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In this manuscript we review the basic concepts related to the study of the dynamics of the heavy quarks

in quark-gluon plasma created in ultra-relativistic heavy-ion collisions. We discuss the relevant physical

scale as well as the difficulties of the present theoretical approach with an aim to have a self-consistent

description of the experimental data at both RHIC and LHC. In the second part we challenge the as-

sumption of brownian motion for charm quarks and compare the dynamical evolution of charm and

bottom quarks in the Fokker-Planck approach with the Boltzmann Transport calculationone. We show

that while for bottom the motion appears quite close to a Brownian one, this does note seems to be the

case for charms quarks. In particular the solution of the full two-body collision integral shows that the

anisotropic flows are large with respect to those predicted by a Langevin dynamics. We show that using

isotropic cross section one may describe the suppressionRAA and elliptic flowv2 simultaneously.

Key Words : QCD; QGP; Heavy Quarks; Drag and Diffusion Coefficients; Langevin and Boltz-
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Introduction

One of the primary aims of the ongoing nuclear collisions at Relativistic Heavy Ion Collider (RHIC) and

Large Hadron Collider (LHC) energies is to create a new state of matter whose bulk properties are governed

by the light quarks and gluons (Shuryak, 2005; Jack and Muller, 2012). In this context, the heavy quarks

(HQ), mainly charm and bottom, play a crucial role since they do not constitute the bulk part of the matter

owing to their larger mass when compared to the temperature created in ultra-relativistic heavy-ion collisions

(uRHIC’s) (Rapp and Hees, 2010). Due to their large masses HQ can act as a type of external probe to
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investigate the bulk of the QGP medium and are affected by its density, temperature and collective expansion

thereby carrying the information of the created plasma.

Let us now return to the heavy quarks which can be considered as the probe to the quark gluon plasma.

Heavy quarks(HQ) are generally considered as favorable probes for two reasons: the first, typical of par-

ticles physics scenario, is that the massMQ À ΛQCD which makes it possible to evaluate the production

cross section andpT spectra within next-to-next-to-leading order (NLLO) (Cacciariet al., 2005, 2012) in

a perturbative QCD (pQCD) scheme; the second, more inherent to plasma physics is that,MQ À T and

therefore the thermal production of heavy quark in the QGP is expected to be negligible as it is suppressed

approximately by a factor∼ e−M/T . Hence for HQ one has a nearly exact flavor conservation during the

evolution of the plasma in both the partonic and hadronic stages. This remains true while going from SPS

to LHC energies spanning aT range of∼ 200− 600 MeV, as we can see in Fig. 1 where the ratioM/Tmax

(Tmax is the estimated maximum initial temperatures at different colliders, from SPS (diamonds), RHIC

(circles) up to LHC (squares)) remains larger than one forc andb quarks. We notice that even if the colli-

sion energy from SPS to LHC goes up by about a factor102 the maximum temperature increases by at most

a factor of three leaving the ratioM/T for charm and bottom quarks always larger than one. In Fig. 1 we

have also indicated by a shaded area where the value ofM/T ∼ 1/2, so that one can expect that most of

quarks are produced thermally and from this point of view can be considered to be light quarks with respect

to the available energy. We also know that the strange quarkss at SPS energy are mostly thermally created,

which is naively the reason why there is a strange enhancement with respect to pp collisions at energies

around the maximum SPS
√

sNN = 17.8GeV (Antinori, 2004).

Fig. 1: Ratio of the quark mass to the maximum temperature reached in heavy-ion collisions at SPS, RHIC and LHC
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To begin with, we will discuss briefly some of the early ideas about heavy quark as a probe of the

QGP emphasizing the difficulties in describing simultaneously the modification of the spectra with respect

to pp collisions and the large elliptic flowv2, a measure of the anisotropic flow, observed experimentally.

In the second part we will focus on the theoretical approaches to describe the dynamical evolution of the

HQ comparing the most commonly used Fokker-Planck approach to the Boltzmann transport equation.

In the following sections, we will discuss that while for the bottom quark, that the two approaches give

very similar results with respect to the Langevin dynamics. While for the charm quark both the nuclear

suppression factorRAA and the elliptic flowv2 using Boltzmann calculations are larger and more closer to

experimental observations.

Boltzmann vs Fokker-Planck Dynamics

The propagation of HQ in QGP has been quite often treated within the framework of Fokker-Planck equa-

tion (Rapp and Hees, 20120; Svetitsky, 1988; Mustafaet al., 1998; Moore and Teaney, 2005). The early

ideas that HQ undergoes Brownian motion in the medium suggests that their interaction can be treated

perturbatively and therefore generically leads to collisions sufficiently forward peaked and/or with small

momentum transfer. Under such constraints it is known that the Boltzmann transport equation reduces to a

Fokker-Planck dynamics (Svetitsky, 1988), which constitutes a significant simplification of the in-medium

dynamics. Such a scheme has been very widely employed by many authors (Mustafaet al., 1998; Moore

and Teaney, 2005; Heeset al., 2006; Cao and Bass, 2011; Heeset al., 2008; Akamatsuet al., 2009; Gossi-

auxet al., 2011; Daset al., 2010; Majumdaret al., 2012; Albericoet al., 2011; Younget al., 2012; Langet

al., 2012; Caoet al., 2013; Heet al., 2013; Das and Davody, 2014; Xuet al., 2014) in order to calculate the

experimentally observed nuclear suppression factor (RAA) (Adareet al., 2006; Abelebet al., 2007; Adareet

al., 2007; Abelebet al., 2012) and the elliptic flow (v2) (Adareet al., 2006) of the non-photonic single elec-

tron spectra. In parallel, other contemporary works with a description of HQ within a relativistic Boltzmann

transport approach have been developed which include both collisional and radiative energy loss (Gossiaux

and Aichelin, 2008; Gossiauxet al., 2010; Uphoffet al., 2011, 2012). The mentioned references give results

those match data within the error bars and are more close to the possibility of predicting bothRAA andv2

for Pb + Pb at
√

s = 2.76ATeV simulatneously. Also other authors have in the past and more recently

have undertaken the study of charm quarks within a Boltzmann approach (Younuset al., 2013; Zhanget al.,

2005; Molnar, 2007; Daset al., 2013).

The Boltzmann equation for the HQ distribution function can be written in a compact form as:

pµ∂µfQ(x, p) = C[fQ](x, p) (1)

whereC[fQ](x, p) is the relativistic Boltzmann-like collision integral where the phase-space distribution
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function of the bulk medium appears as an integrated quantity inC[fQ], see for example Ref.s (Xu and

Greiner, 2005; Langet al., 1993), while we study the evolution of the heavy quarks distribution function

fQ(x, p).

For the purpose of focusing on the momentum transferred in the collisions the relativistic collision

integral can be written in a simplified form (Rapp and Hees, 2010; Svetitsky, 1988) in the following way:

C[fQ](x, p) =
∫

d3k [ ω(p + k, k)fQ(x, p + k)− ω(p, k)fQ(x, p)] (2)

whereω(p, k) expresses the collision rate of heavy quark per unit of momentum phase space which changes

the heavy quark momentum fromp to p−k, with the first term of the integrand being the gain of probability

through collisions and the second term denotes the loss in the momentum space volume.

HQ interacts with the medium by mean of two-body collisions regulated by the scattering matrix of

the processg + Q → g + Q (σg+Q→g+Q). Therefore we can define the relative velocity between the two

colliding particles asvrel, the transition rate can be written as:

ω(p, k) =
∫

d3q

(2π)3
fg(x, p)vrel

dσg+Q→g+Q

dΩ
(3)

whereσg+Q→g+Q is relatedto the scattering matrix|MgQ|2:

vrel
dσg+Q→g+Q

dΩ
=

1
dc

1
4EpEq

|MgQ|2
16π2Ep−kEq+k

δ0(Ep + Eq − Ep−k −Eq+k) (4)

Werecall that the scattering matrix is the real kernel of the dynamical evolution for both the Boltzmann

and the Fokker-Planck approaches. Also all the calculations for both cases in the following sections, contain

the same scattering matrices.

The Boltzmann equation is solved numerically dividing the phase-space into a three-dimensional lattice

and using the test particle method to sample the distributions functions. The collision integral is solved by

mean of a stochastic implementation of the collision probabilityP = vrelσg+Q→g+Q ·∆t/∆x (Felini et al.,

2009; Grecoet al., 2009; Ruggieriet al., 2013; Xu and Greiner, 2005; Langet al., 1993). The code has been

widely tested regarding the collision rate and the evolution of non-equilibrium initial distributions towards

the Bolztmann-Juttner equilibrium distribution both as a function of cross section, temperature and mass of

the particles, including non-elastic collisions (Scardinaet al., 2013).

The non-linear integro-differential Boltzmann equation can be significantly simplified employing the

Landau approximation whose physical relevance can be associated to the dominance of soft scatterings

with small momentum transfer|k| with respect to the particle momentump. Namely one expandsω(p +
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k, k)f(x, p + k) aroundk,

ω(p + k, k)fQ(x, p + k) ≈ ω(p, k)f(x, p) + k
∂

∂p
(ωf) +

1
2
kikj

∂2

∂pi∂pj
(ωf) (5)

Inserting Eq.(5) into the Boltzmann collision integral, Eq.(2), one obtains the Fokker Planck Equation:

∂f

∂t
=

∂

∂pi

[
Ai(p)f +

∂

∂pj
[Bij(p)]

]
(6)

by simply definingAi =
∫

d3k w(p,k)ki = A(p)pi andBij =
∫

d3k w(p,k)kikj that are directly related

to the so called drag and diffusion coefficient. The Fokker-Planck equation can be solved by a stochastic

differential equation i.e the Langevin equation, can be written as (Rapp and Hees, 2010; Moore and Teaney,

2005;l Cao and Bass, 2011):

dxi =
pi

E
dt,

dpi = −Apidt + (
√

2B0P
⊥
ij +

√
2B1P

‖
ij)ρj

√
dt (7)

wheredxi anddpi are the coordinate and momentum changes in each time stepdt. A is the drag force

andB the longitudinal and transverse diffusions,ρ is a stochastic variable Gaussian distributed. in terms of

independent Gaussian-normal distributed random variablesρj , and

P⊥
ij = δij − pipj

p2
, P

‖
ij =

pipj

p2
. (8)

arethetransverse and longitudinal tensor projectors. We will employ the common assumption,B0 = B1 =

D (Moore and Teaney, 2005; Heeset al., 2006; Cao and Bass, 2011, Heeset al., 2008; Gossiaux and

Aichelin, 2008; Gossiauxet al., 2010; Daset al., 2010; Majumdaret al., 2012; Langet al., 2012). To

achieve the equilibrium distributionfeq = e−E/T with E =
√

p2 + m2 asthefinal distribution one need to

adjust the drag coefficientA in accordance with the Einstein relation (Walton and Rafelski, 2003) (see also

(Majumdaret al., 2012).

A(p) =
D(p)
ET

− D′(p)
p

. (9)

Numerical Resultsand Discussion

We now discuss the evolution of momentum distributions of charm and bottom quarks interacting with a

bulk medium atT = 0.4GeV with scattering processes determined by the scattering matrices discussed in

the previous section. The initial distribution of heavy quarks are taken from Ref. (Cacciariet al., 2005)

and given byf(p, t = 0) = (a + b p)−n with a = 0.70 (57.74), b = 0.09 (1.00) andn = 15.44 (5.04) for

charm and bottom quarks respectively. The above function gives a reasonable description of D and B meson
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spectra in the p-p collision at highest RHIC energy. Our purpose is to compare the time evolution of heavy

quark spectra starting from the same initial momentum distribution and evaluating in each case, considering

both the differential cross sectiondσ/dΩ which is the main ingredient of the Boltzmann equation, and the

drag and diffusion coefficients which are the key ingredient of the Langevin equation originating from the

same scattering matrix elements. For the details we may refer to Ref. (Daset al., 2014).

Our purpose here is to compare between the Langevin and Boltzmann transport equations for various

values of the transferred momentum that can be directly related to the angular distribution of scattering

matrix or cross section. This has been achieved by using three different values of the Debye screening

masses (mD) needed to shield the divergence associated with the t-channel of the scattering matrix. We

have chosen three values formD, one is 0.83 GeV that corresponds tomD =
√

4παs T with αs = 0.35 at

T = 400 MeV that is the main temperature we will consider for our study. The other two values correspond

to a reduction factor of two (mD = 0.4GeV) simulating more forwad peaked modelings and an increase of

a factor of two (mD = 1.6GeV) simulating more isotropic resonant-like conditions.

We have plotted the results as a ratio between Langevin to Boltzmann at different times to quantify how

much the ratio deviates from unity. We started the simulation att = 0 fm/c which corresponds to a ratio 1

as we start the simulation with the same initial momentum distribution for both Langevin and Boltzmann

equations. So any deviation from unity would reflect how much the Langevin differ from the Boltzmann

evolution.

Fig. 2: (A) Ratio between the Langevin (LV) and Boltzmann (BM) pT −spectra for charm quark as a function of 

momentum for mD = 0.83 GeV at different time; (B) ratio between the Langevin (LV) and Boltzmann (BM) spectra for 

charm quark as a function of momentum for mD = 0.4 GeV at different time

A B
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Fig. 3: (A) Ratio between the Langevin (LV) and Boltzmann (BM) p T −spectra for charm quark as a function of 

momentum for mD = 1.6 GeV at different time; (B) ratio between the Langevin (LV) and Boltzmann (BM) spectra for 

bottom quark as a function of momentum for mD = 0.83 GeV at different time

In Fig. 2 the ratio of Langevin to Boltzmann spectra for the charm quark formD = 0.4 GeV (A) and

mD = 0.83 GeV (B) has been displayed as a function of momentum at different time. We remind that time

scales of4 − 6 fm/c can be roughly taken as those corresponding to typical lifetime of a QGP in uRHIC’s.

For the smaller screening mass corresponding to more forward peaked cross section, we observe that the

differences between Langevin and Boltzmann are quite limited and smaller than15%. Instead atmD = 0.83

GeV it is observed that att = 4 fm/c a deviation of Langevin from Boltzmann is around40% and att = 6

fm the deviation is around a50% at p = 5 GeV charm, which suggests Langevin approach overestimates

the average energy loss considerably due to the approximations it involves.

When we consider a larger screening mass,mD = 1.6 GeV to simulate a nearly isotropic scattering we

see that the ratio of Langevin to Boltzmann spectra as shown in Fig. 3(A) can lead to differences as large as

75% at t=4 fm/c. However it is observed that the ratio stays practically almost unity for bottom quark (right)

for all the time considered in our calculations.

Heavy Quark Diffusion in Momentum Space

For a more thorough investigation of the heavy quark evolution implied by a Langevin and a Boltzmann

approach, we study the heavy quark momentum evolution considering the initial charm and bottom quark

distribution as a delta distribution atp = 10 GeV and withmD = 0.83 GeV. The momentum evolution

of the charm quarks are displayed in Fig. 4 within the Langevin dynamics. It is observed that both the

A B
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charm and bottom (Fig. 5) quarks are Gaussian distribution as expected by construction. As known the

Langevin dynamics consist of a shift of the average momenta with a fluctuation that includes the possibility

of heavy quark to gain energy. We see such observation the momentum distribution that overshoots the

initial momentump = 10 GeV at t = 2 fm/c, black solid line in Fig. 4.

Fig. 4: Evolution of charm quark momentum distribution within Langevin dynamics (A) and Boltzmann equation (B)

consideringthe initial momentum distribution of the charm quarks as a delta distribution at p=10 GeV

Fig. 5: Evolution of bottom quark momentum distribution within Langevin dynamical (A) and the Boltzmann (B)

considering the initial momentum distribution of the bottom quark as a delta distribution at p=10 GeV

In Fig. 4 we present the momentum distribution for charm quark within the Boltzmann equation, is

evidently very different evolution of the particles momentum andes not have a Gaussian shape. Already at

A B

BA
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t = 2 fm/c it has very different spread in momentum with a larger contribution from processes where the

charm quark can gain energy and a long tail at low momenta corresponding to some probability to loose a

large amount of energy and in general a shape that is not of Gaussian form. This essentially indicates that

for a particle withM ∼ 〈p〉 ∼ 3T as it is for the charm quark at a temperatureT = 0.4GeV, the evolution

is not of Brownian type. For the bottom quarks, shown in Fig. 5, the momentum evolution gives a much

better agreement between the Boltzmann and the Langevin evolution becauseMbottom/T ' 10. It would be

interesting to find observables that are sensitive to such details of the HQ dynamics. A first candidate could

be theDD̄ and/orBB̄ correlation (Zhuet al., 2008) that should be quite different in a Langevin dynamics

with respect to the Boltzmann dynamics.

Comparison with Experimental Observables

The Langevin and Boltzmann equation have been solved for the heavy quarks with the initial condition

mentioned previously. We convolute the solution with the fragmentation functions of the heavy quarks at

the transition temperatureTc to obtain the momentum distribution of the heavy mesons (B and D). Peterson

function has been used for heavy quark fragmentation given by:

f(z) ∝ 1
[z[1− 1

z − εc
1−z ]2]

(10)

for charmquarkεc = 0.04. For bottom quarkεb = 0.005.

One of the key observable, investigated at RHIC and LHC energies, is the depletion of highpT particles

(D and B mesons or singlee±) produced in heavy-ion collisions with respect to those produced in pp

collisions. We calculate the nuclear suppression factor,RAA, using our initialt = 0 and finalt = tf Heavy

meson (D or B) distribution asRAA(p) = f(p,tf )
f(p,t0) . Theanisotropic momentum distribution resulting from

spatial anisotropy of the bulk can be calculated to the quantityv2 where:

v2 =

〈
p2

x − p2
y

p2
T

〉
, (11)

is thethe momentum space anisotropy.

As we mentioned earlier it is an contemporary issue for all the models to describe theRAA andv2

simultaneously for the same set of inputs. In Fig. 6 we have shown the variation ofRAA as a function ofpT .

In the present study we try to reproduce the sameRAA (almost) from both the LV and BM side and studied

their correspondingv2. In Fig. 6 we have plotted the variation ofv2 as a function ofpT calculated from

both the LV and BM side. We have found that for the same inputs used inRAA, BM calculations produce

morev2. The present calculation is performed atmD=1.6 GeV (isotropic crose section) to demonstrated the
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maximum effect. It is also found that with the nearly isotropic cross section one may reproduce theRAA

andv2 simultaneously within the BM approach where as the LV dynamics fail to do so.

Fig. 6: (A) The nuclear suppression factor, RAA as a function of momentum from the Langevin (LV) equation and 

Boltzmann (BM) equation at mD = 1.6 GeV at RHIC energy; (B) the elliptic flow, v2 as a function of momentum from the 

Langevin (LV) equation and Boltzmann (BM) equation and mD = 1.6 GeV

Conclusion

We have briefly review the interest for the Heavy Quark dynamics in the QGP. After recalling that charm

and bottom quarks can be considered heavy because bothmQ/ΛQCD andmQ/T are much larger than

unity. However a more closer look into the physics involved tells that there is another scale to be considered

mQ/ < pbulk >= mQ/3T . For this last scale the charm cannot be considered really heavy atT ∼ 300

MeV. In fact comparing the momentum evolution of a charm quark solving the full Boltzmann integral

equation shows a dynamical evolution that appear to be quite far from a Brownian motion. This can lead

to underestimation of the charm quark drag coefficient and the build-up of its elliptic flowv2(pT ). We

found that using nearly isotropic cross section both the nuclear suppressionRAA and elliptic flowv2 can be

describe simultaneously within the Boltzmann approach where the Langevin dynamics fail to do.
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