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Some Features of the Solutions of Kuaka and Vargaprakti
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Abstract

The expertise in Kuaka and Vargaprakti, the methods used for the solution of first and second 
degree indeterminate equations respectively, were considered  pre-requisite qualifications of an Acharya 
in ancient  and medieval India.. For solution of Kuka of the type; b y = a x  + c, the values of      were 
approximated  from the successive divisions  of a by b as in HCF process  and the number of steps was 
reduced with choice of a desired quantity [mati] at any step, even or odd . The  solution of  Vargaprakti of 
the type, N x 2± c  = y 2 [where N  = a non-square integer, and c = kepa quantity] was in the manipulation 
of the value of  √N→   based on   two set of arbitrary values  for x , y, and c and their cross multiplication 
when c = ± 1, ± 2, ± 4, as given by Brahmagupta (c. 628 CE). The solution was concretized  by Jayadeva 
[1100 CE] and Bhāskara II [1150 CE] by a process, known as Cakravāla. The number of steps used in 
Cakravāla is much lower than  the regular and half-regular expansions for √N  used by Euler and Lagrange. 
The minimization property of Cakravāla is unique and the method may be treated as one of the major 
achievements of Indian mathematics  in the history of solution of second degree equations.
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ekavara-bhāvitakaih/ācārya sa tantravidām 
jňātaih varga-prakrtyā ca //

English translation:

One who is well versed in [operations] 
with the kuaka (pulverizer), kha (zero), a-
dhana (negative and  positive quantities), avyakta  
(unknown quantities), madhya-hara a (the 
elimination of the middle term), ekavara (one 
unknown), bhāvita (equations involving products 
of unknowns) and also varga-prakti (second 
degree equations) is [recognized as] a great teacher 
(ācārya) among the specialists (tantravids).

The above verse shows that Brahmagupta 
set a very high standard for qualifications of an 
ācarya in algebra. It was emphasized that he 
should be expert  in the operations of Kuaka and 
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1. Introduction

 ryabha a I, the pioneer siddhāntic 
mathematician cum astronomer who was born 
in Kusumpura (near Patna) in 476 CE wrote his 
ryabhaīya () at the age of twenty-three. He 
concretized his  knowledge of arithmetic, algebra 
including pulverizer (kuaka) and geometry  in 
his second chapter on mathematics (ga ita). 
Brahmagupta, the first great mathematician 
of Indian history after ryabhaa I, wrote his 
Brāhmasphuasiddhānta (BSS) in 628 CE in 
Ujjain at the age of thirty, and is the earliest 
known Indian mathematician to have separated 
algebra from mathematics (gaita). He described 
the qualifications of an ācārya (‘great teacher’) in 
algebra, in the following words (BSS, xviii 2):1

kuaka-kha-adhana-avyakta-madhya haraa-
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śeaparaspara bhaktam matiguam agrāntare 
kiptam / 

adhaupari guitam antyayug ūnāgracchedabhājite 
śeam / 

adhikāgracchedaguamdvicchedaāgramadhikāgr
ayutam // (Ā, Gaita, vs.32-33)

Tr. Divide the divisor (adhikāgra-
bhāgahāra ) corresponding to the greater remainder 
(adhikāgra), by the divisor (unāgra bhāgahāra) 
corresponding to the smaller remainder (unāgra); 
the residue and the divisor corresponding to 
the smaller remainder being mutually divided 
(śeaparaspara bhaktam); the  residue (at any 
stage) is to be multiplied  by a desired integer 
(mati)  to which the difference of the remainders 
(kepa) is added (the number of partial quotients  
being  even) or subtracted (the  number of partial  
quotients being odd), the result when divided  
by the penultimate remainder will give the final 
quotient; the partial quotients, the mati and the 
final quotient are placed one below the other; 
then, the mati is to be multiplied by the quotient 
above it to which the final quotient  below it 
is to be added (adhaupari guitam antyayug), 
and the process (of  multiplication and addition) 
is continued; the last number obtained is then 
divided by the divisor corresponding to the smaller 
remainder;  the residue is then multiplied by the 
divisor corresponding to the greater remainder to 
which the greater remainder is added; the result 
will determine the number corresponding to the 
two divisors.

Explanation: Āryabhaa I might have  
been interested  to find a number (N) , which 
when divided by an integer (a)  leaves a remainder 
( r1), and by an integer (b) separately  leaves a 
remainder (r2) .

Or, N = a x + r1 = b y + r2, 

i.e., to solve: b y = a x ± (r1 - r2) accordingly 
as r1 >r2 or otherwise,

or b y = a x ± c , where c = (r1 - r2),.

Vargaprakti beside others. Both the operations 
had wide ramifications in both mathematics and 
astronomy.

In this paper, I will  discuss the features 
of  solutions of Kuaka of the type : b y = a x ± 1 
and by = ax ± c , and  of Vargaprakti of the type: 
Nx2 ± 1 = y2  and Nx2±c= y2 as found in Indian 
tradition.

2. Kuaka of the type: by = ax ± c

The solution of indeterminate equations 
of the type :

 by = a x ± c, leads to: 

y =  (a>b)….(1), or x = (b>a)..(2).

The solution was actually manipulated by 
Āryabhaa I from  the approximations of  → 
in (1), and  →  in (2).

2.1. Āryabhaa I (b. 476 CE)

Āryabha a I, the pioneer siddhāntik 
mathematician, himself cited that he had his  
education in Kusumpura school (kusumpure 
carcita jňānam, Ā, ii.1).The place has been 
identified in North India between Patna and 
Nalanda by Shukla  (vide his edition of the text, 
Āryabhaīya, Introduction p. xviii). Bhāskara I 
referred to Āryabhaa I as an Āśmakīya, which 
indicates that he belonged to Aśmaka tribe or 
country (MBh, Eng tr, p.2), and according to 
commentator Nīlakantha he was born in that 
country. The Aśmaka country has also been 
identified with Kerala by some scholars.

A. Rule: Āryabhaa I gives a rule in his Āryabhaīya 
for obtaining solution by  mutual division of a 
and b as in HCF process (a, b are integers) and 
is the knowledge of pulverization or kuakāra. 
The rule (Āryabhaīya, Gaita, 32-33) runs 
thus:
adhikāgra bhāgahāram chindyāt unāgra 
bhāgahārea /
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(1) Solution of: by = a x +  c 

Āryabha  a I  proceeded with the 
approximation →  (a>b), where a and b were 
mutually divided as in HCF process, a and b being 
integers. He kept c (i.e., r1- r2 or r2- r1) always 
positive.

The rule says, when a and b are mutually 
divided (a > b) , a being the dividend and b being 
the divisor as in HCF Process of Division :

[where q1,q2.…..qn. are partial quotients, 
and r1, r2, r3....rn are corresponding  remainders].  

If rn= 0, then  = q1+  ….  = 
(q1,q2,….,qn). Āryabhaa I however introduced 
a unique method to find the approximation or 
convergent of  . In this method he could stop at 
any point of the HCF process to compute a result 
which is nothing but the penultimate convergent. 
What he did, he advised to multiply any remainder 
of  the division by a desired quantity (m), to which 
the kepa quantity (c) is to be  added or subtracted 
depending on the number of quotients even or 
odd respectively, and the result when divided 
by the previous remainder gives a final quotient 
(q). As a result, →(q1, q2, q3, q4, ). In short, 
the quantities m and q were obtained from the 
following, 

 = q (n=no.of quotients as 	
			   even or odd respectively),

Then the rule says, the partial quotients:  

(q1, q2, q3 q4, ) are to be placed  one below the 

other (here it is placed side by side result being 
same), and  the process of multiplication  is to be 
started from the mati (m) upwards multiplying 
with the upper quotient & the final quotient (q) 
as additive;  the operation then is repeated and 
stopped after  getting two final numbers. The 
operation is same as in modern process.It may be 
represented as follows:

= 

  
for t = 0, 1, 2, ..;

It gives →   (penultimate convergent of 
),which is undoubtedly an ingenious technique 

for obtaining the equation : a x1- b y1 = - c 
(c = +ve or – ve depending on the even or odd 
number of quotients). 

Then, (x1, y1) is the solution of :  
b y = a x + c, where c = r1-r2.The desired number 
N is found from:

N = a x1 + r1 = b y1 + r2.

(2) Solution of : b y = a x – c, or a x = by + c  
(b<a),

Then,  →  = (0, q1, q2, q3, ) =  (no. 
of quotients even or odd), or b y1 - a x1 = - c, or 
b y1 =  a x1 - c giving a solution (x1,y1) for b y = 
a x - c.

Āryabhaa I, however,  did not specify 
the results for even or odd number of quotients, 
the details  of which is of course clear from the 
commentary of Bhāskara I, which says, ‘add kepa 
(c) when number of quotients are even, and subtract 
when these are odd ; so is explained by schools  
(agrāntaram prakipya viśodhyam vā asya rāśeh 
śuddham bhāgam dāsyatīti / sameu k iptam  
visameu śodhyam iti sampradāyāvicchedād 
vyākhyāyate/) [Bh, ii.32-33 (bhāya of  Bhāskara 
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I)]. Brahmagupta (BSS, xviii, 3-5, Eng. Tr. Datta 
& Singh,pt.2, pp.1-2) gave exactly the same 
method.

B. Features of Āryabhaa I’s solution:

(i) 	For solution of : b y = a x + c, Āryabhaa I gave 
an ingenious method actually manipulating 
(  →)  → (q1,q2,q3,q4, ) =  (a>b), 
where m and q are found from:  =q 
(n=even or odd). The result  is nothing but 
the penultimate convergent of  leading to the 
solution of : a x1 - b y1 = - c , or b y1 = a x1+ 
c (when number of quotients is even or odd,  
c = kepa number). The value (x1,y1) gives 
the solution of: b y = a x + c  from which the 
required number N is obtained.

(ii)	For solution of : b y= a x - c, or a x= b y + c,the 
original approximation (  →)  →  (b>a), 
which is also the penultimate convergent 
leading to the solution of :b y1- a x1= - c, or  
b y1= a x1- c (when number of quotients is 
even or odd , c = kepa number). The values of  
(x1, y1) gives the solution of  b y1 = a x1 – c. Or 
in other words, (x, y) gives the solution from 
which the required number  N is obtained.

(iii) Indicates that if  (x1, y1) is the solution of :  
b y1= a x1 = ± 1 , then (cx1, cy1) is the solution 
of b y1= a x1± c; and

(iv)	Āryabhaa I managed to obtain the solution 
of c (pn qn-1- qn pn-1) = ± c, c being any kepa 
quantity, for n = even or odd.

C. Examples:

1. To find a number N such that N= 60 y + 7 
=137 x + 8

This leads to : 60 y = 137 x + 1 (here r1= 
7, r2= 8, c = r2-r1= 8 – 7 = 1)

(i)   →  → 2 +       =  =  

[quotients = 2, 3, 1,  (number even); 
remainders (r1,r2,r3)= 17, 9, 8 respectively];  
giving,  =  = 1 (m=mati = 1, final 
quotient= q =1, c = positive= + 1, number of 
quotients being even);

	 This leads to : 137 . 7 - 60. 16 = - 1, or 60 y1= 
137 x1+ 1, giving x1= 7, y1= 16. This gives,  
x  = 7. y  = 16, fixing the  minimum solution 
of 60 y =137 x + 1.

This suggests that  is the penultimate 
convergent of  .

(ii)  →  → 2 +       =  = 

→ , [quotients 

(number odd): 2, 3, 1, 1. .; corresponding 

remainders : 17, 9, 8, 1]; for   = 

= 8; then m = 9; q = final quotient = 8, the 

number of quotients being odd .

	 This leads to : 137. 67 - 60. 153 = - 1, or 60. 
(137 + 16) – 137.(60 + 7)= 1, or 60. 16 = 137.7 
+ 1, or  60 y1= 137 x1+ 1, giving x1= 7, y1= 
16.

	T hen, x =  7, y = 16,fixes the solution of 60 y 
= 137 x +1.

The solution fixes the penultimate 
convergent as  of  (the number being even 
or odd). This satisfies the relation (pn qn-1- qn pn-1) =  
±1 (for n = even or odd).The solution is same when 
the number of quotients is even or odd..	

Now, N = 137 x + 8 = 137. 7 + 8 = 967, or 
N = 60 y + 7 = 60. 16 + 7 = 967.

2. To solve : 60 y = 137 x – 1

The equation reduces to : 137 x = 60 y + 1. 
  →  →  = 0 +         =
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 [quotients: 0, 2, 3, 1, 1, 1 (final quptient); 
remainders : 60, 17, 9, 8, 1]; m is calculated from : 

  =  = 1 (final quotient, no. of quotients 
being even). This leads to : 60. 121 – 137. 53 = - 1, 
or 60. 121 = 137. 53 – 1, or b y = a x – 1, or x = 
53, y = 121 giving solution of 60 y = 137 x – 1.

3. To find a number N such that N = 60 y =  
137 x + 10 

(a) 	  →  → 2 +    = 

→ →

[quotients (number odd): 2,3,1,1, ; 

corresponding remainders: 17, 9, 8,1; for  
 =  = 1; hence m = 18, q = 1]. 

This leads to :  137. 10 - 60. 23 = - 10, or  

60. 23 = 137. 10 + 10;

	 Comparing with 60 y = 137 x + 10, it gives, 
x = 10, y = 23 as the solution of 60 y = 137 x 
+ 10.  Now ; N = 137 x + 10 = 137, 10 + 10 = 
1380.

(b) 	From Example C.I: x = 7, y = 16 is the solution 
of : 137 x + 1 = 60 y. For, c = 10,  obviously, 
x= (7. 10) = 70 = 10 (mod 60) For, 70 = 60. 1 
+ 10); y = (16. 10) = 160= 23(mod 137); For, 
160 = 137. 1 + 23= 23 (mod 137);

	 This shows that if  (x =7, y = 16) is the solution 
of : 137 x + 1 = 60 y, then (c x, c y) is the 
solution of : 137 x + 10 = 60 y, for c = 10.

2.2 Bhāskara I (c.600 CE)

Bhāskara I imbibed his knowledge of 
astronomy from his father, a follower of the school 
of Āryabhaa I. He wrote his Mahābhāskarīya 
(MBh), Āryabhaīya-bhāya (ĀBh) (in 629 CE) 
and Laghu-bhāskarīya (LBh) in order and used a 
large number of problems relating to Kuaka. 

A. Bhāskara I’s clarification and modification 

of the rules are extremely interesting. He set 
a large number of examples for the  solutions 
of  indeterminate equations for (1) and (2), 
keeping  kepa quantity (c) as positive, following 
Āryabhaa I. However, Bhāskara I  emphasized 
more importance to the solution of : b y = a x - c, 
or y = straightway, because of its application 
in solving astronomical problems, where a = 
revolution number, b = civil days in a Yuga, c = 
residue of the revolutions of planet. x = number 
of days passed from the epochal point (ahargaa), 
and y = complete revolutions performed by the 
planet.

B. Features of Bhāskara I’s solution:

(i) 	Dividend and the divisor (a and  b)  should 
be prime to each other (hārabhājyau dau 
syātām kuakāramtayorviduh / MBh, i. 41);

(ii) For the  solution of : b y = a x – c ( a<b); the 
mutual division of →  ) leading to its 
solution.

	 Let : → = q1 +   …….., (where 
q1=0). The first quotient being zero was 
not effective in the calculation. Obviously, 
Bhāskara I  concluded that  the kepa number 
is to be subtracted (apanīyam) for even number 
of quotients,and added for odd number of 
quotients (MBh, i.42-44). 

(iii) Bhāskara I also suggests that if (x1, y1) is  
the solution of : b y = a x – c, then (b - x1,  
a - y1) is the solution of : b y = a x + c. Likewise, 
if (x1, y1) is the solution of : b y = a x + c, then 
(b - x1, a- y1) is the solution of : b y = a x  - c.

(iv) He also explained  that  if (x1, y1) is the solution 
of : a x1- 1=b y1, then  (x = c x1, y=c y1) is the 
solution of : a x – c = b y (MBh, i.47);

(v) Bhāskara I also recommended that if x = x1,  
y = y1 is the minimum solution of:  b y = a x – c, 
then the other solutions of the same equations 
are : x = b t + x1, y = a t + y1 , for t = 1, 2, 3, 
.. (MBh. i.50)
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(vi) Bhāskara I had also the knowledge of successive 
convergents. 

	 Let  = q1 +     ……..  

	 Then, 

…,  where  ,..are the 1st, 2nd, 3rd 

convergent (or approximation) values of the 
rational number .

	 Bhāskara I’s application justifies his knowledge of 
convergents. In his formula for declination,he 
uses two variants of the same result as 
under:  

	 (a)	R  Sine δ =  (MBh. iii. 6-7 ), and  

(b) R Sine δ =  (MBh. iv. 25), 
where  δ =declination, λ= longitude.	

	 The result , the fifth comvergent of  
(vide Example C.2 below) is used in the 
formula for declination, it is quite likely that 
Bhāskara I had the knowledge of successive 
convergents.

C. Examples:

1. To solve ; 3438 y = 1397 x - 1

	 According to  Bhāskara I’s procedure,  → 
 = 0 +  = , where 

partial quotients=0,2, 2, 5, 1, and 1 (final 
quotient); the partial remainders = 1397, 644, 
109, 99, 10;  m (mati) and the final quotient 1 
is obtained from, (c becomes negative no. of 
quotients being even) :   = 1 
(final quotient) for m = 10. This leads to:  1397. 
347 - 3438. 141 =  1, or 3438. 141 – 1397 . 
347 = - 1, or 3438 y1= 1397 x1-1,which gives  
x1= 347, y1= 141 as  the required solution.
This also indicates that  is the penultimate 
convergent of  .

	 Bhāskara I suggests that then, b - x1 = 3438 – 

347 = 3091,  a - y1 = 1397 -141= 1256, will be 
the solution of 3438 y = 1397 x + 1.

2. To solve ; 3438 y = 1397 x - 1 

	 Here,  →  = 0 + 

	 =0,  (convergents).

	 This shows that the Indian method always 
calculated the value of penultimate convergent

 of ., which gives:  x = 347, y = 141 (n 
= even).

3.	 The residue of the revolutions of Saturn 
being 24, find the aharga a and the 
revolutions made by Saturn [LBh,viii.17; 
see also Shukla, MBh edition, p.30)

	 Saturn’s revolution number= 146564, number 
of civil days = 1577917599, both numbers 
has an HCF = 4; dividing by 4, the number 
of Saturn’s revolutions , and the civil days 
in a yuga are: 36641, 394479375; to find 
the ahargana (x) and the Saturn’s revolution 
number (y); this leads to;  y = 

	 N o w,   →   =  0  +    

= =

= ; quotients: 
0, 10766, 15, 2, 7, 22, 2, 1 (final quotient), 
remainders : 36641, 2369, 1106, 157, 7, 3, 1; 

m (mati is obtained from :  =  

= 1  for m = 27. This gives, 394479375. 
32292 – 36641. 346688814 = - 24; This 
gives, 394479375 y1= 36641. x1 - 24 where 
x1 = ahargaa=346688814, y1= Saturn’s 
revolution=32292.

2.3. Brahmagupta

T h e  m o s t  p r o m i n e n t  o f  H i n d u 
mathematicians belonging to school of Ujjain 
was Brahmagupta. His Brāhmasphuasiddhānta  
(BSS) was composed in 628 CE.
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A. Features of Brahmagupta’s solution:

(i)	 Recommended the same rule, as was prescribed 
by Āryabhaa I for the solution of: b y = a x  
+ c (BSS, xviii.3-5);

(ii)	For the solution of : b y = a x – c (a<b), 
Brahmagupta supported  the method of 
Āryabhaa I  and Bhāskara I ,when first 
quotient is zero and  not effectively taken part 
in the calculation. Brahmagupta categorically 
said, ‘Such cases become negative and positive 
for even and odd quotients  being alternative 
to what  is positive and negative in the normal 
cases, leading to the calculation of gua (x) 
and kepa (c) [evam ameuviamesuam 
dhanamdhanam  am yaduktam tat / 
adhanoyor vyastatvamguyaprakepayoh 
kāryam // BSS, xviii. 13];

(iii) Prthudakasvāmi (860 CE) observes that it 	
is not absolute, rather optional, so that the 
process may be conducted in the same way 
by starting with the division of the divisor 
corresponding to the smaller remainder by the 
divisor corresponding to the greater remainder.
But in the case of inversion of the process, he 
continues, the difference of the remainders 
may be made negative.

Brahmagupta followed the earlier tradition 
and his method is no different than the method 
of Āryabhata I and Bhāskara I. He clarified the 
method with a few examples from astronomical 
and mathematical problems.  The most  important 
contribution of Brahmagupta lies in the fact that he 
utilized the knowledge of continued division for  
solution of Vargaprakti of the : N x2± c = y2.

2.4. Bhāskara II (b.1114 CE)

Bhāskara II, a versatile scholar from the 
school of Ujjain in the field of mathematics and 
astronomy was trained by  astronomer father 
Mahevara  at Bijjalabia under the patronage of 
aka king I. His Bījagaita contains important 
contributions in algebra.

A 	 Bhāskara II’s rules are far more simplified and 
may be summarized thus. This in short:

(i) 	For solution of b y = a x + c, Bhāskara II  said 
that the mutual division may be continued to 
finish, i.e., till the last remainder is 1; then 
the sequence of quotients should follow with 
c and 0.e.g.,  →  = (q1, q2, q3, q4, c/0) 
= q1+  where  c = any 
number,leading to the solution of ; c (a x1- by1) 
= ± c (n = even or odd).

(ii) 	If (x, y) be the solution of b y = a x + 1, then 
(c x, c y) is the solution of b y = a x + c.

(iii)	If (x1, y1) is the solution of b y = a x – c , then 
(b - x1, a - y1) is a solution of b y = a x + c . This 
was already explained before by Bhāskara I. 
Likewise, if (x1 ,y1) is the solution of : b y =  
a x + c , then (b - x1, a- y1) is the solution of : 
b y = a x  - c .

B. Examples:

1. To solve : 23 y = 63 x + 1

Bhāskara II says that for solution of  
23 y = 63 x + 1, the dividend 63 and divisor 23 
are to be mutually divided as in HCF process 
till the remainder reduces to 1, then place the 
quotients one below the other with c and 0, as is 
done for mati and final quotient by other authors. 
Obviously,

 →  = 2 +  = (2, 1, 2, 1, 1/0) 
= . This gives :  63. 4 – 23. 11= - 1, or 23. 11 = 
63 x + 1 (no. of quotients = odd);  then, x = 4, and 
y = 11 gives the solution of 23 y = 63 x + 1;  

2. To solve : 63 y = 100 x + 13

 →  = 1 +  = (1, 1, 
1, 2, 2, 1, 13/0)=  (penultimate convergent); 
This gives :  100. 221- 63. 351= - 13 (n = odd) , 
or 63. 351 = 100. 221 + 13;x = 221 = 63. 3 + 32 
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= 32 (mod 63); y = 351 = 100. 3 + 51 = 51 (mod 
100). Hence x = 32, y = 51 is the least solution of 
63 y = 100 x + 13.

3. Vargaprakti

3.1. Definition:The Vargaprakti involves solutions 
of indeterminate equations of the type : Nx2±k = 
y2, where

N → a non-square integer, known as prakti or 
guaka;

x  → known as lesser root, kani  hapada, 
hrasvamūla, or ādyamūla,

y  → refers to greater root,  jyehamūla, anyamūla, 
or antyamūla and

k  → refers to number added, kepa, prakepa, or 
prakepaka.

Brahmagupta obtained two sets of 
approximate values and applied the process of 
Bhāvanā. Jayadeva and Śrīpati (both of 11th 
century CE) established the process of Cakravāla 
and led the foundation, while Bhāskara II (c. 1150 
CE) and Nārāyaa (c. 1350 CE) made further 
extention and clarification with examples in his 
Gaita Kaumudi (GK). The solution  however 
is based on the theory of continued fraction as 
expounded by Āryabhaa I, Bhāskara I.

	 Nārāyaa following tradition had catego-
rically said which runs thus

	 mūlam grāhyam yasya ca tadrūpakepake 
pade tatra /

	 jye  ham hrasvapadena ca samuddhan 
mūlamāsannam //

“ Obtain the roots  (of the Vargaprakti) 
with kepa quantity as unity (i.e., N x2+ 1 = y2) 
and the number (N) whose square-root is to be 
obtained; then the greater root divided by the 
smaller root will determine an approximate value 
of the square-root (√N)’’ (GK, p.244). 

This implies that Nārāyaa, following 
others, has categorically said that the solution lies 
in the approximation of  √N →  

The complete theory of solutions  was 
expounded by Euler and Lagrange later in 1767 
CE.

3.2 Brahmagupta’s Solutions

Brahmagupta’s solutions in rational 
integers of both positive and negative types 
of the equation Nx2± k = y2, may be explained 
with method of cross-multiplication, known as 
Bhāvanā or Lemmas.

Lemma I: Brahmagupta (BSS, xviii, 64-65) first 
formed a set of auxiliary equations described 
as follows:

mūlam dvidhā iavargād guakaguād ia yuta 
vihinān ca / 

ādyavadho guakaguah saha antyaghātena ktam 
antyam // 

vajravadhaikam prathamam prakepah 
kepabadhatulyah/

prakepaśodhakahte mūle prakepake rūpe//

English Translation:

‘From the square of an assumed number 
multiplied by the guaka, add or subtract a 
desired quantity and obtain the root, and place 
them twice. The product of the first [pair of roots] 
multiplied by the guaka increased by the product 
of the last [pair of roots] is the [new] greater root 
(antya-mūlam). The sum of the products of the 
cross-multiplication (vajravadhaiam) is the first 
[new] root (prathama-mūlam). The [new] kepa 
is the product of similar additive or subtractive 
quantities. When the kepa is equal (tulya), the 
root [first or last] is to be divided by it to turn the 
[new] kepa into unity’.

This explains Samāsa (additive), Viślea 
(subtractive) and Tulyabhāvanā (equal roots) 
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discussed under Features (A&B).

Lemma II : Brahmagupta (BSS, xviii. 65) says, 
if  x = a, y = b be a solution of : N x2 + k2= y2, 
then x = a/k , y = b/k , is the solution of : N 
x2+ 1= y2.

Lemma III: Brahmagupta (BSS, xviii, 66-69) 
prescribed his subsequent rules, which  
explains how the solution of the equation  
N x2 + k = y2 is obtained when k.= ±1,±2,±4 
by applying tulyabhāvanā.

Features: Lemma I suggests the following:

(A) Samāsa and Viślea Bhāvanā: 

If, (a1,b1,k1) and (a2,b2,k2) satisfy the 
equations of the type: Nx2 ± k = y2 by choice, 
then put

Prakti Kaniha root Jeha root Kepa
N a1

a2

b1

b2

k1

k2

[Then it satisfies] N (a1 b2 ± a2 b1)2 + k1 k2 
= (Na1 a2 ± b1 b2)2 i.e. x = Kaiha root = (a1 b2 
± a2 b1) , y = Jyeha root= (Na1 a2 ± b1 b2) will 
satisfy the equation, N x2+ k1 k2 = y2.

It will satisfy both the  addition  (samāsa-
bhāvanā) and the subtraction rule (vi lea-
bhāvanā). This was discovered by Brahmagupta, 
and later rediscovered by Euler in 1764. This also 
leads to Tulya Bhāvanā when both the roots are 
same.

(B) Tulya Bhāvanā (when two roots are equal), 
which is a special case of samsa-bhvana. The 
rule  runs as follows:

If (a, b, k) and (a, b, k) the two equal roots 
of Nx2 + k = y2 is taken into consideration by 
choice, then put twice the roots,

Prakti Kaniha root Jeha root Kepa
N a

a

b

b

k

k

Then it satisfies, : N(2ab)2 +k2 = (N a2 +  
b2)2. By application of Lemma II, it is reduced to: 

N ( )2 + 1 = { }2.The aim was to obtain 

the solution of N x2 + 1 = y2, so on.

C. Example  (Brahmagupta):

Brahmagupta gave several examples of 
which one is to solve

92x2 + 1 = y2 (Brahmasphuasiddhnta 
(Dvivedin 1902, BSS, xviii, 75), where x refers 
to the rāśiśea, y to the ahargaa of the planet 
Mercury, and  N = 92.

(i)	 For  solution of the example, select 92. (1)2 
+ 8 = (10)2, then  tulya bhāvanā is applied as 
follows:

Prakti Kaniha root Jeha root Kepa
92

New root

1

1

20

10

10

192

8

8

64

New Equation:			 

(2)	92( )2 + 1 = ( )2; or, 92( )2 + 1=(24)2

Then again repeating the process of tulya-
bhvana, we get:

Prakti Kaniha root Jeha root Kepa

92

New Roots

5/2

5/2

120

24

24

1151

1

1

1 

(3) New roots:  . 24+ . 24 =120;  92.  +  24.24 = 
1151; 1.1 = 1.The roots  satisfy, 92 (120)2 + 1 = (1151)2 

which gives the required solution. When compared 
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with the original equation : N x2 + 1 = y2, then  
x = 120, y = 1151, N being 92.;

The convergents of √92 →  = , 
The solution is obtained in 3rd step. Brahmagupta’s 
method of solution of N x2 +1= y2 is, no doubt 
interesting but limited, and based on arbitrary 
choice.

4. Solution of Vargaprakti by Jayadeva 
(1100 CE) and others

The Cakravāla process, an improved 
method, was first given by Jayadeva and Śrīpati 
in the eleventh century,  followed by Bhāskara II 
(1150 CE), Nārāyaa Pandita (c. 1350 CE) and 
others.

4.1. Solutionof :Nx2 + 1 = y2 by the Cakravāla 
(Cyclic) Process

The Sundarī, Udayadivākara’s commentary 
on the Laghubhāskarīya of  Bhāskara1 (Vargaprakii, 
verses 8-15) quotes from Jayadeva’s work1. This 
was brought to our notice by Shukla (1954) :

Jayadeva  assumed in verse 8  one  set of 
integer values (a, b, k)  for lesser (kaniha) root, 
greater (jyeha) root  and kepa number satisfying  
Nx2 + k = y2 , then found  the other set  (1, m, k)  
satisfying  the identity equation: N. 12 + (m2- N) 
= m2 where kepa quantity,  k = (m2- N).

The process of Bhāvanā is then applied, by 
Jayadeva to find an arbitrary set, as follows:
(a) Taking
Na2 + k =b2	 and
N.12 + (m2- N)= m2 (an identity),

Jayadeva developed a new set of auxiliary roots 
by Cakravāla as follows:

Prakti Kaniha root Jeha root Kepa
N

 
(new root)

a

1 

am+b

b 

m 
Na + bm

k 

m2-N 
k 

(m2-N)

The new root satisfies the equation :  
N (am + b)2 + k(m2 —N) = (Na + bm)2

Dividing by k2 we get,

(b) N { }2 +  = { }2   

In verses 9-11, Jayadeva also hinted at a 
ready made new kaniha (lesser) root in the form 
of a kuaka i.e., , a new jyeha (greater) 
root = , and a new kepa =/ /. He 
said that they should be integers and that the value 
of m should be so selected that the new kepa 
should be an integer as small as possible. 

As regards new kepa,/ , Ācārya 
Jayadeva said, tāvat kteh praktyā hine prakepakena 
sambhakte svalpatarā avāpti syāt ityakalitā aparah 
kepa (verse 9) i.e., tāvatkteh (m2) praktyā hine 
diminished by (N) and prakepakena sambhakte 
divided by the interpolator (k), should be such that 
it yields the least value (svalpatarā avapti syāt).

As regards new kaniha (lesser) root 
, he said, prakipta-prakepa-kuakāre 

kaihamūlahate sajyehapade prakep(ak)
ea labdham kaihapadam / (verse 10 ).i.e., 
kaihapadam  lesser root  is obtained (labdham) 

1 	 hrasvajyehakepān pratirāśya kepabhaktayoh kepāt / kuakāre ca kte kiyadguam kepakam kiptvā // (8)
	 tāvatkteh praktyā hīne prakepakena sambhakte / svalpatarāvāptih syād ityakālito 'parah kepah //(9)
	 prakiptaprakepakakuakāre kaihamūlahate / sajyehapade prakep(ak)ea labdham kaihapadam //(10)
	 kiptakepakakuaguitāt tasmāt kaihamūlahatam / pāścātyam prakepam viśodhya. śeam mahānmūlam 1/ (11)
	 kuryāt kuakāram punar anayoh kepabhaktayoh padayoh/ tat .sa iahatakepe sadsague 'sminprakrtihīne // (12)
	 prakepah kepāpte prakiptakepakāc ca guakārāt / alpaghnāt sajyehāt kepāvāptatn kaihapadam // (13)
	 etas kiptakepakakuakaghātādanatarakepam / hitvā 'Ipahatam śeam jyeham tebhyaś ca guakādi (14)
	 kuryād tāvad yāvat saāmekadvicaturnām patati / iti cakravāla karae ‘vasaraprāptāniyojyāi (15).
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from the product (hate) of prakipta-prakepa-
kuakāra (i.e.,m) and kaiha-mūla (a), increased 
by jyestha-mūla (b) and divided by kepa.

Regarding new jyeha (greater) root, 
Jayadeva said kiptakepakakuaguitāt tasmāt 
ka i  hamūlahatam pāścātyam prak epam 
viśodhya śeam mahānmūlam / (verse 11) i.e., from 
the product of kipta-kepa-kua (m) and tasmāt 
i.e., the previous lesser root , the product of 
kanisthamūlam (a) and the pāścātyamprakepam 

 is subtracted (viśodhya), the remainder 
(śeam) gives the greater root (mahān-mūlam).

i.e.,  = [  — ]

Features of Jayadeva’s solution as given in steps 
of 4.1 actually reduces to the form:

(i)	 From N a2+ k =b2, Jayadeva found a solution: 

N  + =  where a1=  ,b1 = , 

and k1 = .. (4.2)

(ii)	Treating 4.2 as an auxiliary equation, and 
proceeding as above, a new equation of the 
same type:N  + k2 = , could be obtained, 
where a2, b2, and k2 are whole numbers [verses 
12-14]. 

(iii)	Jayadeva said that the process could be 
repeated till it reduces to an equation with 
interpolator k as ±1, ±2, ±4, where a, b are 
integers [tebhyaś ca guakādi kūryāt tāvad 
yāvat sannāma eka-dvi-caturām patati, 
[footnote 8, vs. 14c-15b)].

(iv)	Then apply again the samāsa-bāvanā, leading 
to solution an equation of the type:Na2+ 1 = 
b2. The process is known as cyclic process 
(cakravāla) [verse 15]

Comparing with Nx2 + 1 = y2, it gives the 
integral solution as x= a, y = b. 

4.2 Śripati, Bhāskara II (1150 CE), Nārāyaa 
(1350 CE):

Śripati also obtained the solution of N x2+ 
1= y2 by using the identity equation and applying 
the principle of Composition. English translation 
of the relevant verse (SiŚe, xiv.33, Datta & Singh, 
Pt. II, pp. 152-153) runs thus:

“Unity is the lesser root; its square  
multiplied by Prakti is increased or decreased by 
the Prakti combined with an (optional) number 
whose square root  will be the greater root; from 
them will be obtained two roots by the Principle 
of Composition”.

In the identity equation, N. 12+ (m2- N) = 
m2, the roots, (1, m, m2- N)  by tulya bhāvanā gives 
new set of roots, x = , y = .

Bhāskara II  based his ‘Cyclic Method’ or 
Cakravāla (Bjagaita, Cakravāle karaasūtram, 
verses 1-4) on the following Lemma:

‘For solution of N x2+ 1= y2, if (a, b. k ) be  
integers, k being positive or negative, satisfying 
the equation, N a2+k= b2, then it leads to :

 N  + k1=  , where a1=  , b1= ,  

and k1=  , m = an arbitrary integral number, 

and (m2- N) is as small as possible 

This is the same rule as discovered by 
Jayadeva. Bhāskara II said that he got it from 
Śrīpati and Padmanābhava but does not mention 
Jayadeva. Nārāyaa’s rule is no different from that 
of Bhāskara II.

5. Analysis of the Second Degree

5.1. Regular Expansion

Pierre de Fermat (c.1608)  first asserted 
that Nx2 + 1 = y2  has infinite number of solutions 
in integers, possibly being  influenced by the 
double equations of Diophantus.It is Euler (1732) 
followed by Lagrange (1766)  in their classical 
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theory first gives a solution of Nx2 + 1 = y2 
which is based on the regular continued fraction 
expansion(Dickson 1919-1923: ch. 12) of the 
number N/N, i.e

where b1 ,b2,…bk is the primitive period  
(* indicates the periodicity) and bk=2b0 .

Example 1.:√23=   =  4 +  (√23- 4)= 4 +  
 = b0 +  (a0 = 0, r0 = 1, b0 =4);

 = 1 +  =  = 1 + = b1+ 

 (a1=4, r1=7, b1= 1);

 = 3 +  -3) = 3 + )= 3 +  

= b2+   (a2= 3, r2= 2, b2= 3); 

 = 1 +  - 1) = 1 +   = 1 +  
= b3+   (a3= 3, r3= 7, b3 = 1);

 = 8 + -8) = 8+    = 8 + 

= 8 + = b4+  (a4=4, r4, b4=8);

√23=4+  = [b0, b1*, b2, b3, b4*, b5, 
…], here b0 = b5, obviously the partial quotients, 
[ b1*, b2, b3, b4*] will recur infinitely and so on. 
In other words,k = 4 form a cycle or a period. 
The successive convergents are :  = ,   = ,  

, or: √23 =    where x = 5, y = 24 

giving the solution of  23 x2+ 1 = y2.

Features: In short, the first non- trivial solution 
of Nx2 + I =y2 is given by :

(i)  the convergent  in (k – 1) steps when k is 

even number in the cycle; and 

(ii) the  in  (2k – 1) steps when k is odd 

number in the cycle. In both cases,  = .

Example 2.To solve :58x2 + I = y2, then by regular 
expansion,

√58 = [7,* I, 1, 1, 1, 1,1,14* ...].

Here, bk= 2 b0, and k = 7 (odd) ; the solution is 
obtained in  (2k – 1 ) , i.e. 13th step. 

Convergents: ,......,  

In the regular expansion of Euler and Lagrange, 
the 14th step of the convergent of √58 gives 
the value .

5.2. Half regular expansion

Example: Examples are shown below.

(a) √58 = [8, 2*, 1, 1, 1, 1, 15*] 

	 Convergents: ........, 

  ; or,  .

	 Here,bk = 2 b0- 1 , k = 6 (even); the solution is 
obtained in 2k steps or 12th step.

(b)	√58 = [8, 3*, 2, 1, 1,15*] (negative numerators 
are underlined),

	 Convergents:

	 ,........,

Here also bk = 2 b0 - 1 (i.e. 15 = 2.8 – 1); here 
k = 5 (odd), the solution is also obtained in 2k 
or 10 steps.

	 In short, the solutions of (a) and (b) in half-
regular expansion are obtained always in 2k 
steps, when k = odd or even.

6. Analysis  of the Cakravāla Process

6.1. For solution of Nx2 + 1 = y2, the Cakravāla 
process,

	 first:

(a)	 found a solution, N  + k1 =  (by selection)
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(b)	then obtained a solution in integers by the 
method of composition (explained before) in 
the form,  N  + k2 = , where

	 a2= , b2 = , and  k2 =  

/  / ;

	 where, m is so selected that k2 becomes a 
smallest integer.

	 The process 6.1(b) is repeated till the k2 = 
±1, ± 2, ±4. Then by applying the method of 
composition, the infinite number of solutions 
including the final one is found by comparing 
with the original equation.This determines 

= yn (an integer), or kn yn= an xn+ 

bnwhich is evolved as kuaka algorithm. This 
also suggests / / is the minimum 
integer satisfying the kuaka equation.

6.2.Examples:

Example 1. To solve the same equation : 
58x2 + 1 = y2 by the Cakravāla process

Step 1 : 58(1)2 + 6 = (8)2

Here, a1= 1, b1= 8, k1= 6

Step 2 : a2=  = λ (say), then 
m = 6λ —8; m should be so selected that 
the kepa quantity k2 becomes the smallest 
positive integer. For  λ= 1, k2= /  / = /-9/; 
for λ=2, k2 = /-7/; for λ = 3, k2= 7 (a smallest 
whole number); hence m = 6.3 – 8= 10;. So a2= 

= 3; k2=   =  = 7 ;

	 b2=  =  = 23 ;

	T his satisfies, 58 (3)2 + 7 = (23)2, hence, a2= 
3, b2 = 23, k2 = 7.

Step 3 : a3=  =  = λ, then m = 

,

	 when, λ= 5, m = 4; so a3 =  =5.

	 k3=/  / = /  / = / — 6 / ;

	 b3=   =   = 38;

	 i.e., 58 (5)2 — 6 = (38)2, hence a3 = 5, b3 = 38, 
k3= —6,

Step 4: a4 =  =  = λ, or m = 	
,

	 when λ= —8, m = 2; so a4 = = - 8.

	 k4 = /  / = /  / =  9,

	 b4 =  =  = — 61,

	 i.e., 58(-8)2 + 9 = (-61)2, hence, a4= —8, b4 = 
—61, k4= 9,

Step 5 : a5 =  =  = λ, or m = 	

Taking  λ=—13,  m =  =  7 ;  so  
a5 =  = —13.

	 k5 = /  / = /   / = / —1 / = 1,

	 b5 =   =  = —99 i.e., 
58 (-13)2 + 1 = (-99)2, 

	 hence a5 = —13, b5= —99, k5 = 1. Since k5 =1 
tulya-bhvn is applied 

Step 6 : Interpolator 1 is obtained, hence applying 
tulya bhāvanā,

Prakti Kaniha root Jeha root Kepa
58 -13

-13

2574

-99

-99

19603

1

1

1
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 i.e., 58 (2574)2 + 1 = (19603)2

i.e., a6= 2574, b6= 19603, k6= 1.

This gives the solution, x = 2574 and y = 
19603.

Comparison:(a)By the cakravāla process the 
convergentsof √58 are:   = ,  = , 

 ; the solution 
in 6th step.

(b)	By the regular expansion process of Euler 
and Lagrange (See 5.1. example 2),

	 √58 = [7,* I, 1, 1, 1, 1,1,14* ...]. k =7, solution 
in (2k -1) in 13th step; 

	 i.e.,   = and 

(c)	 By half-regular expansion (See 5.2),√58 = 
[8, 2*, 1, 1, 1, 1, 15*], here k = 6; the solution 
is obtained in (2k -1)  or 11step, 

	 i.e, (withone negative numerator)..

Example 2.: To solve 97x2 + 1 = y2 by the  
Cakravla process

Step 1 : 97(1)2 + 3 = (10)2,

here a1= 1, b1 = 10, k1= 3, and √97 = 

Step 2 : a2 =   =  = = λ 
(say),

	 then m = 3λ — 10 = 11, a whole number, when 
λ= 7. Obviously, k2 = / =/ / = 8,

	 b2=  =  = 69,

	 i.e., 97 (7)2 + 8 = (69)2,

	 hence, a2 = 7, b2= 69, k2 = 8. N/97 = ,

Step 3 : a3=  =  = λ, then m = 
,

	T aking λ = 20, m = 13; a3 =  = 20,

	 k3 = /   / = /   / = 9,

	 b3 =  =  = 197,

	 i.e., 97. (20)2+ 9 = (197)2,

	 hence, a3= 20, b3= 197, k3= 9,

Step 4 : a4=   = = λ, or  
m =

	T aking, λ = 33, m = 5; a4 =  = 33,

	 k4= /  / = / / = / -8 / = 8,

	 b4=  =  = 325,

	 i.e., 97 (33)2 - 8 = (325) 2, hence, a4= 33, b4= 
325, k4= -8,

Step 5 : a5=   = / = λ, or, m = 
,

	T aking λ = -86, m = 11; a3 = =  
- 86,

	 k5= /  / = / = /-3 /= 3,

	 b5=  =  = - 847, 

	 i.e., 97(-86)2- 3 = (-847)2, or, 97(86)2 - 3 = 
(847)2, hence, a5= 86, b5= 847, k5=-3

Step 6 : a6=   =  = λ, or, m = 

,

	T aking λ = -569, m = 10; a6 =  =  
- 569, 

	 k6= /  / = / / = / -1 / = 1;

	 b6=  =  = (-5604) ; i.e., 

97(-569)2 - 1 = (-5604)2, 

	 or a6= 569, b6= 5604, k6=-1
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Step 7 : Since the interpolator is -1, the tulya-
bhāvanā is applied:

Kaniha root Jeha root Kepa
97 569 

569 
6377352

5604 
5604 

62809633

-1

-1

1

	 i.e., 97 (6377352)2 + 1 = (62809633)2.

	 Comparing with the original equation, x 
= 6377352, y = 62809633 is the required 
solution.

Comparison: (a) By Cakravāla, the convergents 
of ,√97 are: 

 (solution in 

7th step).

(b) By Euler’s regular expansion,

	 √97 = [9,1*,5,1,1,1,1,1,1,5,1,18*.. .].

	 Here, k = 11 (odd) and the solution is obtained  
by Euler’s method in  (2k – 1) or in the 21 
steps. 

Example 3. To solve 67x2 +1 = y2 by the 
Cakravāla process

(a)	 By Cakravāla,√67 = 
= ; the solutuin in 6th step.

(b) In regular expansion,√67 = (8, 5*, 5, 2, 1, 1,7, 
1,2,5, 16*, ... ). Here, k = 10, and the solution 
is obtained in (k – 1) or  9th step.

6.4. Solution of N x2± c = y2

	 If  (a, b) be an arbitrary  rational solution of 
N x2 ± c = y2 (obtained by any process), and   
(c, d) be solution of N x2+ 1 = y2, then  x = (a d 
± b c), y = (b d ± N a b ) by applying Samāsa 
Bhāvanā, which gives the solution of N x2± 
c = y2.

6.5. Features of Vargaprakti: 

(1)	The solution of Vargaprakti is undoubtedly 	
an extension of the Kuaka process.

(2)	What a beauty of the Cakravāla algorithm 
of Jayadeva (1100 CE) is in the solution of 
N x2+ 1 = y2 ! It  is far better than the regular, 
and  half-regular expansion of Euler and 
Lagrange (1754) as far as solution in number 
of steps are concerned. It corresponds to a 
new algorithm of minimal length having 
deep minimization properties, the reason of 
which needs further critical  examination. 
The Cakravāla is undoubtedly a unique 
achievement of Indian mathematics. 

(3) 	If N x2± c = y2 has one rational solution 
(arbitrary or, otherwise), then  it might have 
an infinite number of solutions.
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