Recent Understanding on Structure, Function and Evolution of Plant Disease Resistance Genes

T R SHARMA1*, A DAS2, S THAKUR1 and B L JALALI3
1National Research Center on Plant Biotechnology, Indian Agricultural Research Institute, Pusa Campus, New Delhi 110 012, India
2Crop Improvement Division, Indian Institute of Pulses Research, Kanpur 208 024, (UP), India
3Chaudhary Charan Singh Haryana Agricultural University, Hisar 125 004, Haryana, India

(Received 03 October 2013; Revised 19 October 2013; Accepted 31 December 2013)

Plant disease resistance (R) gene triggers defense mechanisms by detecting non-self or modified self-molecules (elicitors) which results in hypersensitive response. Plant possesses a large number of R-genes with diverse recognition specificities which are activated in response to a variety of microbial pathogens. Many studies have shown that variation in R-genes is the result of gene duplication followed by divergence employing tandem or segmental duplication, recombination, unequal crossing over, transposable element activity, point mutation and diversifying selection. Large scale sequencing of plant species has revealed that most of the resistance genes are found in clusters of tandemly duplicated genes within the genome. Recent advances in genetics and genomics hold promise for better understanding of the mechanisms of R-gene evolution. The recent understanding on structure, function and evolution of disease resistance genes is reviewed with emphasis on the population dynamics of rice blast resistance gene Pi54. Based on evolution studies, novel strategies can be designed for developing durable disease resistance plant varieties.

Key Words: Disease Resistance Gene; Avirulence Gene; NBS-LRR; Evolution; Rice; Arabidopsis; Pi54

1. Introduction

The survivability of most organisms in varied environmental conditions depends on the presence of general resistance mechanisms, conditioned by inbuilt genetic system to maintain them. The antigenic variation in trypanosomes (Barry and McCullock 2001) and immunoglobulin gene formation in mammals (Blackwell and Alt 1989) are some of the classic examples of inherent resistance. Plants being sessile and only source of organic carbon, serve as food for almost all non-photosynthetic organisms on the earth. Plants are being constantly subjected to biotic and abiotic stresses. Their response to pathogen attack has been studied extensively and systematically. Diseased state of the plants is an outcome of three way interactions among pathogen, host and the environment, where every component of the interaction is presumed to be in favour of the pathogen. However, the mechanisms by which plant pathogens invade plant tissues and obtain nutrients are neither simple nor uniform. Nutrients are present in apoplasts or within the cell, therefore, access to these materials involve tissue and cellular degradation by the necrotrophic pathogens, whereas living host cells are manipulated by the biotrophic pathogens in such a way so that nutrients are obtained without killing the host cells (Faulkner and Robatzek 2012). The understanding of how plants recognize a foreign microbe as a pathogen and relay this information to the cellular system has practical applications for improvement and enhancement of agricultural production. Pathogens spread over long distances through direct and indirect modes of dispersal. Plant disease epidemics have severely affected humankind since the dawn of agriculture. An estimated amount
of approx. 15% of the crop produce is lost globally due to various diseases (Dangl et al. 2013)

A sophisticated multilayered immune system in plants bears testimony to co-evolution of pathogens and plants. This relationship between plant resistance and pathogen virulence through co-evolution was aptly described by zig-zag model (Jones and Dangl 2006). The initial reaction of host defense (basal defense) is based on the recognition of conserved pathogen derived molecules called pathogen/microbe-associated molecular patterns (PAMPs/MAMPs) by pathogen recognition receptors (PRRs) in the plasma membrane. PRRs typically recognize conserved microbial patterns and belong to the family of receptor like proteins (RLPs) or receptor like kinases (RLKs) (Beck et al. 2012). Involvement of PAMPs in generation of plant defense response is demonstrated by a well studied model of PAMP triggered immunity in plants based on the recognition of bacterial flagellin, flg22 through Arabidopsis FLAGELLIN SENSING 2 (FLS2) (Boller and Felix 2009). Upon ligand identification, FLS 2 forms a complex with the LRR-receptor kinase BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1) that induces production of reactive oxygen species (ROS), activation of calcium-dependent and mitogen activated protein kinases (CDPKs or MAPKs) (Boller and Felix 2009).

Specialized plant pathogens can evade or suppress this MAMP triggered immunity (MTI) by secretion of virulence factors called effectors. A subset of these effectors, referred to as avirulence factors (AVRs), which can be recognized by the resistance proteins that trigger a second layer of host defense, referred to as effector triggered immunity (ETI) or R-gene mediated defense, characterized by a rapid, localized cell death at the infection site, referred as hypersensitive response (HR). The HR leads to the signaling of distal plant organs to activate defense response genes which provide protection against subsequent infection by the pathogen. The selective pressure on potential pathogens leads to development of genetic variants that are no longer recognized by the receptors, leading to compatible interaction i.e. susceptibility. The specific demonstration of evolutionary battle between plants and pathogens has been exemplified by the interaction between tomato and the soil-borne fungus, Fusarium oxysporum (Houterman et al. 2008). This fungus employs effector protein AVR3 to suppress MTI that can be recognized by tomato R-protein I-3 which subsequently trigger ETI. To counteract this, the fungus produces or has evolved to produce a second effector (AVR1) that suppresses I-3 mediated defense. Finally to prevent successful infection by the pathogen, the host plant has evolved to produce R-protein I-1 that recognizes AVR1 to re-activate host defense mechanism (Houterman et al. 2008).

The pioneering work on genetics of plant disease resistance involving HR was done by Harold H. Flor in linseed – Melampsora lini system (Flor 1956). Flor proposed a gene-for-gene hypothesis that classically demonstrated genetic interaction between plant and pathogen. This hypothesis states that for every resistance (R) gene in a plant, there is a corresponding avirulence gene (Avr) in the pathogen. The interaction between the two corresponding genes i.e. the host resistance gene and the pathogen avirulence gene leads to incompatibility (resistance). This model hypothesizes that there could be direct or indirect physical interaction between a ligand produced by the pathogen with a corresponding plant receptor and ultimately triggers activation of downstream defense response genes.

Martin et al. (1993) provided first evidence of direct interaction of tomato Pto gene with avrPto from Pseudomonas syringae pv. tomato. Apart from direct interaction, evidences indicate that R proteins also act as guard of a specific component of the basic defense pathway (Guard hypothesis). If that component is modified by a pathogen effector molecule, the modification is recognized by the R protein and defense response is activated (Van Der Biezen and Jones 1998). In Arabidopsis, modification (phosphorylation or cleavage) of RIN4 protein by Pseudomonas type III effector molecules leads to activation of R-gene RPM1 (Mackey et al. 2004). Recent understanding about the action of R genes in plants indicates that different R genes feed into a
common signaling pathway. In *Arabidopsis*, mutation in NDR1 prevents activation of defense responses via two proteins RPM1 and RPS2 that guard RIN4 component of the basic defense mechanism against bacterial pathogen *P. syringae*. The NDR1 protein spans the plasma membrane and interacts with RIN4, but the mechanism by which it receives signals from the R-proteins and transmits them into a signaling pathway is not yet clear.

Disease resistance genes have been extensively reviewed earlier (Bent 1996, Ellis and Jones 1998, Martin 1999, Michelmore 2000, Ellis *et al.* 2000, Jones 2001, Meyers *et al.* 2005) underpinning its importance in sustainable agriculture. The present review summarizes the current understanding about the structure, function and evolution of plant disease resistance gene and how deluge of genomic resources can be utilized for durable resistance breeding programme.

2. Classes of Plant Disease Resistance Genes Based on Structural Features

Numerous *R*-genes identified, cloned and characterized in different plants have been categorized in eight classes (Table 1) based on their amino acid motif organization (Gururani *et al.* 2012). The Leucine Rich Repeats (LRRs) domain is present in majority of the R proteins and is implicated to play an important role in recognition and specificity (Fig. 1). However, the first disease resistance gene to be cloned and characterized was *Hm1* in maize (Johal and Briggs 1992). *Hm1* provides resistance to the maize fungal pathogen, *Cochliobolus carbonum*, by inactivating the HC toxin produced by this fungus. *Hm1* represents a class of resistance genes that encode *detoxifying enzyme*. Second major class of *R*-genes include the genes encoding for cytoplasmic proteins with a nucleotide binding site (NBS), a C terminal leucine rich repeat (LRR) and coiled-coil (CC) domain at the N-terminus. *Arabidopsis RPM1* and *RPS2* and tomato *I2* resistance gene belongs to this class. The third class of resistance genes consists of cytoplasmic protein possessing NBS and LRR motifs

<table>
<thead>
<tr>
<th>Class</th>
<th>Structure</th>
<th>R Gene</th>
<th>Location</th>
<th>Plant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Toxin Reductase</td>
<td>Hm1</td>
<td>Cytoplasm</td>
<td>Maize</td>
</tr>
<tr>
<td>2</td>
<td>NBS-LRR-CC</td>
<td>RPM1, RPS2, I2</td>
<td>Cytoplasm</td>
<td>Arabidopsis, Rice, Tomato</td>
</tr>
<tr>
<td>3</td>
<td>NBS-LRR-TIR</td>
<td>N, L6, RPP5</td>
<td>Cytoplasm</td>
<td>Tobacco, Flax</td>
</tr>
<tr>
<td>4</td>
<td>eLRR-TM</td>
<td>Cf-2, Cf-4, Cf-9, FLS2</td>
<td>Transmembrane</td>
<td>Tomato, Arabidopsis</td>
</tr>
<tr>
<td>5</td>
<td>eLRR-TM-KIN</td>
<td>Xa21</td>
<td>Transmembrane</td>
<td>Rice</td>
</tr>
<tr>
<td>6</td>
<td>eLRR-PEST-ECS</td>
<td>Ve1, Ve2</td>
<td>Transmembrane</td>
<td>Tomato</td>
</tr>
<tr>
<td>7</td>
<td>TM-CC</td>
<td>RPW8</td>
<td>Transmembrane</td>
<td>Arabidopsis</td>
</tr>
<tr>
<td>8</td>
<td>TIR-NBS-LRR-NLS-WRKY</td>
<td>RRS1-R</td>
<td>Cytoplasm</td>
<td>Arabidopsis</td>
</tr>
</tbody>
</table>

![Fig. 1: Different domains of plant disease resistance proteins. LRR: Leucine Rich Repeat, eLRR: Extracellular LRR, NBS: Nucleotide Binding Site, CC: Coiled Coil, TIR: Toll-Interleukin Receptor, NLS: Nuclear Localization Signal, WRKY: DNA binding Domain (60 amino acids), TM: Trans-membrane Domain, KIN: Kinase Domain, PEST: Degradation Domain (proline, glycine, serine, threonine), ECS: Endocytosis Cell Signalling Domain](image)
and an N terminal domain with homology to the mammalian toll-interleukin-1 receptor (TIR) domain. The tobacco N gene, flax L6 gene and RPP5 gene are categorized under this class. The fourth major class of resistance gene family devoid of NBS motif consists of extra cytoplasmic leucine rich repeats (eLRR), attached to a trans-membrane (TM) domain. The eLRR are known to play an important role in activation of defense proteins like polygalactouronase inhibiting protein (PGIPs), even though they are not directly involved in pathogen recognition and activation of defense genes. The Cladosporium fulvum resistance genes (Cf-2, Cf-4, Cf-9) of tomato and Arabidopsis FLS2 are some examples of this class. The fifth major class comprises of eLRR, a transmembrane (TM), and a (serine-threonine) kinase domain (KIN). In rice, Xa21 gene that provides resistance to Xanthomonas oryzae pv. oryzae represent this class. The sixth class contains those genes which have putative extracellular LRR, along with a PEST (Pro-Glu-Ser-Thr) domain for protein degradation and short protein motifs for receptor mediated endocytosis (e.g. tomato Ve1 and Ve2 genes). The Arabidopsis RPW8 protein is an example of seventh major class of resistance genes containing trans-membrane (TM) protein domain, fused to the coiled-coil (CC) domain. The 8th class includes the Arabidopsis RRS1 R-gene which consists of putative nuclear localization signal (NLS) and a WRKY domain, besides TIR-NBS-LRR domains. The WRKY domain is a 60 amino acid region defined by consensus amino acid residues WRKYQGQK at its N-terminal end, along with novel Zinc finger like motif. The list of disease resistance genes family is likely to increase with the increasing availability of genome sequencing data of different plant species. Most of the disease resistance genes exhibit dominant inheritance, although recessive inheritance is also common. Some of the R-genes exhibiting recessive inheritance includes barley mlo, rice xa5 and xa13 and Arabidopsis rrs1 R-gene.

3. Functions of Resistance Genes

Studied on the understanding of resistance gene function and its downstream signaling mechanisms should involve the confluence of high-throughput omics, molecular biology, genetics and plant breeding approaches. However, knowledge of these fields is yet to be converged to delineate common mechanisms guiding functioning of R gene(s) in plants. Recent understandings implicate the role of mitogen-activated protein kinase (MAPK) cascades, ubiquitin and E3, and E2 as signaling module downstream of receptor that transduce the signal. MAPK cascades are involved in signaling multiple defense responses like synthesis and signaling of plant stress hormones, generation of reactive oxygen species (ROS), ethylene biosynthesis, defense gene activation leading to phytoalexin biosynthesis, cell wall strengthening by the deposition of callose and hypersensitive response (Dixon 2001, Greenberg and Yao 2004, Ausubel 2005, Glazebrook 2005, Jones and Dangl 2006, Volt et al. 2009, Boller and Felix 2009, Coll et al. 2011, Spoel and Dong 2012, Meng and Zhang 2013). Ubiquitination play pivotal role in cell signaling that regulates several processes including protein degradation and immunological response utilizing functional proteasomes and protein targeting (Marino et al. 2012).

4. Organization of Resistance Genes in the Genome

The unveiling of complete genome sequence of the model plants like Arabidopsis and rice has been helpful in genome wide identification of disease resistance genes. In Arabidopsis genome, 149 NBS-LRR genes have been reported (The Arabidopsis Genome Initiative 2000). Annotation of genic sequences indicated that TIR-NBS-LRR (TNL) class predominates in the genome than the CC-NBS-LRR (CNL) class. TNLs are more homogeneous and have been amplified more recently. Sequence comparisons among sub-groups of Arabidopsis NBS-LRRs demonstrated wide diversity in the LRR sequences and this might have resulted due to the selective pressure of the pathogens. The completion of International Rice Genome Sequencing Project (IRGSP) has also revealed that the rice chromosomes 11 and 12 have 289 R-like and 28 defense response-like genes (The Rice Chromosomes 11 and 12 Sequencing Consortia 2005). Rice chromosome 11 has several large clusters of fast evolving disease
resistance genes that originated by tandem duplication and subsequent divergence under the selective pressure of rice pathogens. However, unlike *Arabidopsis*, most of the NBS-LRR class belongs to CNLs. Genomic analyses have also identified that TIR (Toll Interleukin receptor) proteins are abundant in both the genomes. Two new *R*-gene families viz. TIR-X (TX) lack both the NBS and LRR domains whereas TIR-NBS (TN) lacks only the LRR domain. Most of the proteins are extremely well conserved in *Arabidopsis* and rice, suggesting that both belong to the ancient protein families.

Genes conferring race specific resistance in a typical gene-for-gene manner are commonly clustered in the host genome. Molecular dissection demonstrated that this clustering resulted from tandem duplications of paralogous sequences. A cluster of *R*-genes (rp1 complex) on the short arm of chromosome 10 of maize that confer resistance to *Puccinia sorghi* is one of the most common examples of tandem duplications (Saxena and Hooker 1968). Within the *rp1* complex, fourteen dominant genes have been identified which together provide a biotype specific resistance to maize rust pathogen. In addition to *rp1* complex, two other loci *rp5* and *rpG*, mapped to approximately 2 to 3 cM distal to the *rp1* complex have also been identified. In flax, five loci viz. K, L, M, N and P have been identified that provide resistance to different races of *Melampsora lini* (Jones *et al*. 1997).

Some members of a resistance gene family are often arranged as tandem direct repeats, which is in consistent with their origin through gene duplication and their continued evolution through unequal chromosomal exchange. The *Xa21* gene family in rice located on chromosome 11 has evolved by transposition, recombination and duplication (Ronald *et al*. 1992; Song *et al*. 1997). Seven *Xa21* family members (A1, A2, B (Xa21), C, D, E and F) have evolved differently in response to pathogen attack (Song *et al*. 1995; Wang *et al*. 1995). Qu *et al*. (2006) also reported six paralogs in the *Pi-9* locus (*Nbs1* to *Nbs6*) arranged as tandem repeats in a 76 kb genomic region having high homology to the NBS-LRRs. The clustering of homologs at a locus provides possibilities for recombination to evolve new specificities of resistance when the corresponding *Avr* gene in pathogen gets mutated. A cluster of eleven tandemly duplicated defense response genes has been reported in a rice sheath blight resistance QTL qSBR11-1 (Channamallikarjuna *et al*., 2010).

Comparative mapping studies have shown a remarkable synteny among grass genomes (Devos and Gale 1997). Because of the observed synteny among the cereal genomes, it has been proposed that the grasses could be used as a single genetic system. Resistance genes and their analogues, however, may not always syntenize. The barley *mlo* and *Rpg*1 genes are not found in the syntenic region in the rice genome although the order of the flanking markers is conserved between barley and rice. In addition to disease resistance genes with known specificities, resistance-like gene sequences (RLGs) whose functions are unknown, map as clusters in rice, *Arabidopsis*, potato, tomato and soybean genomes. Based on comparative mapping studies on monocot RLGs, Leister *et al* (1998) reported that resistance genes diverge more rapidly than the rest of the genome through sequence divergence and ectopic recombination. For example, out of six rice and seven barley RLGs tested only ten maps to the syntenous regions on the foxtail genome.

R genes have remarkable property of rapid diversification under selective pressure from the pathogens. Most plant species contain a large number of highly polymorphic disease resistance genes having common structural domains (Ellis and Jones 1998). The DNA rearrangements have been advocated to play a crucial role in *R*-gene evolution allowing plants to generate novel resistance specificities to match the changing virulence pattern of the pathogen. This hypothesis has been supported by the study of maize rust resistance locus, *rp1*. Recombination of flanking markers in *rp* locus is associated with the creation of novel resistance phenotypes (Richter *et al*. 1995).

5. Role of Chromosomal Duplication and Recombination in Resistance Gene Evolution

Duplication of chromosomal segments during evolution plays a pivotal role in creating complex
genomic region has been reported in the Xa21 gene families. A large duplication of at least 17 kb have also been reported in several other resistance recombinants. Unequal crossing over might have generated these chromosomal mis-pairing of intergenic sequences and sensitive recombinants demonstrated that Cf clusters are the products of duplications (Jones et al. 1997).

Similarly, genic recombination events can result in amplification and reduction of the number of resistance gene family members. As reported in case of tomato-Cladosporium fulvum, the presence of two functional Cf2 genes might be the result of a recent gene duplication event (Dixon et al. 1996). Analysis of the Cf2/Cf3 locus, where only a few sequence homologous to Cf gene reside, has revealed a rare susceptible recombinant that is the result of an unequal crossover event leading to a reduction in the number of Cf homologues (Ellis et al. 1995). Molecular analyses of the five Cf4/Cf9 disease sensitive recombinants demonstrated that chromosomal mis-pairing of intergenic sequences and unequal crossing over might have generated these recombinants.

The evidences of recombination and duplication have also been reported in several other resistance gene families. A large duplication of at least 17 kb genomic region has been reported in the Xa21 multigene family. One of this duplicated genes confer the same race specific resistance similar to the Xa21 gene (Song et al. 1997). Similarly, duplication and diversification of the Pto gene family has generated alternate recognition capabilities of the encoded proteins. The M locus of flax carrying tandemly arrayed specificities might have evolved from an ancestral M gene by a rare duplication event. Repetitive DNA flanking to this locus might have enhanced subsequent duplication through unequal crossing over events (Anderson et al. 1997).

In addition to swapping of large gene regions, recombination can lead to fine structural changes within a gene by recombination. The repeated structure of LRR coding region could facilitate intra- and intergenic recombination leading to expansion and contraction of the LRR numbers as demonstrated in the mutants of M and Rpp5 genes. For instance, the wild type M gene contains two DNA repeats encoding LRRs. However, spontaneous mutants identified in the M gene contain a single LRR region. The mutant alleles with a single LRR repeat might have been generated by an unequal exchange between the first repeat in one M gene and the second repeat in its homologue. A fast neutron generated Rpp5 mutant contains an intragenic duplication of four complete LRRs. This duplication might have arisen from an unequal crossing over event between two identical sequences in the LRRs (Parker et al. 1997).

Rapid sequence exchange among tandemly repeated gene families generally lead to sequence homogenization between constituent members of the gene family, though variability is maintained during the course of evolution. Parniske et al. (1997) sequenced three haplotypes at the Cf4/Cf9 locus and comparisons of intergenic regions revealed a high degree of sequence rearrangements, and similarities in the coding regions. The similarities between conserved regions could be the result of gene conversion events or from successive rounds of reciprocal recombination. For instance, the meiotic stability of Cf9 gene in a homozygous background is dramatically reduced in a Cf4/Cf9 trans heterozygous background. It has also been proposed that the polymorphism of the intergenic regions suppresses unequal recombination in the homozygotes and sister chromatids, thereby preventing sequence homogenization of the gene family. In this situation, recombination within a coding region may actually contribute to the maintenance of a useful combination of resistance gene specificities. In a Cf4/Cf9 trans-heterozygous background, homologous sequences aligned unequally are used as recombination templates. Such unequal recombination alters the number of gene family members as well as the composition of the clusters resulting in increased variation within the population. This has been demonstrated in case of rice blast resistance gene, Pi54, where a single point mutation in the regulatory
region has been attributed to be the cause of the resulting susceptible phenotype (Sharma et al. 2005).

Admittedly, the new race specificities arise due to recombination either by reshuffling of existing genes or by creation of novel resistances to those biotypes for which there were no resistance. Wilkinson and Hooker (1968) reported that thirteen variants identified at the rpl complex of maize had a resistance spectrum different from the parental lines from which they were derived. Of these, eight variants retained a subset of biotype specificities of one of their parents, suggesting that these variants are composed of two or more tightly linked genes, which can be separated by recombination. Besides, four of the thirteen variants were identified as resistant to a rust biotype for which neither of the parents is resistant. Analysis of the flanking markers of these four novel genes indicated that they arose by crossing-over. It has also been suggested that disease resistance gene may even evolve to recognize a different pathogen species. However, there is limited evidence supporting this hypothesis. Identifying, cloning and sequencing of linked genes conferring resistance to different pathogens may demonstrate such a common evolutionary origin.

A classical example is the nematode resistance gene, Mi-1, in tomato which possess dual resistance specificities. Cloning of Mi-1 gene showed that this gene belongs to the leucine zipper/nucleotide binding site/leucine –rich-repeat class of resistance genes (Milligan et al. 1998). At least 7 homologues have been identified for Mi-1, spanning a 650 kb introgressed region from Lycopersicon peruvianum. Two genes viz., Mi-1.1 and Mi-1.2 have been identified at the Mi-1 locus. The nematode resistance is provided by Mi-1.2 whereas the Meu, tightly linked to Mi-1 locus provides resistance to the potato aphid, Macrosiphum euphorbiæ (Thomas). Thus, resistance to the potato aphid is always associated with the presence of the nematode resistance gene, Mi. It has also been reported that the Mi-1.2 also provides an isolate-specific resistance to the potato aphid. The dual specificity of the Mi-1 may be attributed to similar mechanisms of feeding by both nematode and aphids (Rossi et al. 1998).

Illegitimate recombination (IR) is also a major evolutionary mechanism for initiating size variation in plant resistance genes. Wicker et al. (2007) reported IR as major mechanism that generates duplications within the LRR domain leading to the molecular diversity in the evolution of resistance gene analogues.

6. Diversification of Resistance Gene by Transposable Elements

In plants, transposable elements play a major role in the reconstruction of the genomes in response to environmental stresses such as tissue culture, irradiation or pathogen infection (Ronald 1998). Broad-spectrum elicitors of microbial origins induce the transcription of the tobacco retro transposon Tnt1 (Pouteau et al. 1994). The insertion and excision of transposable elements from the regulatory and coding regions can also change the expression patterns of the gene. In maize fungal resistance gene Hm1, conferring resistance to Cochliobolus carbonum race 1, a 315 bp insertion (dHB) was found in a mutant allele of this gene (Johal and Briggs 1992). The insertion of a transposable element (a 256 bp element named Drone) that disrupted the Hm1 in an inbred line of maize lead to the susceptibility of this line to leaf spot and ear rot disease (Multani et al. 1998).

In rice, transposable elements appear to be the major source of variability of the Xa21-gene family members. A total of 17 transposable elements sequences have been grouped into 11 families. This includes three families of miniature inverted repeat transposable elements (MITEs), five novel elements, Ds-like elements, a CACTA-like element and a retro transposable element are present at the Xa21 locus (Song et al. 1998). Integration of two of these elements into coding sequences creates open reading frames that encoded truncated proteins. The insertion of the transposable element, Retrofit into the member of Xa21D generated a truncated protein lacking membrane spanning domain. The truncated ORF from this family member can confer an attenuated resistance with Xa21 specificity. Another transposable element insertion was reported in the member E of Xa21 family. This created a truncated protein that now resembles one of the Cf classes of resistance
Transposable elements (TEs) can drive evolution by creating epigenetic variation. A unique mechanism for regulation of plant immune surveillance gene expression using adaptive TE insertions carrying epigenetic information was recently demonstrated in *Arabidopsis thaliana* disease resistance gene RPP. It has also been shown that, the function of RPP7 is dependent on high levels of H3K9me2 at COPIA-R7 because of epigenetic regulation (Tsuchiya and Eulgem 2013).

7. Population Dynamics of a Rice Blast Resistance Gene Pi54

Population dynamics of disease resistance gene is an important aspect of evolutionary studies. Two principal strategies employed for such studies are allele mining and eco-tilling. It helps to gain knowledge on the structural differences, relatedness and evolutionary aspects of the genes. Pi54 (formerly Pi-kh) confers broad spectrum resistance to different strains of *Magnaporthe oryzae* in India (Sharma et al. 2005; Sharma et al. 2010; Rai et al. 2011). This gene has been shown to regulate the regulators of defence response genes in rice (Gupta et al. 2012a). It has a unique and smallest zinc finger domain among all the genes cloned till date (Gupta et al. 2012b). Since the gene is functionally validated and well characterized, its sequence information can be effectively used for allele mining. Allele mining for blast resistance gene Pi54 from selected set of genotypes comprising of cultivated rice lines and wild rice species could relate structural variation of the allele to the phenotypes. There was high sequence variation between cultivated and wild species (35-90 %) than among cultivated species (1-20 %) only (Rai et al. 2013). The Pi54 alleles have 142 polymorphic sites with average nucleotide diversity of 0.04522. Structural analysis of alleles showed presence of variable number of Open Reading Frames (0-2) principally having point mutations in the leucine rich repeats (LRR) regions. The Ka/Ks ratio of LRR region ranged from 0 to >1 and Tajima’s D test showed negative as well as Darwinian selection within the alleles, which corresponded well with their phenotypic reaction to *M. oryzae* (Rai et al. 2013). Large number of SNPs and indels have also been reported in this gene which might be responsible for its effectiveness against a wide spectrum of *M. oryzae* strains prevailing in India.

8. Conclusions

Several evolutionary patterns can be inferred from the molecular studies of resistance genes. The first is the duplication events that play a significant role in the creation of resistance gene families. The duplication of progenitor resistance genes and subsequent divergence can create/amplify clusters of the genes. Secondly, unequal recombination, gene conversion at intergenic regions and illegitimate recombination create additional variability within the gene families. These events can re-assort existing resistance genes in the array of new combinations. Thirdly, intragenic recombination and gene conversion provides a mechanism for generating novel resistance specificities. Diversity at the LRR domains provides an evolutionary advantage for recognizing, binding and defending against a broad array of pathogens. Finally, the mobility of transposable elements in the genome may result in further allelic diversity, either by disrupting genes, or by influencing recombination or other chromosomal rearrangements such as translocations. Many of the processes involved in the R-gene evolution and their molecular basis are now beginning to be unraveled. Recently, a web-based plant resistance gene database, PRGdb (http://prgdb.org) has been developed which provides a comprehensive overview of the resistance genes (Sanseverino et al. 2013). Plant resistance gene database (PRGdb 2.0) currently have information of 112 known and 105692 putative R-genes present in 237 plant species which confers resistance to 124 different pathogens.

In the last few decades, disease resistance breeding has been limited to the use of sexually compatible wild species that can recognize and resist infection, without prior knowledge of corresponding R-Avr genes. The application of this strategy is slow
Recent Understanding on Structure, Function and Evolution of Plant Disease Resistance Genes

and field efficacy of R genes is reduced as pathogens can mutate to overcome them. Deployment of multiple, stacked R genes that recognize core effectors shall help reduce the chance of resistance breakdown. Alternatively, identification and editing within disease-susceptibility genes may help to limit the pathogen virulence and thereby lessening the damage to plants.

9. Acknowledgements

The corresponding author (TRS) is thankful to the Indian Council of Agricultural Research, New Delhi and to the Department of Biotechnology, Government of India for funding various research programmes on rice- M. oryzae pathosystem.

References

Barry JD and McCullock R (2001) Antigenic variation in trypanosomes: enhanced phenotypic variation in eukaryotic parasite Adv Parasitol 49 1-70

Dangl JL, Horvath DM and Stakawicz BJ (2013) Pivoting the plant immune system from dissection to deployment Science 341 746-751

Devos KM and Gale MD (1997) Comparative genetics in the grasses Plant Mol Biol 35 3-15

Flor HH (1956) The complementary genic systems in flax and flax rust Adv Genet 8 29-54

Gupta SK, Rai AK, Kanwar SS and Sharma TR (2012b) Comparative Analysis of Zinc Finger Proteins Involved in Plant Disease Resistance PLoS ONE 7(8) e42578

Current status and future directions Physiol Mol Plant Pathol 78 51-65
Meng X and Zhang S (2013) MAPK cascades in plant disease resistance signalling Annu Rev Phytopathol 51 245-266
Milligan S B, Bodeau J, Yaghoobi J, Kaloshian I, Zabel P and Williamson V M (1998) The root-knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine rich repeat family of plant genes Plant Cell 10 1307-1319
database model for the analysis of R-genes in plants *Nucleic Acids Res* **41**(D1) D1167-D1171

The *Arabidopsis* Genome Initiative (2000) Analysis of the genome sequence of the flowering plant *Arabidopsis thaliana* *Nature* **408** 796-815

Wicker T, Yahiaoui N and Keller B (2007) Illegitimate recombination is a major evolutionary mechanism for initiating size variation in plant resistance genes *Plant J* **51**(4) 631-641

Wilkinson D R and Hooker A L (1968) Genetics of reaction to *Puccinia sorghi* in ten corn inbred lines from Africa and Europe *Phytopathol* **58** 605-608.