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Medium Effects on the Transport Coefficients of a Hot Pion Gas 
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The transport coefficients of a hot pion gas is evaluated in relativistic kinetic theory approach. The

shear and bulk viscosities as well as the thermal conductivity of a pion gas are obtained by solving

the relativistic transport equation in the well known Chapman-Enskog approximation. The in-medium

propagator of theρ andσ mesons at finite temperature is used to evaluate theππ scattering amplitude in

the medium. The real and imaginary parts of the self-energy calculated from one-loop diagrams using

the tools from thermal field theory, are seen to have noticeable effects on the scattering cross section.

The effect of early chemical freeze out in heavy ion collisions is implemented through a temperature-

dependent pion chemical potential. These are found to affect the temperature dependence of the bulk

and shear viscosities and as well as the thermal conductivity in a significant way.
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Introduction

The study of transport coefficients of quark gluon plasma and hot hadronic matters has been attracting much

interest and attention in the recent years. The experimentally measured elliptic flowv2 of hadrons in Au+Au

collision at Relativistic Heavy Ion Collider (RHIC),can be interpreted in terms of viscous hydrodynamics

with a small value ofη/s, which is close to the quantum bound1/4π (Kovtunet al., 2005)η ands being the

coefficient of shear viscosity and entropy density respectively. These results indicate the strongly interacting

nature of the matter created in heavy ion collisions. This interpretation is based on the measured elliptic

flow v2 of hadrons in terms of viscous hydrodynamics which is sensitive to the value ofη/s used in the

calculations. The behaviour ofζ andη as a function of temperature is particularly relevant in the context of
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non-ideal hydrodynamic simulations of heavy ion collisions. A lot of interest has been generated, leading

to quite a few estimates of the transport coefficients of both partonic (Arnoldet al., 2000, 2006) as well as

hadronic (Prakashet al., 1993; Itakuraet al., 2008) constituents of strongly interacting matter. The effects of

heat flow in heavy ion collisions has received however much less attention. This is presumably on account

of the fact that the net baryon number in the central rapidity region at the RHIC and LHC is very small.

However, at FAIR energies or in the low energy runs at RHIC the baryon chemical potential is expected to

be significant and heat conduction by baryons may play a more important role. Based on such a scenario

a few studies of heat conduction by pions have been carried out. Using the experimentalππ cross-section

the thermal conductivity of a pion gas was estimated in (Prakashet al., 1993; Davesne, 1996) whereas in

(Dobadoet al., 2007) a unitarized scattering amplitude was employed.

In the kinetic theory approach the dynamics of interaction resides in the differential scattering cross-

section which goes as an input. In almost all estimations of the transport coefficients a vacuum cross-section

was employed. In this work we study the temperature dependence of the transport coefficients of a hot pion

gas. Medium effects are then incorporated by introducing in-medium propagators dressed by one loop self

energies calculated in the framework of thermal field theory. We use a temperature dependent pion chemical

potential and obtain the transport coefficients as a function of temperatures in the range between chemical

and kinetic freeze out in heavy ion collisions.

Transport Coefficients in Chapman-Enskog Approximation

The evolution of the phase space distribution of the pions is governed by the equation

pµ∂µf(x, p) = C[f ]. (1)

For binary elastic collisionp + k → p′ + k′, this collision integralC[f ]is given by

C[f ] =
∫

dΓk dΓp′ dΓk′ [f(x, p′)f(x, k′){1 + f(x, p)}{1 + f(x, k)}
−f(x, p)f(x, k){1 + f(x, p′)}{1 + f(x, k′)}] W, (2)

where the interaction rate,W = s
2

dσ
dΩ(2π)6δ4(p + k − p′ − k′) anddΓq = d3q

(2π)3q0
. The1/2 factor comes

from the indistinguishability of the initial state pions. For small deviation from local equilibrium we write,

in the first Chapman-Enskog approximation

f(x, p) = f (0)(x, p) + δf(x, p), δf(x, p) = f (0)(x, p)[1 + f (0)(x, p)]φ(x, p) (3)

where the equilibrium distribution function is given by

f (0)(x, p) =
[
e

pµuµ(x)−µ(x)

T (x) − 1
]−1

, (4)
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with T (x), uµ(x) andµ(x) representing the local temperature, flow velocity and chemical potential respec-

tively. Putting (3) in (1) the deviation functionφ(x, p) is seen to satisfy

pµ∂µf (0)(x, p) = −L[φ] (5)

where the linearized collision term

L[φ] = f (0)(x, p)
∫

dΓk dΓp′ dΓk′f
(0)(x, k){1 + f (0)(x, p′)}{1 + f (0)(x, k′)}

[φ(x, p) + φ(x, k)− φ(x, p′)− φ(x, k′)] W . (6)

Using the form off (0)(x, p) as given above on the left side of (5) and eliminating time derivatives with

the help of equilibrium thermodynamic laws mentioned earlier we arrive at,

[Q∂νu
ν + pµ∇µν(pσuσ − h)(T−1∂νT −Duν)− 〈pµpν〉〈∂µuν〉]f (0)(1 + f (0)) = −TL[φ] (7)

In this equationQ = −1
3m2

π + (pµuµ)2{4
3 − γ

′} + {(γ′′ − 1)h − γ
′′′

T}(pµuµ), and 〈∂µUν〉 =

[12{∆µγ∆νδ + ∆νγ∆µδ} − 1
3∆µν∆γδ]∂γUδ. To be a solution,φ must be a linear combination of the ther-

modynamic forces appearing on the left hand side of the transport equation.

φ = A∂νuν + Bµ∇µν(T−1∂νT −Duν)− Cµν〈∂µuν〉 (8)

which on substituting on the left hand side of (7) we obtain a set of three integral equation satisfied by the

coefficients,A,Bµ, Cµν .

L[A] = −Qf (0)(p){1 + f (0)(p)}/T (9)

L[Bµ] = −∆µσpσ(p.u− h)f0)(p){1 + f (0)(p)}/T (10)

L[Cµν ] = −〈pµpν〉f (0)(p){1 + f (0)(p)}/T (11)

Here,Cµν = C〈pµpν〉 andBµ = B∆µνp
µ. The other details are discussed in (Mitraet al., 2012; Mitra

and Sarkar, 2013, 2014).

In an imperfect fluid, the dissipative part of the energy momentum stress tensor is (Weinberg, 1971),

∆Tµν = 2η〈∂µuν〉+ ζ∆µν∂σuσ + λ{∆µαUν + ∆ναUν}(∂αT − Tu.∂uα) (12)

The first two terms correspond to the viscous effects while the last term indicates thermal dissipation.

The dissipative part of heat flow or the energy 4-flow is related to thermal conductivity by the following

equation (Degrootet al., 1988)

∆Iµ = λ∆µα(∂αT − Tu.∂uα) (13)
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Again these quantities can be expressed in integral forms over the particle distribution function as,

∆Tµν =
∫

dΓpf
(0)(1 + f (0))Cµν〈pµpν〉〈∂µuν〉

+
∫

dΓpf
(0)(1 + f (0))QA∆µν∂σuσ (14)

∆Iµ =
∫

d3p

(2π)3p0
(p.U − h)pσ∆µ

σf0{1 + f0} (15)

Comparing, we obtain the expressions of transport coefficients,

ζ = −
∫

d3p

(2π)3p0
QAf0(1 + f0)

λ =
1

3T

∫
d3p

(2π)3p0
Bνp

ν(p.u− h)f0(1 + f0)

η = − 1
10

∫
d3p

(2π)3p0
f0(1 + f0)C〈pαpβ〉〈pαpβ〉 (16)

Here we follow the procedure outlined in (Davesne, 1996) in which A,Bµ,Cµν is expanded in terms of

orthogonal Laguerre polynomials of half integral order. After some simplifications (discussed in detail in

Refs. (Mitra and Sarkar, 2013)) the first approximation to transport coefficients comes out to be,

ζ = T
α2

2

a22
, λ = − T

3m

β2
1

b11
, η =

T

10
γ2

0

c00
. (17)

The ππ Cross-Section with Medium Effects

Theππ cross-section is the key dynamical input for evaluating transport coefficients. Here the scattering is

assumed to proceed viaσ andρ meson exchange in the medium. From the effective interaction (Serot and

Walecka, 1986) the Lagrangian is,

L = gρ~ρ
µ · ~π × ∂µ~π +

1
2
gσmσ~π · ~πσ (18)

The matrix elements forππ scattering are given by the following expressions where the widths of theσ and

ρ mesons have been introduced in the propagators involved in the correspondings-channel processes. We

thus have

MI=0 = 2g2
ρ

[
s− u

t−m2
ρ

+
s− t

u−m2
ρ

]

+ g2
σm2

σ

[
3

s−m2
σ + imσΓσ

+
1

t−m2
σ

+
1

u−m2
σ

]

MI=1 = g2
ρ

[
2(t− u)

s−m2
ρ + imρΓρ

+
t− s

u−m2
ρ

− u− s

t−m2
ρ

]

+ g2
σm2

σ

[
1

t−m2
σ

− 1
u−m2

σ

]
. (19)
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Fig. 1: The ππ cross-section as a function of centre of mass energy

Defining the isospin averaged amplitude as|M|2 = 1
9

∑
I |MI |2 andignoringthe non-resonantI = 2

contribution, the cross-section is found to agree very well (Mitraet al., 2012; Mitra and Sarkar, 2013) with

the estimate based on measured phase-shifts given in (Prakashet al., 1993).

To obtain the in-medium cross-section we replace the vacuum width in the above expressions by the

ones in the medium. The width is related to the imaginary part of the self-energy through the relation,

Γ(T,M) = −M ImΠ(T,M), whereΠ denotes the one-loop self energy diagrams and are evaluated using

the real-time formalism of thermal field theory. Theσ meson self-energy is obtained from theππ loop

diagram whereas in case of theρ meson theππ, πω, πh1, πa1 graphs are evaluated using interactions from

chiral perturbation theory. These heavy mesons,ω, h1, a1 having substantial3π andρπ decay widths, the

contributions from the loops with heavy mesons may then be considered as a multi-pion contribution to the

ρ self-energy. The imaginary part of the self-energy calculated from one-loop diagrams obtained as (Mallik

and Sarkar, 2009),

ImΠ(q0, ~q) = −π

∫
d3k

(2π)34ωπωh
×

[
N1{(1− f (0)(ωπ)− f (0)(ωh))

× δ(q0 − ωπ − ωh) + (f (0)(ωπ)− f (0)(ωh))δ(q0 − ωπ + ωh)}
+ N2{(f (0)(ωh)− f (0)(ωπ))δ(q0 + ωπ − ωh)

− (1− f (0)(ωπ)− f (0)(ωh))δ(q0 + ωπ + ωh)}
]

(20)

wheref (0)(ω) = 1
e(ω−µπ)/T−1

is the Bose distribution function with argumentsωπ =
√

~k2 + m2
π and

ωh =
√

(~q − ~k)2 + m2
h. The termsN1 andN2 stem from the vertex factors and the numerators of vector

propagators, details of which can be found in (Mallik and Sarkar, 2009). The cross-section obtained by
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using the in-medium propagator in place of the vacuum propagator suffers small suppression of the peak

for theππ loop and a larger effect when all the loops (indicated by multi-pion) are considered. This is also

accompanied by a small shift in the position of the peak as shown in In Fig. 1.

We end this section with a discussion of the pion chemical potential. It is generally accepted (Bebie

et al., 1992) that an evolving hadronic gas gets out of chemical equilibrium early so the number-changing

inelastic collisions cease at chemical freeze out and the total pion number becomes fixed, so only elastic

collisions take place until the pions actually decouple later at kinetic freeze out. The pion chemical potential

consequently grows from zero to a maximum at kinetic freeze out so as to keep the total number of pions

fixed. Here the temperature-dependent pion chemical potential is taken from Ref. (Hirano and Tsuda, 2002)

which implements the above scenario and is parametrized asµπ(T ) = a+bT +cT 2 +dT 3, with a = 0.824,

b = 3.04, c = −0.028, d = 6.05× 10−5 andT , µπ in MeV.

Results

In this section, let us start with the results of shear viscosity to entropy density ratioη/s. For µπ = 0 the

upper set of curves with filled circles show the usual decreasing trend as seen, for example in (Itakuraet al.,

2008). This trend is reversed whenµπ(T ) is used andη/s increases withT . The values in all cases remain

well above1/4π.

Fig. 2: η/s as a function ofT .

Then we have the results for bulk viscosityζ as a function of temperatureT . In Fig. 3 the three sets of

curves correspond to different values of the pion chemical potential. The clear separation between the curves

in each set displays a significant effect brought about by the medium dependence of the cross-section. A
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large dependence on the pion chemical potential is also inferred since the three sets of curves appear nicely

separated.

Fig. 3: ζ as a function ofT . In each set the solid line indicates vacuum cross-section, the dotted line for in-medium

modification due to pion loop and the dashed line for loops with heavy mesons

We next turn to the results of thermal conductivity. In Fig. 4 we plotλT as a function ofT evaluated in

the Chapman-Enskog approach. The effect of a hot medium (taking the contributions of heavy mesons inρ

loop) and as well as temperature dependent chemical potential is clearly visible for those plots.

Fig. 4: λT as a function ofT for ππ cross-section in vacuum and in medium

Summary and Outlook

To summarize in this work we have evaluated the transport coefficients of a pion gas by solving the Uehling-

Uhlenbeck transport equation in the Chapman-Enskog approximation with an aim to study the effect of a
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medium dependent cross-section. In-medium effects on theππ cross-section are incorporated through one-

loop self-energies of the exchangedρ andσ mesons calculated using thermal field theory. The effect of early

chemical freeze out is incorporated through a temperature dependent pion chemical potential which keeps

the pion number conserved. It is observed that the temperature dependence of the transport coefficients is

significantly affected. It will be interesting to observe the consequences on the evolution of the late stages

of heavy ion collisions by including it in the fluid-dynamical simulations.
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