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Quantitative Trait Loci (QTLs) for Plant Disease Response
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Quantitative resistance traits are controlled by multiple genetic loci contributing to continuous allelic variation on the
phenotype. Although they cannot be shown to be conditioned by individual discrete recognizable loci through classical
quantitative genetics, they have been characterized into recognizable quantitative trait loci (QTLs) employing DNA-based
markers. A QTL is a map position on the chromosome localized relative to the position of the genetic marker locus, and is
identified through significant correlations between the segregation at a certain genetic marker locus and the variation in
quantitative (trait) resistance value. Therefore, the preservation of linkage disequilibria between the genetic markers and
the QTLs is the basis of marker-assisted localization of quantitative trait loci in specific chromosomal regions of the
genome. The advent of QTL mapping has made it possible not only to uncover the magnitude of the effects of QTLs on
plant disease response, but also to describe the roles of such specific loci in genetically complex disease resistance trait
and to identify the genomic regions contributing to resistance function. With QTL mapping, it has now become possible to
characterize the epistatic interactions between different resistance genes, gene x environment interactions and the relationsh
between quantitative resistance and race-specificity. All these developments have resulted in addressing some of the
fundamental questions of plant-pathogen interactions through genetic dissection of the resistance response/ function quite
unthinkable even a decade earlier. Partial resistance genes having small continuous effects on resistance function, whicl
were classically thought to be race-nonspecific, have been shown to be race-specific by QTL mapping, suggesting that
partial resistance genes might be ‘defeated’ major genes with residual effectiveness and race specificity. In spite oétremendo
potential of QTL mapping, the usefulness of QTL-marker association for effective marker-assisted selection (MAS) is
conditioned, rather limited, by epistatic interactions with other loci, variations in linkage phase and QTL x environment
interactions. Although additive QTLs can significantly increase the efficiency of resistance breeding, recent studies are
revealing the existence of epistatic interactions between the QTLs as well as QTL x environment. In this context, the
recently introduced ‘candidate’ gene approach may aid in the discovery of the functions of the QTLs by linking the genetic
QTL analysis with molecular biology methods- an ambitious step toward treating the QTLs as ‘qualitative’ loci and
realizing the positional cloning of partial resistance genes underlying the QTLs conferring effective durable resistance in
different crop species.
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Intr oduction measured quantitatively, and they are known a

After the rediscovery of Mendel's work [1] in the last guantitative resistance traits (QRTs). However, lack o
iscrete phenotypic segregation prevents the use

century, it was recognized that disease resistance wa‘% ) d . :
often inherited as a single dominant or semi-dominant® assical Mendelian techniques for studying the QRTs
oreover, gene x gene and gene x environmer

gene [2]. Since then a substantial amount of knowledg ) - : .
has been accumulated on the genetic basis of diseaéréteractlpns play an 'mpo”‘?‘”t r'ole in the phenotyplg
resistance [3-5]. The breeding for disease resistanc Xpression of QRTs resultm_g n lower est|mate§ 0
followed by the use of resistant cultivars has become erltab!llty and a redgced I|kgl|hood of appearing
universal strategy to control the crop diseases. Althoug endelian un!ess special experimental preggutlons a
some forms of disease resistance are genetically simpl llowed. Besides, QRTs can be race-Specific or race

because they can be explained by simple Mendeliaﬁ‘onSpeCifiC [7]. In other words, the classical quantitative

ratios (monogenic), genetically complex forms ofdiseaseapproaChes describe the nature of loci involved it

resistance are rather poorly understood. Most comple>EeSiSt"’Ince phenotypes including the approximate numb
f loci affecting the resistance trait in a particular mating

disease resistance traits are controlled by multiple Iocg tudving th fies lik i
in contrast to a single locus involved in monogenic simple y studying the properties like average gene action (e.
dditive, non-additive and epistatic gene actions) and tt

disease resistance [6]. The phenotypic variation of sucht ree 1o which different polvaenes interact with |
a complex disease reaction is usually continuousinsteageg ee to which ditterent polygenes Intéract with eac

of discrete, and conditioned by allelic variation at severa/Other and the environment in determining the U'“”?a‘f
genetic loci, each with a relatively small effect. phenotype (e.g. genotype x environment interaction;

Therefore, these complex disease resistance traits ar.-EhIS _does not, h_owever, alloyv to _dlssect polygem(
inheritance into discrete genetic loci or to characteriz
the roles of individual genes in disease respons
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In recent years, the availability of numerous marker loci to use the segregation of the marker allele
molecular markers throughout the genome provides thén a progeny to correlate with the variation in a trait value
opportunity to analyze the Mendelian factors determiningin the said progeny. There were significant correlation
the quantitative traits localized in quantitative trait loci between the segregation at a certain genetic marker loc
(QTLs). Molecular markers are heritable entities that areand the variation in trait value. These correlations indicat
associated with economically important crop traits usedpe presence of a quantitative trait locus (QTL) in the
by the plant breeders as selection tools [8]. The indiViduabroximity of the marker locus. Therefore, a QTL is a
loci controlling a quantitative trait are referred to as QTL. map position on the chromosome localized relative t
Different alleles at QTL cause genetic differences o hosition of the genetic marker loci. It describes :
between individuals and families for quantitative traits region of a chromosome that has a significant effect o
E:ga{ﬁct?(;nz[[i)zjﬁan dd EOIyg_T_E'Cr;ZmSi':f c:r?]ralzteirs Ogﬁgsa guantitative trait. The inheritance and effect of this locu

y Q PPINg ploying involved in the expression of a quantitative trait can b

geneicaly complex et Actually he eniifcaon. SLcied ndfect by studying the inherance of th
g y p . Ys alleles at the marker loci. As early as in 19283,

of disease resistance QTL is no different from genetic o : . ;
dissection of other quantitative traits vis-a-vis QTLS. Sax [1_6] reported thataq.uantltatllvelymhented trait (see
Although before the advent of molecular biology some SZ€) in bean was associated with a discrete monoger
genetic experiments did predict QTL mapping, recenttrait (seed cqat colour), angl this was pgrhaps the fir
advances in molecular-genetic marker technology havé€Port of the linkage of the single gene with one or mor
tremendously broadened our understanding ofPolygenes. Subsequently, many reports confirmed tf
quantitative traits, and provided a greater ability to €xistence of linkage between single gene markers ar
manipulate them for crop improvement. About twenty Polygenes controlling quantitative variation [17]. These
years ago, quantitative trait loci (QTLs) were first all laid the conceptual basis of QTL mapping on the
localized to specific chromosomal regions by supposition that if the segregation of simply inheritec
characterizing induced resistance mutations using aliemonogenes could be used to detect a linked polygene.
addition and chromosome deletion lines [11]. But today,should be possible to map and characterize all the QT
molecular marker technology has facilitated the affecting a complex trait [18].

identification an_d chara_cterization of QTLS with much The advent of molecular markers, especially the
case 'and alacrity unthinkable at that time. With QTL pya paseq genetic markers, initiated the modern QTI
mapping, the researchers have begun not only to uncov%r1aploing The uniqueness of the DNA-based geneti
the effect of individual QTLs in the disease response )

. X e .. “markers is that defined sequences of DNA act as tt
process, but also to identify race-specificity. In addition, . ked . K Usina DNA-based K
QTL mapping has provided the researchers a much betté\n €d monogenic markers. Lsing -based markers

recourse to characterize the interactions between diseade' po_SS|bIe to_mgp an_d c_:haractenze the.polygene
resistance genes, plant development and the environmeritnderlying quantitative traits in natural populations. DNA
and to ascertain whether homologous resistance gend@arkers can be distinguished from morphologica
exist in related plant taxa. In recent years, it has alsgnarkers in having phenotypic neutrality, much
opened up possibilities to clone partial resistance genednformative polymorphism, abundance, codominanc
which are known only by small and continuous effectsand normally the absence of epistasis or pleitropy. Thi
on phenotype [12,13]. These all appear to have thdacilitated a virtually limitless number of segregating
potentials for managing complex traits like disease DNA markers for use in a single population for mapping
resistance through marker-assisted selection (MAS) angholygenes through an entire genome. Clearly this ga\
finally map-based cloning of specific genes [14]. Thesethe researchers more insights into the chromosom
issues will be addressed in this article with current updatéocations, gene actions, and biological roles of specifi
of the status of QTL mapping for managing quantitative loci involved in the expression of complex phenotypes
disease resistance in diverse plant taxa. The article woullodern QTL mapping involves testing DNA-based
also go in some way to covering the conceptualgenetic markers throughout a genome for the likelihoo
frameworks of QTL analysis with special reference to that these markers are associated with a QTL. Individua
their applications in plant breeding. in a population are characterized for DNA marker
genotypes and the phenotypes of interest, an
accordingly they are separated into distinct classes bas
The GeneticArchitecture on marker genotypes. Marker-based localization of QT

The analysis of quantitative traits using a geneticalreqUires the preservation of linkage disequilibrium

approach rather than a statistical approach has bedpftween genetic markers and the QTL in populatio
revolutionized at the end of the eighties [15]. By that under investigation. Many authors have examined th

Quantitative Trait Locus (QTL): An Overview
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marker and QTL [19-21]. However, the expected physical linkage of loci remains at its highest value ir
efficiencies of various methods of estimating QTL effects populations derived from controlled matings, the ability
vary considerably [21,22]. In essence, the tests for QTL-to map and characterize polygenes using genetic mark
trait association can involve the evaluation of one markeioci is maximum in backcross or in/F, populations.

at a time, two marker loci simultaneously, or the These populations are most commonly used for detectir
consideration of all the marker loci at once. The single-linkage between DNA markers and polygenes controlling
marker approach, based on linear model method or oneguantitative traits [15,29]. This type of population derivec
way analysis of variance, suffers from the main limitation only from two generations contains segregating linkag
that it ignores the potential recombination between ablocks providing a basis for QTL mapping. However,
marker and a QTL leading to an underestimation of QTLthe major drawback to,land backcross populations is
effects if the marker and QTL are not coincident [23]. In that they are ephemeral (i.e. seeds derived from selfir
contrast, interval mapping strategies using maximumthese individuals do not breed true). It is also difficult,
likelihood for the analysis of single QTLs flanked by a rather impossible, to measure characters as part of QT
pair of marker loci are employed for simultaneous mapping in several locations over several years with F
examination of two marker loci [20,22]. This approach or backcross populations [30]. The use of inbrec
permits the estimation of QTL effects at any location populations is the best solution because they provide
within a marker interval based on the means andpermanent mapping population, i.e. they are no
variances observed in the marker classes and thephemeral. Recombinant inbred lines (RILS) can be use
recombination frequency between the markers bracketindor detecting linkage between markers and quantitativ
a particular interval [20]. In spite of this advantage, traits. The RILs are derived from individual flants
interval mapping approach fails to test unlinked markersthrough single seed descent over at least five or si
and to precisely locate QTLs beyond the terminalgenerations, and each of these lines contains a differe
markers of a given linkage group. However, the combination of linkage blocks from the original parents
consideration of all the marker loci at once involves theSince the RILs can be grown in replicated trials at sever:
regression of trait expression on the values of multiplelocations over several years, they are ideal for QTI
marker loci [24]. Even interval mapping and multiple mapping. However, the development of RILs is difficult
regression have been integrated including the inclusiorin obligate outcrossing species where inbreeding is ne
of co-factors to characterize QTL-trait associations moretolerated. Moreover, the generation of RILs is quite time
precisely [21,22,25-27]. However, since the value of aconsuming in addition to having the genomic region:s
guantitative trait displays a continuous distribution, it is with a propensity to stay heterozygous longer thal
affected by a number of genetic factors (multiple allelesexpected from theory [31]. In QTL mapping, the size of
and/ or multiple loci), each making its own contribution the population is also very important because th
to the trait value. Further, this trait value is modified by resolution of a map and the ability to determine the orde
environmental conditions. Therefore, the practical of the genetic marker is mainly dependent on populatio
applicability of QTL mapping in plant breeding depends size. Multiple QTLs on a single linkage group are
on the ability to detect QTLs and the consistency of thosalifficult or impossible to resolve. Therefore, the mappinc
QTLs over generations and environments [28]. Thepopulation must be sufficiently large in order to uncove
accurate estimates of QTL effects are essential if the goahinor QTLs [20].

is to use the information in subsequent selection  1ha choice of an appropriate mapping populatior

programme without further validation. It requires that 4, depends on the type of marker systems used [3:
due consideration must be given to probabilities of bothy ;4 imum genetic information can be obtained by using

Type | (false significance of a locus) and Type Il (failure 5 ~odominant marker (i.e. RFLPs) in a classified F
to detect a significant factor) errors. Finally, the CorreCtpopuIation. In contrast, backcross populations can b
interpretation is dependent on having fit an appropriate,qaq for mapping dominant markers (i.e. RAPD) if all
genetic model and may be very complicated and difficulty, e |ocj in the recurrent parent are homozygous, and tt
in the case of multiple QTLs in a genomic region [22]. participating donor and recurrent parents have

The Genetic Basis of Mgping Fopulation contrasting polymorphic marker alleles [33]. However,

. . .the genetic information obtained from backcross
The use of genetic marker loci to detect polygenes is . . . . .
opulations using either codominant or dominan

g.ssentl'?gy' base'd on the assijptlon thaF t?ere 'Sf allllnlk agrp%arkers is less than that obtained fropp&pulations.
isequilibrium (i. e. non-random association of a €S This is because in backcross populations only on

at different loci in a population) between alleles at the . : . |
recombinant gamete is sampled per plant in contrast

mellrker Iocmiz gnd I_alklelesd- of Itge Ilgke? two gametes in fpopulations. In RILs, the dominant
polygene (s) [10]. Since linkage disequilibrium due to markers provide as much information as codominar
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markers. Using RILs or doubled haploids, the the expression of resistance phenotypes (Table 1 [37,40
information obtained from dominant markers can beMichelmore [4] concluded that this type of quantitative
maximized because of the putative homozygosity at allresistance, where only one or two QTLs are involved t
the loci. But at lower marker saturation, backcrossproduce a resistant phenotype, should be considered
populations are more informative than the RILs becauseligogenic rather than polygenic. For example, a majo
the distance between linked loci increases in the latterQTL such as&rplthatis located in the resistance hotspo
The use of heterogeneous source populations as parenss potato chromosome V might be, in fact, a single gen
for marker-based QTL analysis is less informative than[41]. However, in several cases where very few QTL:
populations originated from a single pair of inbred have been identified, either the sizes of the populatior
parents due to ambiguous allelic sources and variablgvere too small or the number of informative markers
linkages between marker alleles and the alleles at amsed for genome analysis (coverage) was rather limite
adjoining QTL within each population [34]. In complex (Table 1). As has been described earlier, a typice
disease reaction where the expression is controlled byolygenic character like complex disease resistanc
QTLs, segregation data from progeny test populationsassumes the involvement of many minor genes, eac
derived from E individuals (i.e. Eor EBC) are often  having approximately equal effect on phenotype. Th
used in map construction as these populations exhibidentification of only one or two QTLs contributing

maximum linkage disequilibrium. In bulked segregant significantly to the expression of a resistance phenotyg
analysis [35], two bulked DNA samples are drawn frommay be tempting to speculate that the resistanc
a segregating population derived from a single cross, anghechanism in those cases is oligogenic [4], but it neec
they are screened for DNA polymorphisms and comparedo be emphasized here that the QTL analysis does n
against a randomized genetic background of unlinkethecessarily exclude the possibility of the presence «
loci. The differences between the two bulks indicate minor genes that were below the threshold of significanc
markers that are linked to a particular trait. Since all locCifor their accurate detection in the experiment. In additior
identified by bulked segregant analysis segregate and cafie borderline between a single QTL with large effec

be mapped, it eliminates the problem of linkage dragand multiple QTLs with smaller effects is rather difficult
usually associated with nearly isogenic lines (NILS). to distinguish.

Together with the bulked segregant analysis (BSA)-

derived AFLPs, the microsatellite markers identified a Interactions betwen Disease Resistance QTLs
major QTL for yellow leaf spot resistance in wheat QTLs for disease resistance exhibit a variety of gen
contributing up to 39 % of total phenotypic variation actions-additive [42], dominant or overdominant [43] anc
[36]. The types of mapping populations to be employedeven recessive [44]. QTLs have also been shown
for QTL mapping are a function of the reproductive exhibit significant epistatic and environmental
characteristics of the crop species and the ingenuity ofnteractions. In the study of bacterial cani@lagibacter
the researcher [10]. For example, in a self-pollinated cropmichiganensissubsp.michiganensis resistance in
the degree of inbreeding may be important in deriving| ycopersicon hirsutum, two QTL&REm 2.0 and Rcm
the most useful QTL estimates. However, if epistasis is5 1) have been shown to exhibit epistatic interactions b
important, the evaluation of derived lines which haveANOVA and orthogona| contrasts, Suggesting tha
undergone more inbreeding may be desirable because igsjstance was determined by additive gene action ar
would produce few intralocus interactions and higher g additive-by-additive epistatic interaction; a replicatec
frequencies of interpretable additive by additive trja| using the diallel population confirmed further the
interactions than progenies which exhibit greaterpresence of additive-by-additive epistasis [45]. Howevel

heterozygosity [34]. genotype x environment interactions play a significan
Quantitative Trait Loci (QTLs) for Disease role in the stability of individual QTLS over repea_ted
Resistance analyses. The DNA markers which can explain &

significant portion of the resistance trait variance are
TheAnalysis of Disease Resistance QTLs considered to be closely linked to the QTL. But, due t

The analysis of QTL for disease resistance attempts t@0ssible genotype by environment interaction, the resul
indicate the number and effects of genetic factorsneed to be verified by repeating the experiment unde
controlling quantitative resistance. The number of QTLsmore than one set of environmental conditions or i
identified ranges from 2 to several (> 10), but usually different years. Those QTLs, which cannot be detecte
only few loci (3-5) have been shown to control the inall years orlocations indicate the presence of genotyy
majority of genetic variation Contributing to resistance * environment interaction. For resistance to northern lec
phenotypes (Table 1 [37-39]). However, in some casesblight in maize, Dingerdisseet al. [46] showed that

only one or two QTLs have been identified to control QTLs on chromosomes 3L, 5S, 7L and 8L were
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significant across environments but all other QTLs wereresistance to late blight in potato, which was previoush
affected by a large genotype x environment interactionbeen characterized as race-nonspecific, was later sho
However, with high LOD (i. e. logarithms of odds ratio) to be race-specific by QTL analysis [53]. It is assume
values, QTLs are usually stable across the environmenthat QTLs are defeated major genes (allelic versions
because when the LOD threshold is raised, fewer markergualitative resistance genes with intermediate
are assigned to linkage groups (i.e. independent loci)phenotypes) with residual effects, but this does nc
and more and smaller linkage groups are identified. Fonecessarily point out to a function similar to race-specifi
example, QTLs detected using the interval mappingmajor genes [4]. For example, in rice a “defeated’
method at a LOD threshold of 3.0 for resistance againstesistance gene (Xa4) has been shown to act as a Q
Sclerotinia sclerotiorumand Diaporthe helianthiin against a virulent strain ofanthomonas oryzapv.
sunflower were reported to be stable over the years, i. €Oryzae[55]. The results suggested that a high level o
they were mapped in the same chromosomal regionglurable resistance . oryzaemay be achieved by the
repeated over three years of study [47]. A major QTLcumulative effects of multiple QTLs, including the
with an LOD score of 18.41 for late blight resistance in residual effects of “defeated” major resistance gene:
tomato was found at RFLBvarker TG591, which However, there was no indication of any QTL in the
accounted for about 71.4% of the variance [48].barley genome at the region of powdery mildew
Similarly, a QTL on chromosome 1 in maize for gray resiatance gene, Mia, indicating that the isolate used
leaf spot resistance with a LOD score of 21 was consisteri! the study completely neutralized this major resistanc

in two F, populations over consecutive years [49]. gene, and consequently no residual effect of this ger
o ) ] remained [56]. There is also the possibility that in sever:
Race-Specificity of Disease Resistance QTLs species QTLs for resistance have been mapped to t

Understanding the genetic architecture of QTLs helpsproximity of major resistance genes. In rice blast, thre
not only to ascertain whether individual QTLs are race-of the QTLs mapped to the same marker intervals &
specific or race-nonspecific, but also to test thepreviously identified qualitative blast resistance gene
hypothesis that the QTLs are variants of qualitative[57]. Similarly, one QTL for late blight resistance in
resistance loci that have been overcome by theimpotato coincided in location with a dominant, race-
respective pathogen [50]. Although partial resistancespecific gene R[58] and a gene for resistance to PVX,
genes are thought to be generally race-nonspecific, QTL&Enown askRx2[59]. In potato, one major and two minor
can be race-specific or race-nonspecific. All the QTLsQTLs have been identified for PLRV resistance; the
for resistance to downy mildew in pearl millet were race- major QTL,PLRV.1 mapped to potato chromosome XI
specific [51]. Recently, the race specificity of QTLs for in a resistance hotspot containing several genes f
partial resistance to blast disease in rice was tested bgualitative and quantitative resistance to viruses and oth
using isolates for which no major resistance genepotato pathogens [60]. In this study, genes with sequen
segregated in a mapping population [52]. RILs weresimilarity to the tobaccl gene for resistance to tobacco
repeatedly inoculated with blast isolates CD100, CM28mosaic virus were also found to be tightly linked to the
and PH19, and scored for lesion type, lesion size andanajor QTL,PLRV.1 The cDNA sequence of this N-like

number of lesions followed by composite interval gene was used to develop the sequence characteriz
mapping to identify the QTLs, and it was found that the amplified region (SCAR) marker N1271164 that can
majority of 18 QTLs detected were race-specific. Theassistin the selection of potatoes with resistance to PLR
results also confirmed the hypothesis that partialHowever, cloning of multiple alleles of major resistance
resistance genes might be defeated major genes witgenes and the generation of transgenic (truly isogen
residual effectiveness and race specificity [52]. Likewise,lines) may provide conclusive evidences whether som
several of the QTLs for resistance to late blight werealleles determine qualitative resistance, while other
found to be race-specific [53]. In a comparative genomiccontribute to quantitative resistance.

studies with blast fungus in barley and rice, Chen et al
[54] observed a high degree of isolate specificity of the
QTLs; four pairs of the QTL showed corresponding map!n this context, durable resistance is beginning to b
positions between rice and barley, two of the four QTL conceived due to one or more complete qualitative gene
pairs had complete conserved isolate specificity, andseveral partial resistance genes, or a combination of bo
another two QTL pairs had partial conserved isolate[50]. A typical example is the rice blast disease
specificity. Such corresponding locations and conservedinderlying the involvement of both partial and complete
specificity suggested a common origin and conservedesistance in affecting a wide-spread durable resistanc
functionality of the partial resistance genes underlyingRecently, for blast resistance in rice, two QTLs were
the QTLs for quantitative resistance. Quantitative detected on chromosome 4, and one QTL was detect

Durable Resistance
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on each of chromosomes 9 and 12 [61]. The resistanc&he demonstration that the QTL RPW10 was allelic tc
gene, designated af2, was mapped on chromosome 4 the cloned gen@PW8provided additional confirmation
as a single recessive gene between RFLP marker loa@f its validity, and this locus having the strongest effec
G271and G317 at a distance of 5.0 cM and 8.5 cM, on powdery mildew resistance was genetically mappe
respectively. In South American leaf blight infecting the to a 4 cM (500-kbp) interval defined by markers
rubber tree, a common QTL was detected for resistanc&005-S and CIC8-E1RE on chromosome lll. It was alsc
to five strains for both reaction type and lesion diameterdemonstrated that the QTRPW1Qwas allelic tdRPW7
on immature leaves, while two QTLs were common for which confers resistance trysiphe cichoracearum
complete resistance to four strains for reaction type andgupporting the hypothesis that this locus encodes a broe
lesion diameter, respectively, suggesting the resistancepectrum resistance mechanism [68]. QTL analysis fc
determinism for complete and partial resistance [62]. Foppowdery mildew inA. thalianafurther supports the
scab resistance in apple, one major resistance Ygne, hypothesis that QTLs are distinct from classical race
and severQTLs were identified for eight isolates of specific resistance genes [67].
Venturia inaequalis [63]. This study further showed that . . . . ]
a major QTL, colocalized with the major scab resistanceQTL Ma pping for !Dlsease Resistance in Bigy: A
genesvVr andVh8 on LG2, displayed alleles conferring Case Stug for Stripe Rust
differential specificities. QTL analysis for durable leaf Barley stripe rust, caused Byccinia striiformisf. sp.
rust resistance in wheat detected 8 QTLs for leaf rushordei is an important disease of barlejiofdeum
resistance and 10 QTLs for the quantitative expressiorvulgare) causing serious yield losses throughout the
of leaf tip necrosis, and four QTLs for leaf rust resistanceworld. QTLs for barley stripe rust were mapped to barle:
coincided with QTLs for leaf tip necrosis [64]. In chromosomes 4 (4H) and 7 (5H) in one accession [6¢
Solanum microdontuntwo different segregating QTLs and chromosomes 2 (2H), 3 (3H), 5 (1H) and s6 (6H) i
for durable resistance t®hytophthora infestaneave  another [70]. It was hypothesized that these accessio
been mapped [65]. have different QTL alleles for barley stripe rust, anc
. . . . accordingly a complex population was developed, whicl
QTL Mapping for Disease Resistance in , amided the QTL alleles on chromosome 4 (4H) an
Arabidopsis A Case Stud for Powdery Mildew 7 (5H) sib with the QTL alleles on chromosome 5 (1H)
QTL mapping in model plant systefrabidopsis  [71]. Recently, in a study genes conferring resistance 1
thaliana is rather recent in comparison to QTL studiesbarley stripe rust at the seedling stage after inoculatic
for other characters [66]. A minimum of eight loci with three different isolates, viz., PSH-1, PSH-13 anc
controlling natural resistance to powdery mildew (causedPSH-14 were mapped in a double haploid populatio
by obligate pathogenic fun@rysiphe cichoracearuyjm  (F1-derived from cross Shyri x Galena) in which adul
have been described including both monogenic andlant resistance genes had previously been mapped [7
digenic resistance conferred by semi-dominant orTwo main-effect QTLs- one designated @¥L5 on
recessive disease resistance genes. QTL analysis fahromosome 5 (5H) and another &8TL6 on
powdery mildew inA. thalianawas initiated in a set of chromosome 6 (6H)- were detected, and in all case
RILs derived from a cross between Kashmir-1, a highly‘Shyri’ contributed the resistant alleles. There was n
resistant line, and accession Columbia glabrous (Colsignificant QTL x race interaction, suggesting race:
gll), a susceptible line [67]. In this study, three unlinked nonspecificity of these seedling resistance QTLs. Th
QTLs were identified, and for each QTL, the resistanceQTL5 region comprised a relatively small physical part
alleles were found to be derived from Kashmir-1. The of the chromosome, but th@TL6 region covered
QTLs, designated &8PW10, RPW1andRPW12wvere  approximately half of the corresponding chromosome
found to act additively to confer resistance to powderyInterestingly, however, both the QTLs coincided in theil
mildew, and together they explained 63 % of the totallocation with the two most important adult plant
variation in powdery mildew resistance phenotype [67].resistance QTLs reported earlier by Toojirdal.[70].
The first QTL, RPW10was mapped on the bottom of Therefore, it became apparent that determinants ¢
chromosome Ill near the marker R30025 with aresistance to three different isolatesPofstriiformisf.
confidence interval of only 6.0 cM. The second QTL, sp.hordeiat the seedling stage, and determinants of adu
RPW11 occurred near the marker ngal39 on the top ofplan resistance mapped to the same regions of the barl
chromosome V with a confidence interval of 12.0 cM, genome. This type of QTL coincidence may be due t
while the third QTL,RPW12 was near the marker linkage or pleiotropy. It was also observed thatQi&.5
ngall126 with a confidence interval of 11 cM. Since therewas located in a region of intermediate recombinatio
were no epistatic interactions, all the three QTLs werefrequency, while QTL@vas located in the border between
additive in their effects on powdery mildew resistance. high and low recombination frequency zones [73]
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Multiple qualitative and quantitative resistance genes tgpopulations, over the past one decade several gene
different pathogens and different specificities of the samdinkage maps have been constructed in potato based
pathogen have been mapped to @ELS and QTL6  RFLP, AFLP, SSR and other PCR-based markers, ar
regions (see the references in 72). In conclusion, thisome of these maps can be aligned with the molecul
QTL analysis showed that the regions of the barley (cvmaps of tomato and pepper based on common RFL
Shyri) genome where adult plant QTL alleles for markers [41]. A list of QTLs for important pathogens
P. striiformis f. sp. hordei were identified could be (diseases) in potato is shown in Table 2.

phenotypwally selected for at .the seed!mg stage under Integration of QTLs for resistance to late blight,
controlled environmental conditions. This could reduce : .
cyst nematode and blackleg or bacterial soft rot in th

the time required to develop resistant barley varieties . .
otato function map for resistance revealed sever:

because multiple generations could be advanced undé’r .
b€ g " . examples of linkage betwedhgenes and QTLs. The
controlled environmental conditions simultaneously

when a single generation is evaluated under fieldmOSt prominent gene_tlc hotspots: containing multlple
genes forR gene resistance and QTLs for different

conditions.

pathogens are located on chromosomes V, Xl and X
QTL Ma pping for Disease Resistance ind®ato: in potato. This clustering of monogenes and QTLS t
A Case Study diverse pathogens as observed in the potato genor

Since potato $olanum tuberosurh.) is a tetraploid ~May occur by chance or may be because of reduc
(2n=4x=48) with complex tetrasomic inheritance and Ffécombination fractions due to proximity of the
highly heterozygous due to severe inbreeding depressiofentromere. Some QTLs may be structurally related t
after repeated selfing, genetic analysis is somewhaR genes acting against the same or a different pathog
problematic in this crop species. In potato, one to fouror linked QTLs to different pathogens may be similar
different alleles are present per locus which results irat the molecular level [41]. Based on molecular
one homozygous [quadruplex (A1 A1 A1 Al)] and four €vidences, it has been proposed that most of the sin
heterozygous [triplex (A1 Al Al A2), duplex (A1 A1 dominant genes for resistance in the potato functio
A2 A2), simplex (A1 A2 A2 A2) and nulliplex (A2 A2 map are primarily encoded INBS/ Che Y-LRBenes
A2 A2)] genotypes. Therefore, with two alleles at a Or one of the other major classes of resistance gen
tetraploid locus there are five genotypes, and with fourirrespective of their pathogen specificity [41]. For
alleles at a locus there are 35 genotypes. The profile of @xample, the clustering of genes for resistance to pota
simple monogenic inheritance of a dominant resistance/irus A (PVA), potato virus Y (PVY) and potato leaf
allele (e.gR gene) in a tetraploid potato plant can be in roll virus (PLRV) suggested that some of the genes ha.
one of four allelic states: homozygous quadruplexan identical molecular basis, either being alleles of
(RRRRB, heterozygous triplexRRR), heterozygous single locus or having evolved from a common ancestc
duplex RRrr) and heterozygous simplex (Rtrin this by local gene duplications with subsequent functiona
simplest genetic model, the expected ratios in progeniegiversification. Marczewskét al[60] have shown that
of heterozygous resistant and homozygousrj  a major QTL for PLRV, PLRV.1, mapped to potato
susceptible plants would be 1: 0 resistant and susceptiblehromosome Xl in a resistance hotspot containing sever
plants for triplex parent, 5: 1 for duplex parent and 1:1genes for qualitative and quantitative resistance to virust
for simplex parent, assuming that there is chromosomend other potato pathogens, is tightly linked to a tobacc
segregation, not chromatid segregation. This clearlyN-like gene for resistance to tobacco mosaic virus. Thes
shows the complexity of the inheritance pattern of evenauthors further used the cDNA sequence ofNalike
simple qualitative (monogenic) resistance gene in potat@ene to develop SCAR marker N1271164 that coul
as compared to other crop species where the inheritancgssist in the selection of potato with resistance to PLR\
pattern is disomic. This fact prevented the developmenfightly linked to the resistance gene cluster on the lon
of genetic linkage map in potato. But two new arm of potato chromosome Xl are several genes wit
developments paved the way for genome-widesequence similarity to th&l gene for resistance to
characterization of quantitative disease resistance itobacco mosaic virus [76]. It has also been shown th:
potato: the manipulation of ploidy levels and the use ofthe cloned potato genes for PVX [77] and root cys
DNA markers. At the diploid level, the complexity of nematode [78] belong to the same superfamily o
genetic analysis in potato became simpler. Therefore, imesistance genes lind. The co-localization of N-like
potato the mapping population for QTLs consisted ofgenes suggests that genes with sequence similarity
F1 populations derived from two diploid heterozygous known R genes are the molecular basis for some
S. tuberosunsubsp.tuberosumbreeding lines and resistance factors in the cluster on chromosome X
backcross progenies [74,75]. Using this type of mappingncluding PLRV.1[60].
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Table 2. Mapping quantitative trait loci (QTLs) for important pathogenic and pest diseases in potatdSplanum tuberosunti..)

Chromosome Pathogen/ pest QTL Reference (s)

| Erwinia carotovora ssp. atroseptica Eca [179]
Phytophthora infestans Pi [247]

1] Erwinia carotovora ssp. atroseptica Eca [179]
Phytophthora infestans Pi [247]

1] Erwinia carotovora ssp. atroseptica Eca [179]
Phytophthora infestans Pi [53,247,248]
Globodera rostochiensis Grol.4 [249]

\% Erwinia carotovora ssp. atroseptica Eca [179]
Phytophthora infestans Pi [53,247,250]
Globodera pallida Gpa4d [251]

\% Phytophthora infestans Pi [53,247]
Globodera pallida Gpa [252]
Globodera pallida Gpab [253]
Globodera pallida, G. rostochiensis Grpl [254]

\Y| Erwinia carotovora ssp. atroseptica Eca [179]
Phytophthora infestans Pi [53,247]

VIl Erwinia carotovora ssp. atroseptica Eca [179]

Vil Erwinia carotovora ssp. atroseptica Eca [179]
Phytophthora infestans Pi [247,255]

IX Erwinia carotovora ssp. atroseptica Eca [179]
Phytophthora infestans Pi [53,247]
Globodera pallida Gpa6 [253]

X Erwinia carotovora ssp. atroseptica Eca [179]
Globodera rostochiensis Grol.2 [40]

XI Phytophthora infestans Pi [563,247]
Erwinia carotovora ssp. atroseptica Eca [179]
Globodera rostochiensis Grol.3 [40]
Potato leaf roll virus (PLRV) PLRV.1 [60]

XIl Erwinia carotovora ssp. Atroseptica Eca [179]
Phytophthora infestans Pi [176,247]

Integration of QTL Analysis and Molecular  of the pathogen proliferation at each of these stage
Biology: The Candidate Gene fproach scoring of disease symptoms by several criteria and tt

Despite tremendous progress made over the past ori¢se of different inoculation procedures may identify the
decade on QTL mapping in diverse plant taxa, there argenes responsible for such differences and help i
several limitations of the genetic analysis of quantitativecharacterizing them at the functional level. The candidat
resistance. First, quantitative trait loci responsive togene approach intends to link the genetic QTL analys
epistatic interactions are not easily detected by QTLand the molecular biological methods. The associatio
mapping. Second, only those QTLs can be identified thapf candidate genes with QTLs is a step towarc
display allelic variation, and genetic fixation at a QTL understanding the molecular basis of quantitative
makes them unnoticeable and imperceptible. Third, manyesistance to an important plant disease. Candidate ger
phenotypes of quantitative resistance traits are not easilire genes that overlap QTL confidence intervals. To linl
defined nor can they be measured easily. Similarly,quantitative resistance phenotypes to functional gene
different methods for assessing resistance are likely tocandidate genes” (cDNA fragments, defence gen
be controlled by overlapping sets of partial resistanceanalogues, resistant gene analogue sequence
genes. However, there are very few studies on QTLPathogenesis-related protein genes, positione
mapping that address these areas critically [50]. Sincélomologues, homologous sequences, expresst
the life cycle of most of the pathogens requires severagequences, etc.), which are specifically expressed durir
distinct phases of interaction with its host, different disease reaction, can be used as genetic marker loci
genetic interactions may occur between plant andQTL mapping studies. By mapping the specific candidat
pathogen during each of these stages. Therefore, analysggnes on the genetic map, chromosomal regions can
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detected which carry these genes. And in the saméomato gene and conserved domains of two defence ge
mapping population a large number of segregatingfamilies such as pathogenesis-related proteins (PR)
resistant phenotypes can be measured resulting in thelasses 2 and 5 [81]. In this study, an enrichment of tr
localization of QTLs on certain chromosomal regions. genetic map with microsatellite markers resulted ir
The genetic markers based on candidate genes aeveral co-localisations of these candidate RGAs, DGA
sequences involved in the expression of resistant reactioand QTLs for Phytophthoran chromosome 1V, where
may co-segregate with certain resistant phenotypes. Aa cluster ofPto-like sequences and 4 QTLs for
a result, the presence and absence of correlations iRhytophthoravere also observed. DGAs and RGAs were
chromosomal position between phenotypes andalso used as candidate genes with QTLs to anthracno
candidate markers would provide clues not only toin common bean [82] and to leaf/ stem rust in whea
understand the function of these resistant genes by the[B3]. In pepper, a class-1ll chitinase gene co-localize
correlated phenotypes, but also to characterize the kingvith a major-effect QTL, and PR protein classes 2 and
of functional genes involved in the realization of a certainloci such as PR4, PR2 and PR10 with minor QTLSs t
resistant phenotype. The coincidence of a map positioiPhytophthora capsidB4]. Linkage ofAscochyteblight
of a QTL on the one hand and a candidate gene on th@TLs to candidate genes including disease respon
other hand serves as a strong indication for the functiomenes and resistance gene analogues has also b
of these candidate gene as well as indication of the genegported in pea [12]. In rice, several candidate gene
involved in the QTL phenotype. involved in both recognition (RGAs) and general plant
Recently, linkage disequilibrium mapping method defence response (PR) were associgted with QTLs fc
has been employed to test for an association betweenY@st, bacterial blight, sheath blight and brown
candidate gene marker and resistanc¥eicillium ~ Planthopper leading to the construction of the frame ma
dahliaein tetraploid potato [79]. In this study, a probe which provided reference points to select candidate gen

derived from the tomatwerticillium resistance gene [OF CO-Segregation analysis using other mappin

(Vel) identified homologous sequencBife]} in potato, populations, isogenic lines and mutants [85]. All these
which in a diploid population were mapped to studies indicate that the candidate gene markers a

chromosome IX in a position analogous to that of the€Xxcellent tools when searching for universal markers fc

tomato resistance gene. When a molecular marker closelffl@rker-assisted selection by linkage disequilibrium

linked to the homologues was used as a candidate gerf82PPINg in wide gene pools. The finding of linkage
marker on 137 tetraploid potato genotypes, thedisequilibrium between a candidate gene marker and

association between the marker and resistance wa8 'L SUPPOrts the hypothesis that the candidate gene
confirmed. Cloning of homologues indicated that the indeed the resistance gene or at least is located physice

QTL comprised at least an eleven-member family, V€'Y Close to the resistance gene [41].

e_nc_odlng plant-specific Ieucmg—nch repeat proteins Ve.ryCOncIusions

similar to the tomatd/e genes; the sequence analysis

showed that all homologues were uninterrupted operNo doubt QTL mapping aided by DNA markers has
reading frames, and thus represented putative functiondgvolutionized the study of complex quantitative diseas
resistance genes. A very important implication of this resistance in plants. It has become a powerful tool fc
study was that it was possible to map QTL directly onmarker-assisted selection (MAS) for breeding for diseas
already available potato cultivars without developing aresistance. However, the effectiveness of MAS is
new mapping population [79]. In QTL analysis of citrus determined by the relative linkage disequilibria betweel
tristeza virus (CTV) in progenies derived from sour the genetic marker loci and QTLs that condition diseas
orange Citrus aurantium andPoncirus trifoliata, three  resistance expression. It needs to be emphasized he
major QTLs were detected at the positiofPdfifoliata that if a significant amount of the additive variance
resistance gen&tv-R and up to five minor QTLs were associated with a QTL can be accounted for by DN/
detected (Ctv-Al to Ctv-A5) [80]. An analogue of this markers, then MAS can increase the breeding efficienc
resistance gene was observed to be a candidate for minburther, a greater genetic gain can be made if flankin
QTL Ctv-A3, and two expressed sequences wereQTLs between two marker loci are used as compared
candidates for minor QTLs Ctv-Al and Ctv-A5. single marker, especially if the single marker are no
Recently, resistance and defence gene analogue (RGAightly linked to the QTL, i. e. the linkage distance
DGA) sequences (as candidate genes) were isolated ipetween the marker and the QTL is relatively high.
cocoa with degenerate primers designed from conservegeveral factors determine the usefulness of QTL-marke
domains of nucleotide-binding-site motif present in aassociation for MAS, and most important among then
number of resistance genes such as the tobdcsob- ~ are epistatic interactions with other loci, variations in
domains of serine/threonine kinases such asPtoe linkage phase and QTL x environment interactions. Ver
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recently only, these factors are being seriously examined®6.
in QTL analysis studies for plant disease response [8617.
90]. Finally, positional cloning of partial resistance genes18.
underlying QTLs may eventually lead to their transgenic19.

exploitation for conferring effective durable resistance.

The adaptation of strategies like substitution mapping20-
[91] and other methods to treat QTLs as qualitative loci21.

[50] has enormous potential for realizing this goal. And

in this direction, the candidate gene approach definitely?2:

offers newer perspectives; the application of candidate
genes might facilitate the discovery of the functions of
QTLs. It has been shown that the tight linkage of RGA

map-based cloning of the underlying resistance genesg

[92,93]. However, the high sequence similarity revealsz6:

potential problems for the use of RGAs as molecular
markers. Their application in marker-assisted selectior‘b8
(MAS) and the construction of high-density genetic maps
is complicated by the existence of closely linked
homologues resulting in ‘ghost’ marker loci analogous

to ‘ghost’ QTLs [13]. Therefore, implementation of 29.

genomic library screening, including genetic mapping

of potential homologues, seems necessary for the saféo.

application of RGA markers in QTL analysis, MAS and
gene isolation. With these recent developments, complex
forms of quantitative disease resistance and their,
underlying genes are becoming more accessible, and
is thus not unrealistic that these developments would ai

in perfecting newer strategies for effective disease controk,

and management in crop species in future.
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