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Axi-Symmetric Crushing of Thin Walled Frusta and Tubes
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An analytical straight fold model with partly inside and partly outside folding in axi-symmetric crushing of thin metallic frusta
has been presented. Existing total outside fold model of a frusta and partly inside and partly outside fold models as well as tota
outside or total inside fold models of a tube can be derived from the present model. The relations for obtaining the inside and
outside fold lengths in the case of tubes are derived. The difference in the values of yield stress of the material in compressior
and tension has been incorporated in the analysis. Variation of circumferential strain during the formation of a fold has been
taken into account. The mean and the variation of crushing load have been computed. The results have been compared wit
experiments and good agreement has been observed. The results are of help in understanding the phenomenon of actual fc
formation.
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Introduction partly inside and partly outside folding based on energ

. — . . considerations. The model developed considers tt
For their application to the design for crashworthiness™~ .~ . . . : . .
) . . . .~ “variation of circumferential strain during the formation
of road and air vehicles, mechanics of axial crushing

. . . ~of a fold and the difference in yield strength of materia
of thin metallic tubes and frusta has been extensively, ) . I .
in tension and compression. The existing total outsid

ZEJ:O'?S tli?eﬂllﬁw;t?csteﬁéfge;rgiir;ifg}é dT?rf aal(r;:afh tgr al1‘]old model of frustd! and the partly inside and partly
accident of these vehicles in plastic deformation thatoggsf:eéoll]do drglm'jrilg n:]:;/r? azziﬂe?/zrrlgiinf:;r:rl}gir
occurs during crushing of these thin walled structurejhIo b ’

. - oad for frusta and tubes have been computed. The resu

and consequently save human beings from injury an . .

. . . have been compared with experiments and good agreem:
costly equipment from excessive damage. The mechamcg

. ; . as been observed.
of crushing phenomenon is quite complex and not
amenable to complete analytical solution. ExperimentsAna|ysis of Frusta
on tubes have shown that under axial loads when thes

deform in axi-symmetric mode, the fold formed is partlyt smaller end radiu,, and angle of tapa, as shown
7 11 7

inside and partly outside the inifial tube diamétr in figure 1. The axi-symmetric crushing of the frustum

Analytical solutions available are not many and thoseiS also shown in this figure, by the formation of partly

available have made several simplifying assumptions_ . . . .
o . ; . nside and partly outside straight folding. The undeforme
which include the deformation to be inextensional andI ! partly outsi '9 ng u '

the fold to be only outsié or insidé®'% the initial portion a-b*c-d"e’ of the frustum takes the shape

. . a-b-c-d-e after axi-symmetric crushing. The length o
diameter of the tube. These analyses only determlneﬁrst and second Iimb); of first fold is dgnotedmﬁr?d
the mean collapse load for which mean circumferential

. . . . h, respectively out of whicilmh, and mh, are inside
strain was enough. There is hardly any analysis avallabl?ﬁe iniF;iaI Iineyof frustum forhi‘irst andhzsecond limb

which determines the inside/outside folding of the frUStarespectiver andn is the folding parameter defined as
. ] . . ,

or Fhe tube_s. Avalllablg analy8is’, which considered the ratio of the inside portion to the total length of the
|n5|de/outs!de folding in tubes assumed that both part%ld. The angle of inclination of the limbs of the fold
are equal. inlength anq those available for the Ioad-el and 6, have been measured from the initial line of
gifcg?n?;ﬁg t::;vn;psur:s\t/\l/cr)\nthzfstﬁin;?s t::gt I?Jg ;:ggﬁéthe frustum; their initial value in the undeformed state
=P : 11-13 is zero and their maximum value after complete crushin
inner fold is smaller than the outer f8I&***3] Such

analysis for conical frusta does not exist, and those:néﬁi;:)cjrgdleQZEZ;?J)Sr:;Sp;iE\SZ' d Lnastgie?]r:;:g;w
availablé’! consider the folding to be only outside. ysIS, P g

because the consideration of effective crushing distéhce
In the present paper, a mathematical formulationwould lead to the lower values of the energy dissipatior
is presented for axi-symmetric crushing of frusta with The yield strength of the material of the frustum in

compression and tension has been taker anéf,,
! Corresponding author E-mail: nkgupta@am.bitd.ernet.in respectively, and = yC/ fyt_

Eor the analysis, we consider a thin frustum of thicknes
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Centre line of frustum

L

Figure 1: Axial crushing model of a frustum

The plastic moment of resistance of the material

of the frustum has been taken as

1
= t2
2J3 "

Energy Absorption in Cuushing

M, =

The radii of the points a,b,c,d and e in the deforme
state of the frustum (Fig. 1) are given by,

R = R +mh{sina -sin(6, +a )} - (D)
R = R +mh sina - (2
R = R + h{msina + 1-m)sin(g, +a )} . (3
R = R+{h +(1- mh,}sina - (4
R= R +{h + (- mh,}sina —mh, sin(6, - a)

. (5)

R=R+ h{m sing + (1— m)sin(@l +0!)}
AlSO. _ (1- m)n, sin(p, - a)
. (6)

which gives relation between the two angles:
6, = sin'[K sing, +a)- K + sina|- . (7)

The relationship between the length of the two limb:
can be obtained from the geometry in complete crushe
state as,

h, = Kh,
_ 1+sina .
" 1-sina - ©)

For then™ fold (n = 1, for the first fold considered
in Fig. 1), the above radii will be such that the new

value ofR, is R + (n-1)(h, +h,)sina .

- (8)

where,

The energy dissipation in flexure has been assume
to be localized at the hinges which is in the form of
rotation at lower, upper and intermediate plastic hinge:
The energy dissipated in plastic bendWg,, in the
rotation of the lower limb upto angtg and upper limb
upto angleg, is given by:

0, 0, 6,
WbQI: 2t M, R cﬂzf 2nM, R &9, +‘|’271M,)I1d(91
0 0

(Upper Hinge) (Intermedia?e Hinge)
91
+aIZnMpRad91 . (10)
0 (Lower Hinge)
6,

I(aRa +R,)d6, D . (1)

0

mz
-2nMg R+ R)®, +

During the formation of first fold, lower hinge does
not exist, whereas it exists in subsequent folds. It he
beenincorporated in the above expression by introducir
a constanta. Its value will be zero (i.ea=0) for first
and unity (i.e.a=1) for rest of the folds. Evaluating

dthe integrals, ) is obtained as

Wb@
{ a+1)( R+mhsina)p; + h{ma+ )~ Hcodp, +a)-com} O
‘5 4R+ h(1+ K-m)sina}8, + h( 2~ Ycodp, -a)-cosr}

. (12)

=21,

. m m .
putting, 91=E—G and 6, =E+C¥ in the above

equation gives the total energy absorbed in flexur
during complete crushing of the fold as,

W, =2mM

ga+1 R_+mhs|norB]—T GH— h{ma+ 3- }cosa D

D
[-1'-2{R_+ rb(1+ K—m sina}B’—THxH— @(Zn— J)COSGD
u 02 O u

. (13)
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which for n¥0 is reduced to the total outside fold model Differentiating the above two equations, we get,
of frustd’, in which case the total energy dissipated d

. . £ cos@, +a
in flexure is, 1 __Y:100s6, +a)

de, R, -y, sina - (1)
de, _y,codg, +a)
W, =2rM 3+a 1 a =
2h, _ O . . : .
—(—){(n+ Z,) sino + Cosg}D (14) Using equation (18), (21) and (22), equation (17) gives
1-sina 0o
. _01 = B_
Fora = 0,a =1 andh, = h, = h (say), equation d6, 27t ¢ [smag
(13) describes the partly inside and partly outside model
of a cylinder of radiuR; and the energy dissipated in [1J ; h, sina O 0
s I D}]—In(A B)+(1— m—rm) Dcos(e +a) 0
flexure is given b, 5 0 0
W, =27 [2rR, + 2h(L- 2m)] . @5 0 in(as)emt e -0 ) sin2(e, +a)g 3
23 i — 0
The energy dissipated in circumferential stretching O B— 4(1— m- rm)hlsma g 4sina 0O
for the portion of the fold inside the initial diameter E U u
of the frustum and circumferential compression of the
portion of the fold outside for rotation upto an angle A=1 mh sina
6, of the lower limb andd, of the upper limb of the ~Wwhere, A==7 R, and
fold, W_,, the total energy dissipated in circumferential .
o (1- m)h, sina
deformation can be calculated by, B=1+Y*—"~— — .. (24)
W o W, o +92 W, 0 Considering an element of widtly, at a distance
o6 :f de, [ I de, o 2 - (16) y, from point b in the inside portion of the lower limb
0 0

and another element of widtly, at a distancg, from
point b in the outside portion of the lower limb, the
Considering an element of widdy, at a distancg, energy dissipated in circumferential deformation can b
from point b in the inside portion of the lower limb calculated as,

and another element of widtly, at a distancg, from

point b in the outside portion of the lower limb, the dW,, _
energy dissipated in circumferential deformation can be B
calculated as,

(Lower Limb) (Upper Limb)

1m

d£3

- (25)

Sl fle

where, dA = 27'[{Rd +Y, sm( )}dy3 and

E’A I ﬁ@@p‘z (17) dA =2n{R, -y, sin(6, —a}dy, .. (26)

dVVcl dgl

where dA, anddA, are the area of elemental rings, given 2n{{Rd +y, sm }] Rd -V, sinor)
by 27T(Rd y,sina)
dA =2m{R, -y, sin(6, +a)}dy, and @D
dA =21{R, +y, sin(®, +a))dy, . (18) |
andeg; andg, are the circumferential strains in the two ¢, = n{{Rj Ya sm }] R’ Y sma)
elements, given by 277('% +y,sina)
- 2l(R =y, )l (R, sia) - @9
zn(Rb ylslna) By differentiating equations (27) and (28) we get,
Zn{{Rb tYs Sm(e +a)}] (Rb Y, Sina) dg3 Y3 005(92 —a)
2n(R, +y, sina) - (20) = . (29)

dé, R,-y;sina
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de, =_Y4COS(92 ~a) _ B Ry
de, Ry +y,sina - (30) We =27t ¢, csina g
Using equations (26), (29) and (30), equation (25 i 0
redugesqto 20 ) 0 = %—In(ﬁ{ B)"' @-m- rm)hlzbna E(l‘ sina)a
~2rf t, B_EZ E E12|n(A'B)+rA2+B2 1+r)D E
°sina 0 % sing (cos* a 0
h sing O . 0 T 4d-m rm)hl qdsina O
%n(d D)+(1— m-m) 22" 04, —a) [ ERs a d
[0 Ry O O R, Hz
O g -2t
0 EIZIn(CrD)JfrC2+D2 (1+V)D3m2(9 )D Tty °Isina O
Edn h, sinar 2 —4)g
- m- D
5 E+4(1 m-rm) 3 0 4sina 5 %n(d D)+ -m rm)h smag(l sina )
@y 'O Ry O 0
(1- m)h, si B %In(c D)+rC2+D2 (1+r)gcosza B (34)
_._(1-m,sina 0 , H 0
where, € =1 R, and 0 % 41- m-rm) h Sinar O4sina 0
g0 Ry O B
D=1+ mh, sina which for total outside fold model (i.en=0) reduces
=l+—— .. (32) to
R, ( :

_ 1-sina
Using equations (23) and (31), equation (16) gives the W, = 277fytom
energy absorbed in circumferential deformation during

the rotation of lower limb upté, and upper limb upto Eaz A- R12A2}+ 1+ sina
8, as, 2sina

{R?g- RfBz}E.. (35)
ot B—Hz where,
CG - t

"sina 0 hlsma hlsma
T _ . A= . (36)
g In(A{ B)+ 1-m- rm)hlsma %sin(é)1 +a)-sina} QO
M R O O
O r 2 2 _ 0 O h sina
a%ﬂln(A B)+rA +B- (1+r)[[c0527—0052(91+a)§ A, = -2 % E (37
0 h, sina BE . Ry
O D—4(1— m-rm)—2—— @ 8sina
B O Ry 0 8
__hsina 1Fhlsma
B, = +1n
~2rt 1, AR ] R0 R
% sina O
0 h sina 1H12 sina h, sina
%n C D)+[@-m-rm h, sina -sina 0 B % + In% ..(39
O ; 2 O
ELEE'”(C D)+rc?+D (1”)53 costr - cos2(6, —a)% Equation (34) is not valid fom = 0. This is the case
O S+4(1— m—rm)% % 8sina of a cylinder, and to derive the expression for energ
g0 0 =

absorbed in circumferential deformation, we begin with
equation (16) and after integration substitéje= 6,
= 12 and obtain,

. (33)

. s s .
Substituting,6; =E—01 and 6, =—+0 in the

m)h
above equation, we get the total energy absorbed i\, = 2mf toh2 l]m E E* 1-m) 3R1)
circumferential deformation during complete crushing D E@
of the fold as, ... (40)
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which is same as that given in Ref.[5] for cylinder of
radius R, and size of foldh.

Average crushing load

Assuming thatthe energy dissipation in the axi-symmetric

axial crushing of frusta takes place in the form of
flexural and circumferential deformations, therefore,
the external work done can be equated to the energ

absorbed in bending and circumferential stretching. The

average crushing loaH,, can, therefore, be calculated:

p o= MbtWe
™ (1+ K)h, cosar

. (42)

where, W, is given by equation (13) and, is given
by equation (34) for frusta and equation (40) for tubes.

Size of Fold and folding paameter,m

Determination of the size of foldy, andh,, and the
folding parameterm, requires the minimization of
external work done for crushing unit length of frusta
during the fold formation or the minimization of average

crushing load of the fold i.e.,

oP, 0

Zm mo_ . (42
N P (42)
where, P, is given by Eq. (41).

Variation of Crushing Load

The variation of crushing load can now be found from
the following relation

(V%e

dz
de

6) ce)

p, = AWy +

dz . (43)

where,W_ andW_ are thework done in bending and

circumferential stretching in rotation of lower limb of
fold upto 8, and upper limb upté, given by equations

(12) and (33); and is the crushing distance in the
direction of the load which is given by,

z=h{(1+ K)cosa = K codp, +a)-cod8, -a )}

. (44)
therefore,
dz _ . - dé,
" Kh, sin(6, +a)+ h, sin(8, -G)d—el . (45)
do, _ Kcosf, +a)
where, d6,  cosb, -a) . (46)

Comparison with Experimental Observations

An Aluminium frustum, 1.8%nmthick, 130.3mmlong,
and with end diameters of 43.9 and 5mk tested

in axial compressidA has been taken for experimental
validation. The value of yield strength of the material
of the frustum was found to be 9MPa. The crushing
load variation obtained experimentally for first fold has
Yeen plotted in Fig. 2. The variation of non-dimensiona
crushing loadP /P, for first fold (i.e.a = 0) and for
folds other than first fold (i.e= 1) has also been plotted
in this figure, whereP = mDf t. The analytical load-
deformation curves do not start from zero load leve
due to the neglect of the elastic deformation in the
beginning. It is observed that the consideration of firs
fold brings the calculated curve close to experimente
curve.

Experiment
Calculated (a=1)
Calculated (a=0)

rushing Load

3

©

Non-Dimension

10 15
Vertical Crushing (mm)

20

Figure 2: Load deformation curves for frustum

One steel cylindrical tube of 43.0 mm diameter anc
1.8 mm thick tested in axial compresdibias been
used for the validation of the analysis presented in earlit
sections. A parametric study has also been carried o
for studying the influence of the difference in the
compressive and tensile strength of both the materia
by taking the parameteras 1.0, 1.5 and 2.0. The values
of size of fold and folding parameter were first determinec
numerically and these values were used for finding ot
the variation of crushing load. The variation of non-
dimensional crushing lod®},/P with r = 1.0 along with
the experimental curve has been plotted in figure 3

1.0
0.9 1
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1 1
0.0

——Experiment
—— Calculated

Non-Dimensional Crushing L

10 15 20

Vertical Crushing (mi
Figure 3: Load deformation curve of a steel tube of
D=43.0mm,t=1.8 mm

0 5 25
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Conclusions 2

A mathematical model for the axi-symmetric crushing
of frusta, normally observed in frusta of low semi-apical 3
angles, with partly inside and partly outside folding has
been presented. The existing total outside fold modek
of frusta and partly inside and partly outside fold model
of tube can be derived from this model. The variation®
in crushing load and mean collapse load have been
computed. 6

The neglect of lower hinge in the first fold of frusta,
which is based on the experiments wherein it has beerg
observed that the first limb of the first fold remains g9
straight, brings the calculated crushing load curve close
to the experimental curve.

The results have been compared with experiments10
and good agreement has been observed. The results agg
of help in understanding the phenomenon of actual fold
formation. 12
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