
Quantitative Trait Loci (QTLs) for Plant Disease Response 179Proc Indian Natn Sci Acad 72  No.3 pp. 179-200 (2006) 179

Review Article

Author for correspondence – e-mail: skpandey.cpri@gmail.com

Intr oduction

After the rediscovery of Mendel’s work [1] in the last
century, it was recognized that disease resistance was
often inherited as a single dominant or semi-dominant
gene [2]. Since then a substantial amount of knowledge
has been accumulated on the genetic basis of disease
resistance [3-5]. The breeding for disease resistance
followed by the use of resistant cultivars has become a
universal strategy to control the crop diseases. Although
some forms of disease resistance are genetically simple
because they can be explained by simple Mendelian
ratios (monogenic), genetically complex forms of disease
resistance are rather poorly understood. Most complex
disease resistance traits are controlled by multiple loci
in contrast to a single locus involved in monogenic simple
disease resistance [6]. The phenotypic variation of such
a complex disease reaction is usually continuous instead
of discrete, and conditioned by allelic variation at several
genetic loci, each with a relatively small effect.
Therefore, these complex disease resistance traits are
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Quantitative resistance traits are controlled by multiple genetic loci contributing to continuous allelic variation on the
phenotype. Although they cannot be shown to be conditioned by individual discrete recognizable loci through classical
quantitative genetics, they have been characterized into recognizable quantitative trait loci (QTLs) employing DNA-based
markers. A QTL is a map position on the chromosome localized relative to the position of the genetic marker locus, and is
identified through significant correlations between the segregation at a certain genetic marker locus and the variation in
quantitative (trait) resistance value. Therefore, the preservation of linkage disequilibria between the genetic markers and
the QTLs is the basis of marker-assisted localization of quantitative trait loci in specific chromosomal regions of the
genome. The advent of QTL mapping has made it possible not only to uncover the magnitude of the effects of QTLs on
plant disease response, but also to describe the roles of such specific loci in genetically complex disease resistance traits
and to identify the genomic regions contributing to resistance function. With QTL mapping, it has now become possible to
characterize the epistatic interactions between different resistance genes, gene × environment interactions and the relationship
between quantitative resistance and race-specificity. All these developments have resulted in addressing some of the
fundamental questions of plant-pathogen interactions through genetic dissection of the resistance response/ function quite
unthinkable even a decade earlier. Partial resistance genes having small continuous effects on resistance function, which
were classically thought to be race-nonspecific, have been shown to be race-specific by QTL mapping, suggesting that
partial resistance genes might be ‘defeated’ major genes with residual effectiveness and race specificity. In spite of tremendous
potential of QTL mapping, the usefulness of QTL-marker association for effective marker-assisted selection (MAS) is
conditioned, rather limited, by epistatic interactions with other loci, variations in linkage phase and QTL × environment
interactions. Although additive QTLs can significantly increase the efficiency of resistance breeding, recent studies are
revealing the existence of epistatic interactions between the QTLs as well as QTL × environment. In this context, the
recently introduced ‘candidate’ gene approach may aid in the discovery of the functions of the QTLs by linking the genetic
QTL analysis with molecular biology methods- an ambitious step toward treating the QTLs as ‘qualitative’ loci and
realizing the positional cloning of partial resistance genes underlying the QTLs conferring effective durable resistance in
different crop species.
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measured quantitatively, and they are known as
quantitative resistance traits (QRTs). However, lack of
discrete phenotypic segregation prevents the use of
classical Mendelian techniques for studying the QRTs.
Moreover, gene × gene and gene × environment
interactions play an important role in the phenotypic
expression of QRTs resulting in lower estimates of
heritability and a reduced likelihood of appearing
Mendelian unless special experimental precautions are
followed. Besides, QRTs can be race-specific or race-
nonspecific [7]. In other words, the classical quantitative
approaches describe the nature of loci involved in
resistance phenotypes including the approximate number
of loci affecting the resistance trait in a particular mating
by studying the properties like average gene action (e.g.
additive, non-additive and epistatic gene actions) and the
degree to which different polygenes interact with each
other and the environment in determining the ultimate
phenotype (e.g. genotype × environment interaction).
This does not, however, allow to dissect polygenic
inheritance into discrete genetic loci or to characterize
the roles of individual genes in disease response
vis-à-vis resistance.
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In recent years, the availability of numerous
molecular markers throughout the genome provides the
opportunity to analyze the Mendelian factors determining
the quantitative traits localized in quantitative trait loci
(QTLs). Molecular markers are heritable entities that are
associated with economically important crop traits used
by the plant breeders as selection tools [8]. The individual
loci controlling a quantitative trait are referred to as QTL.
Different alleles at QTL cause genetic differences
between individuals and families for quantitative traits
[9]. Complex and polygenic forms of characters or traits
can be studied by QTL mapping employing DNA
markers [10]. It describes the roles of specific loci in
genetically complex traits. Actually, the identification
of disease resistance QTL is no different from genetic
dissection of other quantitative traits vis-à-vis QTLs.
Although before the advent of molecular biology some
genetic experiments did predict QTL mapping, recent
advances in molecular-genetic marker technology have
tremendously broadened our understanding of
quantitative traits, and provided a greater ability to
manipulate them for crop improvement. About twenty
years ago, quantitative trait loci (QTLs) were first
localized to specific chromosomal regions by
characterizing induced resistance mutations using alien
addition and chromosome deletion lines [11]. But today,
molecular marker technology has facilitated the
identification and characterization of QTLs with much
ease and alacrity unthinkable at that time. With QTL
mapping, the researchers have begun not only to uncover
the effect of individual QTLs in the disease response
process, but also to identify race-specificity. In addition,
QTL mapping has provided the researchers a much better
recourse to characterize the interactions between disease
resistance genes, plant development and the environment,
and to ascertain whether homologous resistance genes
exist in related plant taxa. In recent years, it has also
opened up possibilities to clone partial resistance genes,
which are known only by small and continuous effects
on phenotype [12,13]. These all appear to have the
potentials for managing complex traits like disease
resistance through marker-assisted selection (MAS) and
finally map-based cloning of specific genes [14]. These
issues will be addressed in this article with current update
of the status of QTL mapping for managing quantitative
disease resistance in diverse plant taxa. The article would
also go in some way to covering the conceptual
frameworks of QTL analysis with special reference to
their applications in plant breeding.

Quantitative Trait Locus (QTL): An Overview

The Genetic Architecture

The analysis of quantitative traits using a genetical
approach rather than a statistical approach has been
revolutionized at the end of the eighties [15]. By that
time linkage maps were sufficiently saturated with DNA

marker loci to use the segregation of the marker alleles
in a progeny to correlate with the variation in a trait value
in the said progeny. There were significant correlations
between the segregation at a certain genetic marker locus
and the variation in trait value. These correlations indicate
the presence of a quantitative trait locus (QTL) in the
proximity of the marker locus. Therefore, a QTL is a
map position on the chromosome localized relative to
the position of the genetic marker loci. It describes a
region of a chromosome that has a significant effect on
a quantitative trait. The inheritance and effect of this locus
involved in the expression of a quantitative trait can be
studied indirectly by studying the inheritance of the
alleles at the marker loci. As early as in 1923,
Sax [16] reported that a quantitatively inherited trait (seed
size) in bean was associated with a discrete monogenic
trait (seed coat colour), and this was perhaps the first
report of the linkage of the single gene with one or more
polygenes. Subsequently, many reports confirmed the
existence of linkage between single gene markers and
polygenes controlling quantitative variation [17]. These
all laid the conceptual basis of QTL mapping on the
supposition that if the segregation of simply inherited
monogenes could be used to detect a linked polygene, it
should be possible to map and characterize all the QTLs
affecting a complex trait [18].

The advent of molecular markers, especially the
DNA-based genetic markers, initiated the modern QTL
mapping. The uniqueness of the DNA-based genetic
markers is that defined sequences of DNA act as the
linked monogenic markers. Using DNA-based markers,
it is possible to map and characterize the polygenes
underlying quantitative traits in natural populations. DNA
markers can be distinguished from morphological
markers in having phenotypic neutrality, much
informative polymorphism, abundance, codominance
and normally the absence of epistasis or pleitropy. This
facilitated a virtually limitless number of segregating
DNA markers for use in a single population for mapping
polygenes through an entire genome. Clearly this gave
the researchers more insights into the chromosomal
locations, gene actions, and biological roles of specific
loci involved in the expression of complex phenotypes.
Modern QTL mapping involves testing DNA-based
genetic markers throughout a genome for the likelihood
that these markers are associated with a QTL. Individuals
in a population are characterized for DNA marker
genotypes and the phenotypes of interest, and
accordingly they are separated into distinct classes based
on marker genotypes. Marker-based localization of QTL
requires the preservation of linkage disequilibrium
between genetic markers and the QTL in population
under investigation. Many authors have examined the
theoretical basis of this association between genetic
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marker and QTL [19-21]. However, the expected
efficiencies of various methods of estimating QTL effects
vary considerably [21,22]. In essence, the tests for QTL-
trait association can involve the evaluation of one marker
at a time, two marker loci simultaneously, or the
consideration of all the marker loci at once. The single-
marker approach, based on linear model method or one-
way analysis of variance, suffers from the main limitation
that it ignores the potential recombination between a
marker and a QTL leading to an underestimation of QTL
effects if the marker and QTL are not coincident [23]. In
contrast, interval mapping strategies using maximum
likelihood for the analysis of single QTLs flanked by a
pair of marker loci are employed for simultaneous
examination of two marker loci [20,22]. This approach
permits the estimation of QTL effects at any location
within a marker interval based on the means and
variances observed in the marker classes and the
recombination frequency between the markers bracketing
a particular interval [20]. In spite of this advantage,
interval mapping approach fails to test unlinked markers
and to precisely locate QTLs beyond the terminal
markers of a given linkage group. However, the
consideration of all the marker loci at once involves the
regression of trait expression on the values of multiple
marker loci [24]. Even interval mapping and multiple
regression have been integrated including the inclusion
of co-factors to characterize QTL-trait associations more
precisely [21,22,25-27]. However, since the value of a
quantitative trait displays a continuous distribution, it is
affected by a number of genetic factors (multiple alleles
and/ or multiple loci), each making its own contribution
to the trait value. Further, this trait value is modified by
environmental conditions. Therefore, the practical
applicability of QTL mapping in plant breeding depends
on the ability to detect QTLs and the consistency of those
QTLs over generations and environments [28]. The
accurate estimates of QTL effects are essential if the goal
is to use the information in subsequent selection
programme without further validation. It requires that
due consideration must be given to probabilities of both
Type I (false significance of a locus) and Type II (failure
to detect a significant factor) errors. Finally, the correct
interpretation is dependent on having fit an appropriate
genetic model and may be very complicated and difficult
in the case of multiple QTLs in a genomic region [22].

The Genetic Basis of Mapping Population

The use of genetic marker loci to detect polygenes is
essentially based on the assumption that there is a linkage
disequilibrium (i. e. non-random association of alleles
at different loci in a population) between alleles at the
marker locus and alleles of the linked
polygene (s) [10]. Since linkage disequilibrium due to

physical linkage of loci remains at its highest value in
populations derived from controlled matings, the ability
to map and characterize polygenes using genetic marker
loci is maximum in backcross or in F

2
/F

3
 populations.

These populations are most commonly used for detecting
linkage between DNA markers and polygenes controlling
quantitative traits [15,29]. This type of population derived
only from two generations contains segregating linkage
blocks providing a basis for QTL mapping. However,
the major drawback to F

2
 and backcross populations is

that they are ephemeral (i.e. seeds derived from selfing
these individuals do not breed true). It is also difficult,
rather impossible, to measure characters as part of QTL
mapping in several locations over several years with F

2

or backcross populations [30]. The use of inbred
populations is the best solution because they provide a
permanent mapping population, i.e. they are not
ephemeral. Recombinant inbred lines (RILs) can be used
for detecting linkage between markers and quantitative
traits. The RILs are derived from individual F

2
 plants

through single seed descent over at least five or six
generations, and each of these lines contains a different
combination of linkage blocks from the original parents.
Since the RILs can be grown in replicated trials at several
locations over several years, they are ideal for QTL
mapping. However, the development of RILs is difficult
in obligate outcrossing species where inbreeding is not
tolerated. Moreover, the generation of RILs is quite time-
consuming in addition to having the genomic regions
with a propensity to stay heterozygous longer than
expected from theory [31]. In QTL mapping, the size of
the population is also very important because the
resolution of a map and the ability to determine the order
of the genetic marker is mainly dependent on population
size. Multiple QTLs on a single linkage group are
difficult or impossible to resolve. Therefore, the mapping
population must be sufficiently large in order to uncover
minor QTLs [20].

The choice of an appropriate mapping population
also depends on the type of marker systems used [32].
Maximum genetic information can be obtained by using
a codominant marker (i.e. RFLPs) in a classified F

2

population. In contrast, backcross populations can be
used for mapping dominant markers (i.e. RAPD) if all
the loci in the recurrent parent are homozygous, and the
participating donor and recurrent parents have
contrasting polymorphic marker alleles [33]. However,
the genetic information obtained from backcross
populations using either codominant or dominant
markers is less than that obtained from F

2
 populations.

This is because in backcross populations only one
recombinant gamete is sampled per plant in contrast to
two gametes in F

2
 populations. In RILs, the dominant

markers provide as much information as codominant
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markers. Using RILs or doubled haploids, the
information obtained from dominant markers can be
maximized because of the putative homozygosity at all
the loci. But at lower marker saturation, backcross
populations are more informative than the RILs because
the distance between linked loci increases in the latter.
The use of heterogeneous source populations as parents
for marker-based QTL analysis is less informative than
populations originated from a single pair of inbred
parents due to ambiguous allelic sources and variable
linkages between marker alleles and the alleles at an
adjoining QTL within each population [34]. In complex
disease reaction where the expression is controlled by
QTLs, segregation data from progeny test populations
derived from F

2
 individuals (i.e. F

3
 or F

2
BC) are often

used in map construction as these populations exhibit
maximum linkage disequilibrium. In bulked segregant
analysis [35], two bulked DNA samples are drawn from
a segregating population derived from a single cross, and
they are screened for DNA polymorphisms and compared
against a randomized genetic background of unlinked
loci. The differences between the two bulks indicate
markers that are linked to a particular trait. Since all loci
identified by bulked segregant analysis segregate and can
be mapped, it eliminates the problem of linkage drag
usually associated with nearly isogenic lines (NILs).
Together with the bulked segregant analysis (BSA)-
derived AFLPs, the microsatellite markers identified a
major QTL for yellow leaf spot resistance in wheat
contributing up to 39 % of total phenotypic variation
[36]. The types of mapping populations to be employed
for QTL mapping are a function of the reproductive
characteristics of the crop species and the ingenuity of
the researcher [10]. For example, in a self-pollinated crop
the degree of inbreeding may be important in deriving
the most useful QTL estimates. However, if epistasis is
important, the evaluation of derived lines which have
undergone more inbreeding may be desirable because it
would produce few intralocus interactions and higher
frequencies of interpretable additive by additive
interactions than progenies which exhibit greater
heterozygosity [34].

Quantitative Tr ait Loci (QTLs) f or Disease
Resistance

The Analysis of Disease Resistance QTLs

The analysis of QTL for disease resistance attempts to
indicate the number and effects of genetic factors
controlling quantitative resistance. The number of QTLs
identified ranges from 2 to several (> 10), but usually
only few loci (3-5) have been shown to control the
majority of genetic variation contributing to resistance
phenotypes (Table 1 [37-39]). However, in some cases,
only one or two QTLs have been identified to control

the expression of resistance phenotypes (Table 1 [37,40]).
Michelmore [4] concluded that this type of quantitative
resistance, where only one or two QTLs are involved to
produce a resistant phenotype, should be considered as
oligogenic rather than polygenic. For example, a major
QTL such as Grp1 that is located in the resistance hotspot
on potato chromosome V might be, in fact, a single gene
[41]. However, in several cases where very few QTLs
have been identified, either the sizes of the populations
were too small or the number of informative markers
used for genome analysis (coverage) was rather limited
(Table 1). As has been described earlier, a typical
polygenic character like complex disease resistance
assumes the involvement of many minor genes, each
having approximately equal effect on phenotype. The
identification of only one or two QTLs contributing
significantly to the expression of a resistance phenotype
may be tempting to speculate that the resistance
mechanism in those cases is oligogenic [4], but it needs
to be emphasized here that the QTL analysis does not
necessarily exclude the possibility of the presence of
minor genes that were below the threshold of significance
for their accurate detection in the experiment. In addition,
the borderline between a single QTL with large effect
and multiple QTLs with smaller effects is rather difficult
to distinguish.

Interactions between Disease Resistance QTLs

QTLs for disease resistance exhibit a variety of gene
actions-additive [42], dominant or overdominant [43] and
even recessive [44]. QTLs have also been shown to
exhibit significant epistatic and environmental
interactions. In the study of bacterial canker (Clavibacter
michiganensis subsp. michiganensis) resistance in
Lycopersicon hirsutum, two QTLs (Rcm 2.0 and Rcm
5.1) have been shown to exhibit epistatic interactions by
ANOVA and orthogonal contrasts, suggesting that
resistance was determined by additive gene action and
an additive-by-additive epistatic interaction; a replicated
trial using the diallel population confirmed further the
presence of additive-by-additive epistasis [45]. However,
genotype × environment interactions play a significant
role in the stability of individual QTLs over repeated
analyses. The DNA markers which can explain a
significant portion of the resistance trait variance are
considered to be closely linked to the QTL. But, due to
possible genotype by environment interaction, the results
need to be verified by repeating the experiment under
more than one set of environmental conditions or in
different years. Those QTLs, which cannot be detected
in all years or locations indicate the presence of genotype
× environment interaction. For resistance to northern leaf
blight in maize, Dingerdissen et al. [46] showed that
QTLs on chromosomes 3L, 5S, 7L and 8L were
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significant across environments but all other QTLs were
affected by a large genotype × environment interaction.
However, with high LOD (i. e. logarithms of odds ratio)
values, QTLs are usually stable across the environments
because when the LOD threshold is raised, fewer markers
are assigned to linkage groups (i.e. independent loci),
and more and smaller linkage groups are identified. For
example, QTLs detected using the interval mapping
method at a LOD threshold of 3.0 for resistance against
Sclerotinia sclerotiorum and Diaporthe helianthi in
sunflower were reported to be stable over the years, i. e.
they were mapped in the same chromosomal regions
repeated over three years of study [47]. A major QTL
with an LOD score of 18.41 for late blight resistance in
tomato was found at RFLP marker TG591, which
accounted for about 71.4% of the variance [48].
Similarly, a QTL on chromosome 1 in maize for gray
leaf spot resistance with a LOD score of 21 was consistent
in two F

2
 populations over consecutive years [49].

Race-Specificity of Disease Resistance QTLs

Understanding the genetic architecture of QTLs helps
not only to ascertain whether individual QTLs are race-
specific or race-nonspecific, but also to test the
hypothesis that the QTLs are variants of qualitative
resistance loci that have been overcome by their
respective pathogen [50]. Although partial resistance
genes are thought to be generally race-nonspecific, QTLs
can be race-specific or race-nonspecific. All the QTLs
for resistance to downy mildew in pearl millet were race-
specific [51]. Recently, the race specificity of QTLs for
partial resistance to blast disease in rice was tested by
using isolates for which no major resistance gene
segregated in a mapping population [52]. RILs were
repeatedly inoculated with blast isolates CD100, CM28
and PH19, and scored for lesion type, lesion size and
number of lesions followed by composite interval
mapping to identify the QTLs, and it was found that the
majority of 18 QTLs detected were race-specific. The
results also confirmed the hypothesis that partial
resistance genes might be defeated major genes with
residual effectiveness and race specificity [52]. Likewise,
several of the QTLs for resistance to late blight were
found to be race-specific [53]. In a comparative genomic
studies with blast fungus in barley and rice, Chen et al.
[54] observed a high degree of isolate specificity of the
QTLs; four pairs of the QTL showed corresponding map
positions between rice and barley, two of the four QTL
pairs had complete conserved isolate specificity, and
another two QTL pairs had partial conserved isolate
specificity. Such corresponding locations and conserved
specificity suggested a common origin and conserved
functionality of the partial resistance genes underlying
the QTLs for quantitative resistance. Quantitative

resistance to late blight in potato, which was previously
been characterized as race-nonspecific, was later shown
to be race-specific by QTL analysis [53]. It is assumed
that QTLs are defeated major genes (allelic versions of
qualitative resistance genes with intermediate
phenotypes) with residual effects, but this does not
necessarily point out to a function similar to race-specific
major genes [4]. For example, in rice a “defeated”
resistance gene (Xa4) has been shown to act as a QTL
against a virulent strain of Xanthomonas oryzae pv.
Oryzae [55]. The results suggested that a high level of
durable resistance to X. oryzae may be achieved by the
cumulative effects of multiple QTLs, including the
residual effects of “defeated” major resistance genes.
However, there was no indication of any QTL in the
barley genome at the region of powdery mildew
resiatance gene, Mla12, indicating that the isolate used
in the study completely neutralized this major resistance
gene, and consequently no residual effect of this gene
remained [56]. There is also the possibility that in several
species QTLs for resistance have been mapped to the
proximity of major resistance genes. In rice blast, three
of the QTLs mapped to the same marker intervals as
previously identified qualitative blast resistance genes
[57]. Similarly, one QTL for late blight resistance in
potato coincided in location with a dominant, race-
specific gene R1 [58] and a gene for resistance to PVX,
known as Rx2 [59]. In potato, one major and two minor
QTLs have been identified for PLRV resistance; the
major QTL, PLRV.1, mapped to potato chromosome XI
in a resistance hotspot containing several genes for
qualitative and quantitative resistance to viruses and other
potato pathogens [60]. In this study, genes with sequence
similarity to the tobacco N gene for resistance to tobacco
mosaic virus were also found to be tightly linked to the
major QTL, PLRV.1. The cDNA sequence of this N-like
gene was used to develop the sequence characterized
amplified region (SCAR) marker N1271164 that can
assist in the selection of potatoes with resistance to PLRV.
However, cloning of multiple alleles of major resistance
genes and the generation of transgenic (truly isogenic
lines) may provide conclusive evidences whether some
alleles determine qualitative resistance, while others
contribute to quantitative resistance.

Durable Resistance

In this context, durable resistance is beginning to be
conceived due to one or more complete qualitative genes,
several partial resistance genes, or a combination of both
[50]. A typical example is the rice blast disease
underlying the involvement of both partial and complete
resistance in affecting a wide-spread durable resistance.
Recently, for blast resistance in rice, two QTLs were
detected on chromosome 4, and one QTL was detected
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on each of chromosomes 9 and 12 [61]. The resistance
gene, designated as pi2, was mapped on chromosome 4
as a single recessive gene between RFLP marker loci
G271 and G317 at a distance of 5.0 cM and 8.5 cM,
respectively. In South American leaf blight infecting the
rubber tree, a common QTL was detected for resistance
to five strains for both reaction type and lesion diameter
on immature leaves, while two QTLs were common for
complete resistance to four strains for reaction type and
lesion diameter, respectively, suggesting the resistance
determinism for complete and partial resistance [62]. For
scab resistance in apple, one major resistance gene, Vg,
and seven QTLs were identified for eight isolates of
Venturia inaequalis [63]. This study further showed that
a major QTL, colocalized with the major scab resistance
genes Vr and Vh8 on LG2, displayed alleles conferring
differential specificities. QTL analysis for durable leaf
rust resistance in wheat detected 8 QTLs for leaf rust
resistance and 10 QTLs for the quantitative expression
of leaf tip necrosis, and four QTLs for leaf rust resistance
coincided with QTLs for leaf tip necrosis [64]. In
Solanum microdontum, two different segregating QTLs
for durable resistance to Phytophthora infestans have
been mapped [65].

QTL Ma pping for Disease Resistance in
Arabidopsis: A Case Study for Powdery Mildew

QTL mapping in model plant system Arabidopsis
thaliana is rather recent in comparison to QTL studies
for other characters [66]. A minimum of eight loci
controlling natural resistance to powdery mildew (caused
by obligate pathogenic fungi Erysiphe cichoracearum)
have been described including both monogenic and
digenic resistance conferred by semi-dominant or
recessive disease resistance genes. QTL analysis for
powdery mildew in A. thaliana was initiated in a set of
RILs derived from a cross between Kashmir-1, a highly
resistant line, and accession Columbia glabrous (Col-
gl1), a susceptible line [67]. In this study, three unlinked
QTLs were identified, and for each QTL, the resistance
alleles were found to be derived from Kashmir-1. The
QTLs, designated as RPW10, RPW11 and RPW12 were
found to act additively to confer resistance to powdery
mildew, and together they explained 63 % of the total
variation in powdery mildew resistance phenotype [67].
The first QTL, RPW10, was mapped on the bottom of
chromosome III near the marker R30025 with a
confidence interval of only 6.0 cM. The second QTL,
RPW11, occurred near the marker nga139 on the top of
chromosome V with a confidence interval of 12.0 cM,
while the third QTL, RPW12, was near the marker
nga1126 with a confidence interval of 11 cM. Since there
were no epistatic interactions, all the three QTLs were
additive in their effects on powdery mildew resistance.

The demonstration that the QTL RPW10 was allelic to
the cloned gene RPW8 provided additional confirmation
of its validity, and this locus having the strongest effect
on powdery mildew resistance was genetically mapped
to a 4 cM (500-kbp) interval defined by markers
M005-S and CIC8-E1RE on chromosome III. It was also
demonstrated that the QTL, RPW10, was allelic to RPW7,
which confers resistance to Erysiphe cichoracearum,
supporting the hypothesis that this locus encodes a broad-
spectrum resistance mechanism [68]. QTL analysis for
powdery mildew in A. thaliana further supports the
hypothesis that QTLs are distinct from classical race-
specific resistance genes [67].

QTL Ma pping for Disease Resistance in Barley: A
Case Study for Stripe Rust

Barley stripe rust, caused by Puccinia striiformis f. sp.
hordei, is an important disease of barley (Hordeum
vulgare) causing serious yield losses throughout the
world. QTLs for barley stripe rust were mapped to barley
chromosomes 4 (4H) and 7 (5H) in one accession [69]
and chromosomes 2 (2H), 3 (3H), 5 (1H) and s6 (6H) in
another [70]. It was hypothesized that these accessions
have different QTL alleles for barley stripe rust, and
accordingly a complex population was developed, which
pyramided the QTL alleles on chromosome 4 (4H) and
7 (5H) sib with the QTL alleles on chromosome 5 (1H)
[71]. Recently, in a study genes conferring resistance to
barley stripe rust at the seedling stage after inoculation
with three different isolates, viz., PSH-1, PSH-13 and
PSH-14 were mapped in a double haploid population
(F1-derived from cross Shyri × Galena) in which adult
plant resistance genes had previously been mapped [72].
Two main-effect QTLs- one designated as QTL5 on
chromosome 5 (5H) and another as QTL6 on
chromosome 6 (6H)- were detected, and in all cases
‘Shyri’ contributed the resistant alleles. There was no
significant QTL × race interaction, suggesting race-
nonspecificity of these seedling resistance QTLs. The
QTL5 region comprised a relatively small physical part
of the chromosome, but the QTL6 region covered
approximately half of the corresponding chromosome.
Interestingly, however, both the QTLs coincided in their
location with the two most important adult plant
resistance QTLs reported earlier by Toojinda et al. [70].
Therefore, it became apparent that determinants of
resistance to three different isolates of P. striiformis f.
sp. hordei at the seedling stage, and determinants of adult
plan resistance mapped to the same regions of the barley
genome. This type of QTL coincidence may be due to
linkage or pleiotropy. It was also observed that the QTL5
was located in a region of intermediate recombination
frequency, while QTL6 was located in the border between
high and low recombination frequency zones [73].
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Multiple qualitative and quantitative resistance genes to
different pathogens and different specificities of the same
pathogen have been mapped to the QTL5 and QTL6
regions (see the references in 72). In conclusion, this
QTL analysis showed that the regions of the barley (cv.
Shyri) genome where adult plant QTL alleles for
P. striiformis f. sp. hordei were identified could be
phenotypically selected for at the seedling stage under
controlled environmental conditions. This could reduce
the time required to develop resistant barley varieties
because multiple generations could be advanced under
controlled environmental conditions simultaneously
when a single generation is evaluated under field
conditions.

QTL Ma pping for Disease Resistance in Potato:
A Case Study

Since potato (Solanum tuberosum L.) is a tetraploid
(2n=4x=48) with complex tetrasomic inheritance and
highly heterozygous due to severe inbreeding depression
after repeated selfing, genetic analysis is somewhat
problematic in this crop species. In potato, one to four
different alleles are present per locus which results in
one homozygous [quadruplex (A1 A1 A1 A1)] and four
heterozygous [triplex (A1 A1 A1 A2), duplex (A1 A1
A2 A2), simplex (A1 A2 A2 A2) and nulliplex (A2 A2
A2 A2)] genotypes. Therefore, with two alleles at a
tetraploid locus there are five genotypes, and with four
alleles at a locus there are 35 genotypes. The profile of a
simple monogenic inheritance of a dominant resistance
allele (e.g. R gene) in a tetraploid potato plant can be in
one of four allelic states: homozygous quadruplex
(RRRR), heterozygous triplex (RRRr), heterozygous
duplex (RRrr) and heterozygous simplex (Rrrr). In this
simplest genetic model, the expected ratios in progenies
of heterozygous resistant and homozygous (rrrr )
susceptible plants would be 1: 0 resistant and susceptible
plants for triplex parent, 5: 1 for duplex parent and 1:1
for simplex parent, assuming that there is chromosome
segregation, not chromatid segregation. This clearly
shows the complexity of the inheritance pattern of even
simple qualitative (monogenic) resistance gene in potato
as compared to other crop species where the inheritance
pattern is disomic. This fact prevented the development
of genetic linkage map in potato. But two new
developments paved the way for genome-wide
characterization of quantitative disease resistance in
potato: the manipulation of ploidy levels and the use of
DNA markers. At the diploid level, the complexity of
genetic analysis in potato became simpler. Therefore, in
potato the mapping population for QTLs consisted of
F1 populations derived from two diploid heterozygous
S. tuberosum subsp. tuberosum breeding lines and
backcross progenies [74,75]. Using this type of mapping

populations, over the past one decade several genetic
linkage maps have been constructed in potato based on
RFLP, AFLP, SSR and other PCR-based markers, and
some of these maps can be aligned with the molecular
maps of tomato and pepper based on common RFLP
markers [41]. A list of QTLs for important pathogens
(diseases) in potato is shown in Table 2.

Integration of QTLs for resistance to late blight,
cyst nematode and blackleg or bacterial soft rot in the
potato function map for resistance revealed several
examples of linkage between R genes and QTLs. The
most prominent genetic hotspots containing multiple
genes for R gene resistance and QTLs for different
pathogens are located on chromosomes V, XI and XII
in potato. This clustering of monogenes and QTLs to
diverse pathogens as observed in the potato genome
may occur by chance or may be because of reduced
recombination fractions due to proximity of the
centromere. Some QTLs may be structurally related to
R genes acting against the same or a different pathogen
or linked QTLs to different pathogens may be similar
at the molecular level [41]. Based on molecular
evidences, it has been proposed that most of the single
dominant genes for resistance in the potato function
map are  primarily encoded by NBS/ Che Y-LRR genes
or one of the other major classes of resistance genes
irrespective of their pathogen specificity [41]. For
example, the clustering of genes for resistance to potato
virus A (PVA), potato virus Y (PVY) and potato leaf
roll virus (PLRV) suggested that some of the genes have
an identical molecular basis, either being alleles of a
single locus or having evolved from a common ancestor
by local gene duplications with subsequent functional
diversification. Marczewski et al.[60] have shown that
a major QTL for PLRV, PLRV.1, mapped to potato
chromosome XI in a resistance hotspot containing several
genes for qualitative and quantitative resistance to viruses
and other potato pathogens, is tightly linked to a tobacco
N-like gene for resistance to tobacco mosaic virus. These
authors further used the cDNA sequence of an N-like
gene to develop SCAR marker N1271164 that could
assist in the selection of potato with resistance to PLRV.
Tightly linked to the resistance gene cluster on the long
arm of potato chromosome XI are several genes with
sequence similarity to the N gene for resistance to
tobacco mosaic virus [76]. It has also been shown that
the cloned potato genes for PVX [77] and root cyst
nematode [78] belong to the same superfamily of
resistance genes line N. The co-localization of N-like
genes suggests that genes with sequence similarity to
known R genes are the molecular basis for some
resistance factors in the cluster on chromosome XI
including PLRV.1 [60].
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Integration of QTL Analysis and Molecular
Biology: The Candidate Gene Approach

Despite tremendous progress made over the past one
decade on QTL mapping in diverse plant taxa, there are
several limitations of the genetic analysis of quantitative
resistance. First, quantitative trait loci responsive to
epistatic interactions are not easily detected by QTL
mapping. Second, only those QTLs can be identified that
display allelic variation, and genetic fixation at a QTL
makes them unnoticeable and imperceptible. Third, many
phenotypes of quantitative resistance traits are not easily
defined nor can they be measured easily. Similarly,
different methods for assessing resistance are likely to
be controlled by overlapping sets of partial resistance
genes. However, there are very few studies on QTL
mapping that address these areas critically [50]. Since
the life cycle of most of the pathogens requires several
distinct phases of interaction with its host, different
genetic interactions may occur between plant and
pathogen during each of these stages. Therefore, analysis

of the pathogen proliferation at each of these stages,
scoring of disease symptoms by several criteria and the
use of different inoculation procedures may identify the
genes responsible for such differences and help in
characterizing them at the functional level. The candidate
gene approach intends to link the genetic QTL analysis
and the molecular biological methods. The association
of candidate genes with QTLs is a step toward
understanding the molecular basis of quantitative
resistance to an important plant disease. Candidate genes
are genes that overlap QTL confidence intervals. To link
quantitative resistance phenotypes to functional genes,
“candidate genes” (cDNA fragments, defence gene
analogues, resistant gene analogue sequences,
pathogenesis-related protein genes, positional
homologues, homologous sequences, expressed
sequences, etc.), which are specifically expressed during
disease reaction, can be used as genetic marker loci in
QTL mapping studies. By mapping the specific candidate
genes on the genetic map, chromosomal regions can be

Table 2. Mapping quantitative trait loci (QTLs) for important pathogenic and pest diseases in potato (Solanum tuberosum L.)

Chromosome Pathogen/ pest QTL Reference (s)

I Erwinia carotovora ssp. atroseptica Eca [179]

Phytophthora infestans Pi [247]

II Erwinia carotovora ssp. atroseptica Eca [179]

Phytophthora infestans Pi [247]

III Erwinia carotovora ssp. atroseptica Eca [179]

Phytophthora infestans Pi [53,247,248]

Globodera rostochiensis Gro1.4 [249]

IV Erwinia carotovora ssp. atroseptica Eca [179]

Phytophthora infestans Pi [53,247,250]

Globodera pallida Gpa4 [251]

V Phytophthora infestans Pi [53,247]

Globodera pallida Gpa [252]

Globodera pallida Gpa5 [253]

Globodera pallida, G. rostochiensis Grp1 [254]

VI Erwinia carotovora ssp. atroseptica Eca [179]

Phytophthora infestans Pi [53,247]

VII Erwinia carotovora ssp. atroseptica Eca [179]

VIII Erwinia carotovora ssp. atroseptica Eca [179]

Phytophthora infestans Pi [247,255]

IX Erwinia carotovora ssp. atroseptica Eca [179]

Phytophthora infestans Pi [53,247]

Globodera pallida Gpa6 [253]

X Erwinia carotovora ssp. atroseptica Eca [179]

Globodera rostochiensis Gro1.2 [40]

XI Phytophthora infestans Pi [53,247]

Erwinia carotovora ssp. atroseptica Eca [179]

Globodera rostochiensis Gro1.3 [40]

Potato leaf roll virus (PLRV) PLRV.1 [60]

XII Erwinia carotovora ssp. Atroseptica Eca [179]

Phytophthora infestans Pi [176,247]
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detected which carry these genes. And in the same
mapping population a large number of segregating
resistant phenotypes can be measured resulting in the
localization of QTLs on certain chromosomal regions.
The genetic markers based on candidate genes or
sequences involved in the expression of resistant reaction
may co-segregate with certain resistant phenotypes. As
a result, the presence and absence of correlations in
chromosomal position between phenotypes and
candidate markers would provide clues not only to
understand the function of these resistant genes by their
correlated phenotypes, but also to characterize the kind
of functional genes involved in the realization of a certain
resistant phenotype. The coincidence of a map position
of a QTL on the one hand and a candidate gene on the
other hand serves as a strong indication for the function
of these candidate gene as well as indication of the genes
involved in the QTL phenotype.

Recently, linkage disequilibrium mapping method
has been employed to test for an association between a
candidate gene marker and resistance to Verticillium
dahliae in tetraploid potato [79]. In this study, a probe
derived from the tomato Verticillium resistance gene
(Ve1) identified homologous sequences (StVe1) in potato,
which in a diploid population were mapped to
chromosome IX in a position analogous to that of the
tomato resistance gene. When a molecular marker closely
linked to the homologues was used as a candidate gene
marker on 137 tetraploid potato genotypes, the
association between the marker and resistance was
confirmed. Cloning of homologues indicated that the
QTL comprised at least an eleven-member family,
encoding plant-specific leucine-rich repeat proteins very
similar to the tomato Ve genes; the sequence analysis
showed that all homologues were uninterrupted open
reading frames, and thus represented putative functional
resistance genes. A very important implication of this
study was that it was possible to map QTL directly on
already available potato cultivars without developing a
new mapping population [79]. In QTL analysis of citrus
tristeza virus (CTV) in progenies derived from sour
orange (Citrus aurantium) and Poncirus trifoliata, three
major QTLs were detected at the position of P. trifoliata
resistance gene, Ctv-R, and up to five minor QTLs were
detected (Ctv-A1 to Ctv-A5) [80]. An analogue of this
resistance gene was observed to be a candidate for minor
QTL Ctv-A3, and two expressed sequences were
candidates for minor QTLs Ctv-A1 and Ctv-A5.
Recently, resistance and defence gene analogue (RGA/
DGA) sequences (as candidate genes) were isolated in
cocoa with degenerate primers designed from conserved
domains of nucleotide-binding-site motif present in a
number of resistance genes such as the tobacco N, sub-
domains of serine/threonine kinases such as the Pto

tomato gene and conserved domains of two defence gene
families such as pathogenesis-related proteins (PR) of
classes 2 and 5 [81]. In this study, an enrichment of the
genetic map with microsatellite markers resulted in
several co-localisations of these candidate RGAs, DGAs
and QTLs for Phytophthora on chromosome IV, where
a cluster of Pto-like sequences and 4 QTLs for
Phytophthora were also observed. DGAs and RGAs were
also used as candidate genes with QTLs to anthracnose
in common bean [82] and to leaf/ stem rust in wheat
[83]. In pepper, a class-III chitinase gene co-localized
with a major-effect QTL, and PR protein classes 2 and 5
loci such as PR4, PR2 and PR10 with minor QTLs to
Phytophthora capsici [84]. Linkage of Ascochyta blight
QTLs to candidate genes including disease response
genes and resistance gene analogues has also been
reported in pea [12]. In rice, several candidate genes
involved in both recognition (RGAs) and general plant
defence response (DR) were associated with QTLs for
blast, bacterial blight, sheath blight and brown
planthopper leading to the construction of the frame map
which provided reference points to select candidate genes
for co-segregation analysis using other mapping
populations, isogenic lines and mutants [85]. All these
studies indicate that the candidate gene markers are
excellent tools when searching for universal markers for
marker-assisted selection by linkage disequilibrium
mapping in wide gene pools. The finding of linkage
disequilibrium between a candidate gene marker and a
QTL supports the hypothesis that the candidate gene is
indeed the resistance gene or at least is located physically
very close to the resistance gene [41].

Conclusions

No doubt QTL mapping aided by DNA markers has
revolutionized the study of complex quantitative disease
resistance in plants. It has become a powerful tool for
marker-assisted selection (MAS) for breeding for disease
resistance. However, the effectiveness of MAS is
determined by the relative linkage disequilibria between
the genetic marker loci and QTLs that condition disease
resistance expression. It needs to be emphasized here
that if a significant amount of the additive variance
associated with a QTL can be accounted for by DNA
markers, then MAS can increase the breeding efficiency.
Further, a greater genetic gain can be made if flanking
QTLs between two marker loci are used as compared to
single marker, especially if the single marker are not
tightly linked to the QTL, i. e. the linkage distance
between the marker and the QTL is relatively high.
Several factors determine the usefulness of QTL-marker
association for MAS, and most important among them
are epistatic interactions with other loci, variations in
linkage phase and QTL × environment interactions. Very
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recently only, these factors are being seriously examined
in QTL analysis studies for plant disease response [86-
90]. Finally, positional cloning of partial resistance genes
underlying QTLs may eventually lead to their transgenic
exploitation for conferring effective durable resistance.
The adaptation of strategies like substitution mapping
[91] and other methods to treat QTLs as qualitative loci
[50] has enormous potential for realizing this goal. And
in this direction, the candidate gene approach definitely
offers newer perspectives; the application of candidate
genes might facilitate the discovery of the functions of
QTLs. It has been shown that the tight linkage of RGA
markers to the major QTLs on linkage group would allow
map-based cloning of the underlying resistance genes
[92,93]. However, the high sequence similarity reveals
potential problems for the use of RGAs as molecular
markers. Their application in marker-assisted selection
(MAS) and the construction of high-density genetic maps
is complicated by the existence of closely linked
homologues resulting in ‘ghost’ marker loci analogous
to ‘ghost’ QTLs [13]. Therefore, implementation of
genomic library screening, including genetic mapping
of potential homologues, seems necessary for the safe
application of RGA markers in QTL analysis, MAS and
gene isolation. With these recent developments, complex
forms of quantitative disease resistance and their
underlying genes are becoming more accessible, and it
is thus not unrealistic that these developments would aid
in perfecting newer strategies for effective disease control
and management in crop species in future.
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