
the following relation
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where, W
bθ and W

cθ are the work done in bending and
circumferential stretching in rotation of lower limb of
fold upto θ1 and upper limb upto θ2 given by equations
(12) and (33); and z is the crushing distance in the
direction of the load which is given by,
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Conclusions

A mathematical model for the axi-symmetric crushing
of frusta, normally observed in frusta of low semi-apical
angles, with partly inside and partly outside folding has
been presented. The existing total outside fold model
of frusta and partly inside and partly outside fold model
of tube can be derived from this model. The variation
in crushing load and mean collapse load have been
computed.

The neglect of lower hinge in the first fold of frusta,
which is based on the experiments wherein it has been
observed that the first limb of the first fold remains
straight, brings the calculated crushing load curve close
to the experimental curve.

The results have been compared with experiments
and good agreement has been observed. The results are
of help in understanding the phenomenon of actual fold
formation.
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