MINIMAL QUASI-IDEALS IN TERNARY SEMIGROUP

V. N. DIXIT AND SARITA DEWAN*

Department of Mathematics, University of Delhi, Delhi 110007

(Received 20 April 1995; after final revision 13 September 1996; accepted 30 December 1996)

In this paper we have studied the structure of quasi-ideals in ternary semigroup without 0. We have proved that a minimal quasi-ideal Q of ternary semigroup T, is written in the form $[eTeTe]$ where e is the identity of Q and if a ternary semigroup T (without 0) has at least one minimal quasi-ideal then the Union of minimal quasi-ideals of T is the Kernel of T.

1. INTRODUCTION

Definition 1.1 (Lehmer*) — A non-empty set T is called a ternary semigroup if a ternary operation $[\]$ on T is defined and satisfies the associative law

$$[[x_1 x_2 x_3] x_4 x_5] = [x_1 [x_2 x_3 x_4] x_5] = [x_1 x_2 [x_3 x_4 x_5]] = [x_1 x_2 x_3 x_4 x_5]$$

for all $x_i \in T$, $1 \leq i \leq 5$.

Sioson2 gives the following definitions of ideals.

Definition 1.2 — A left (right, lateral) ideal of ternary semigroup T is non-empty subset $L (R, M)$ of T such that

$$[TTL] \subseteq L ([RTT] \subseteq R [TMT] \subseteq M).$$

Definition 1.3 — For each elements t in T, the left, right and lateral ideal generated by t are respectively given by:

$$(t)_L = \{t\} \cup [TTt]$$

$$(t)_R = \{t\} \cup [tTT]$$

$$(t)_M = \{t\} \cup [TtT] \cup [TTtT].$$

*Address for communication: 21-B/8, New Rohtak Road, New Delhi 110005.
Definition 1.4 — A non-empty subset Q of a ternary semigroup T is said to be a quasi-ideal of T if

$$[TTQ] \cap ([TQT] \cup [TTQTT]) \cap [QTT] \subseteq Q.$$

Due to the associative law in T, one may write Sioson\(^3\)

$$[x_1, x_2, \ldots, x_n] = [x_1 \ldots x_m x_{m-1} \ldots x_n] \ (m \leq n)$$

$$= [x_1 \ldots [x_{m-2} x_{m-1} x_m x_{m-3} x_{m-4}] \ldots x_n] \ (m \leq n).$$

Definition 1.5 (Lehmer\(^1\)) — A ternary semi-group $(G, \{_\})$ is said to be a ternary group if it has the additional property that for all a, b, c in G there exist unique x, y, z in G such that

Definition 1.6 — e is said to be the identity of ternary group G if for all a in G, there exists unique e in G such that

Definition 1.7 — If for a in G, there exists unique x in G such that

$$[xaa] = e, [axa] = e, [aax] = e$$

then x is called the inverse of a in G.

2. Minimal Quasi-Ideals of Ternary Semigroup (Without 0)

Definition 2.1 — A ternary semigroup T is said to be without 0 if it does not contain the ‘0’ element which has the following property:

$$\forall \ a, b \in T$$

$$[0 \ a \ b] = 0 = [a0b] = [ab0].$$

In this paper we are concerning the ternary semigroup without 0 and it has at least one idempotent element. Henceforth, every ternary semigroup without 0 containing the idempotent element, would be denoted by T.

Definition 2.2 — An ideal (left, right, lateral, quasi- or bi-) of T is said to be minimal if it does not properly contain an ideal (left, right, lateral, quasi-or bi-) of T.

Remark 2.3 : If e is an idempotent element of T, then

(a) $[eTT]$ is a minimal right ideal of T containing e,

(b) $[TeT]$ is a minimal lateral ideal of T containing e,

(c) $[TTe]$ is a minimal left ideal of T containing e.

Remark 2.4 : If e an idempotent element of T, then
\[eTeTe = [eTT] \cap [TeT] \cap [TTe]. \]

Proposition 2.5 — A quasi-ideal \(Q \) of \(T \) is minimal if and only if it is generated by any of its elements.

The proof is trivial.

Proposition 2.6 — A quasi-ideal \(Q \) of \(T \) is minimal if and only if \(Q \) is a ternary subgroup of \(T \).

The proof is trivial.

Proposition 2.7 — Every minimal quasi-ideal \(Q \) of \(T \) can be written in the form \(Q = [eTeTe] \) where \(e \) is the identity of \(Q \).

Proof: A quasi-ideal \(Q \) of \(T \) is minimal if and only if it is the intersection of minimal right, lateral and left ideal of \(T \) (Sioson\(^3\)). Remarks 2.3 and 2.4 proves the required result.

Example 2.8 — The following example shows that a minimal quasi-ideal \(Q \) of \(T \) has an identity and \(Q \neq T \).

Proof: Let \(T = \{2x | x \in N\} \) be the ternary semigroup under the given operation \(\forall a, b, c \in T \).

\[[abc] = \text{H.C.F. of } a, b \text{ and } c. \]

Then \(Q = \{2\} \) is the minimal quasi-ideal of \(T \).

Moreover it is a ternary subgroup of \(T \) and 2 is the identity of \(Q \). Also \(Q \neq T \).

Proposition 2.9 — Let \(e \) be an idempotent element contained in a minimal left ideal \(L \) (minimal lateral ideal \(M \) and minimal right ideal \(R \)) of a ternary semigroup \(T \) then \([eeL]\) \([eeMee]\) \([Ree]\) is a ternary subgroup, moreover it is a minimal quasi-ideal of \(T \).

Proof: From Sioson\(^3\) we see that \([eeL]\), \([eeMee]\) and \([Ree]\) are quasi-ideals of \(T \). By hypothesis, \([eeL]\) is a ternary sub-semigroup of \(T \). But \([Leeheeh]\) is the left ideal of \(T \) for some \(h \) in \(L \).

\[[Leeheeh] \subseteq L. \]

Since \(L \) is minimal, therefore \([Leeheeh]\) = \(L \). Now

\[[ee(Leeheeh)] = [eeL]. \]

So there exists \(k \) in \(L \) such that

\[[(eek) [eeh] [eeh]] = [eee] = e. \]

Hence \([eeL]\) is a ternary subgroup and therefore is a minimal quasi-ideal of \(T \). Similarly \([Ree]\) and \([eeMee]\) are the ternary subgroups of \(T \).

Proposition 2.10 — Let \(Q \) be a minimal quasi-ideal of the ternary semigroup \(T \) then \([eQs]\) and \([sQe]\) are minimal quasi-ideals of \(T \) where \(s \) is any element of \(T \) and \(e \) is the identity element of \(Q \).
PROOF : (2.7) gives us that
\[[eQs] = [e[TeTe]s] = [eeTeTes] \]

\([TeTes]\) is the left ideal of \(T\). Sioson\(^3\) proved that \([eeTeTes]\) is the quasi-ideal of \(T\). \(Q\) being a minimal quasi-ideal of \(T\) generated by any of its elements implies that \([eQs]\) is generated by any of its elements.

Thus by Proposition 2.5 this is a minimal quasi-ideal of \(T\). Moreover it is a ternary subgroup of \(T\). In the similar manner \([sQe]\) is a minimal quasi-ideal of \(T\).

Proposition 2.11 — Let \(Q_1, Q_2\) and \(Q_3\) be minimal quasi-ideals of \(T\), with their identities \(e_1, e_2\) and \(e_3\) respectively. Then \([e_1Q_1Q_2Q_3e_3]\) is a minimal quasi-ideal of \(T\) such that \([e_1Q_1Q_2Q_3e_3] = [e_1TT] \cap [Te_2T] \cap [TTe_3]\).

PROOF : Using Proposition 2.7 we get
\[
[e_1Q_1Q_2Q_3e_3] = [e_1[e_1Te_1Te_2] [e_2Te_2Te_3] [e_3Te_3Te_3] e_3]
\[
\subseteq [e_1TT] \cap [Te_2T] \cap [TTe_3].
\]

Clearly \([e_1TT], [Te_2T]\) and \([TTe_3]\) are the minimal right, lateral and left ideal of \(T\).

So by Sioson\(^3\) \([e_1TT] \cap [Te_2T] \cap [TTe_3]\) is the minimal quasi-ideal of \(T\). Also \([Te_1Te_2Te_2Te_2Te_3Te_3] \subseteq [e_1Q_1Q_2Q_3e_3]\) is the left ideal of \(T\). Again Sioson\(^3\) proved that
\[
[e_1e_1 [Te_1e_1e_2e_2e_3e_3] = [e_1Q_1Q_2Q_3e_3]
\]
is the quasi-ideal of \(T\). Therefore, minimality implies that
\[
[e_1Q_1Q_2Q_3e_3] = [e_1TT] \cap [Te_2T] \cap [TTe_3].
\]

Proposition 2.12 — Let \(Q_1\) and \(Q_2\) be two minimal quasi-ideals of \(T\) with the identities \(e_1\) and \(e_2\) respectively. Then

(i) \([e_1Te_1Te_2Te_2Te_1e_1]\) = \(Q_1\)

(ii) \([e_2Te_2Te_1Te_1e_1e_2e_2]\) = \(Q_2\).

PROOF : Since \([e_1Te_1Te_2Te_2Te_2Te_3]\) is the right ideal of \(T\). Therefore by Sioson\(^3\) \([e_1Te_1Te_2Te_2Te_1e_1]\) is the quasi-ideal of \(T\) where \(e_1\) and \(e_2\) are the idempotents of \(T\). But \([e_1Te_1[Te_2T] [e_2Te_2] [e_2Te_1] e_1]\) \(\subseteq [e_1Te_1Te_1] = Q\) (by Proposition 2.7). Minimality implies that
\[
[e_1Te_1Te_2Te_2Te_2Te_1e_1] = Q_1.
\]

Similarly, \([e_2Te_2Te_1Te_1e_1Te_2e_2] = Q_2\).

Now we give some simple but important results which we will use later.

(A) Since \(e_1\) is the identity of \(Q_1\), therefore there exists \(s_1, s_2, t_1, t_2\) and \(t_3\) in \(T\) such that
\[
[e_1e_1[e_1s_1 e_1] e_1 [e_1s_2 e_2] e_1 [e_1s_3 e_3] e_1] = e_1
\]
i.e., \([e_1e_1s_1e_1s_2e_2e_2e_1e_2e_2e_1] = e_1\)
where, \(s_1 = [e_1s_1e_1], s_2 = [e_1s_2e_2], t_1 = [t_1e_2e_1e_2e_1], t_2 = [e_2t_2s_1e_2e_2e_2] \in T.\)

(B) Similarly, there exists \(t_1, t_2, s_1\) and \(s_2\) in \(T\) such that
\([e_2e_2e_1e_2e_1e_2s_1e_1s_2e_2e_2] = e_2.\)

(C) Let \(e\) be the identity of \(T.\) Then for all \(t\) in \(T,\) we have
\([ett] = t = [tet] = [tte].\)

This implies that
\([ete] = [eet] = [tte] = t.\)

Proposition 2.13 — All the minimal quasi-ideals of ternary semigroup \(T\) are isomorphic.

Proof: Let \(Q_1\) and \(Q_2\) be two minimal quasi-ideals of \(T.\) Define a map \(\psi: Q_1 \to Q_2\) as
\[\psi ([e_1x_1e_1x_2e_1]) = [e_2t_1e_2t_2e_1x_1e_1x_2e_1e_1s_1e_1s_2e_2e_2], \ \forall \ [e_1x_1e_1x_2e_1] \in Q_1\]
where \(x_1, x_2, t_1, t_2, s_1, s_2 \in T, e_1\) and \(e_2\) are the identities of \(Q_1\) and \(Q_2\) respectively.

\(\psi\) is well-defined.

By Proposition 2.12, \([e_2t_1e_2t_2e_1x_1e_1x_2e_1e_1s_1e_1s_2e_2e_2] \in Q_2.\)

By result (A) there exists \(t_1, t_2, s_1, s_2 \in T\) such that
\([e_1e_1s_1e_1s_2e_2e_2t_1e_2e_1] = e_1.\)

Now \(\psi ([e_1x_1e_1x_2e_1]) = \psi ([e_1y_1e_1y_2e_1])\)
\[\Rightarrow [e_2t_1e_2t_2e_1x_1e_1x_2e_1e_1s_1e_1s_2e_2e_2] = [e_2t_1e_2t_2e_1y_1e_1y_2e_1e_1s_1e_1s_2e_2e_2].\]

Applying \([e_1e_1s_1],\) \([e_1s_2e_2]\) on the left-hand side and \([t_1e_2t_2],\) \(e_1\) on the right-hand side under the ternary operation on both sides of the above equation we get
\[[[e_1e_1s_1] [e_1s_2e_2] [e_2t_1e_2t_2e_1x_1e_1x_2e_1e_1s_1e_1s_2e_2e_2] [t_1e_2t_2] e_1] = [[e_1e_1s_1] [e_1s_2e_2] [e_2t_1e_2t_2e_1y_1e_1y_2e_1e_1s_1e_1s_2e_2e_2] [t_1e_2t_2] e_1] \]
\[\Rightarrow [e_1x_1e_1x_2e_1] = [e_1y_1e_1y_2e_1].\]

Consider
\[\psi ([[e_1x_1e_1x_2e_1] [e_1y_1e_1y_2e_1] [e_1z_1e_1z_2e_1]])\), using \(e_1\) and \(e_2\) as the identity of \(Q_1\) and \(Q_2\) respectively.

By Proposition 2.12 and result (A) we get
\[\psi ([[e_1x_1e_1x_2e_1] [e_1y_1e_1y_2e_1] [e_1z_1e_1z_2e_1]]) = \psi ([[e_2t_1e_2t_2e_1x_1e_1x_2e_1e_1s_1e_1s_2e_2e_2] [e_2t_1e_2t_2e_1y_1e_1y_2e_1e_1s_1e_1s_2e_2e_2] [e_2t_1e_2t_2e_1z_1e_1z_2e_1e_1s_1e_1s_2e_2e_2]]) = [\psi ([[e_1x_1e_1x_2e_1]]) \psi ([[e_1y_1e_1y_2e_1]]) \psi ([[e_1z_1e_1z_2e_1]])].\]
Thus ψ is a homomorphism.

Now, we define a map $\phi: Q_2 \to Q_1$ as follows:

$$\phi([e_2x_1e_2x_2e_2]) = [e_1s_1s_2e_2x_2e_2t_1e_2t_2e_1].$$

Then

$$\psi \circ \phi = I_{Q_1},$$

$$\phi \circ \psi = I_{Q_1}.$$

Hence the required result is proved.

Proposition 2.14 — In a ternary semigroup T, the following are equivalent:

(i) T has at least one minimal quasi-ideal,

(ii) T has at least one minimal right, one minimal lateral and one minimal left ideal,

(iii) T has at least one minimal right ideal and every right ideal of T contains an idempotent element,

(iv) T has at least one minimal lateral ideal and every lateral ideal of T contains an idempotent element,

(v) T has at least one minimal left ideal and every left ideal of T contains an idempotent element.

Proof: (i) \Rightarrow (II), (II) \Rightarrow (III), (II) \Rightarrow (IV) and (ii) \Rightarrow (v) follows from (Sioson3) Proposition 2.7. Further (iii) of (iv) of (v) implies (i) by Proposition 2.9.

Example 2.15 — $T = \{e, a, b\}$ is a ternary semigroup under the following table.

<table>
<thead>
<tr>
<th></th>
<th>e</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>e</td>
<td>e</td>
<td>e</td>
</tr>
<tr>
<td>a</td>
<td>e</td>
<td>e</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
</tbody>
</table>

For all a, b, c in T $[abc] = (a(bc)) = ((ab)c)$.

Then $\{e, b\}$ is a left ideal but $\{e\}$ and $\{b\}$ are two minimal disjoint quasi-ideals of T. Thus $\{e, b\} = \{e\} \cup \{b\}$.

Definition 2.16 — A ternary semigroup T is simple if there exists no proper three-sided ideal of T.

Example 2.17 — Let $T = \{\pm 1, \pm i\}$ be a ternary semigroup under complex multiplication. Then T is a simple ternary semigroup.

Proposition 2.18 — Let t_1, t_2 be any two elements of a ternary semigroup T and let Q be a minimal quasi-ideal of T. Then $[t_1t_2Q], [t_1Qt_2]$ and $[Qt_1t_2]$ are minimal quasi-ideals of T.
Proof : Let \(e \) be the identity of \(Q \), then \([t_1t_2Q] = [t_1t_2eeTeTee]\) which by Sioson\(^3\) is a quasi-ideal of \(T \). But \([t_1t_2eeTeTee]\) is a ternary subgroup of \(T \). Thus \([t_1t_2eeTeTee]\) is a minimal quasi-ideal of \(T \). Similarly, \([Qt_1t_2]\) is a minimal quasi-ideal of \(T \).

Also, \([t_1Qt_2]\) = \([t_1eeQeet_2]\) = \([t_1e[eQ[eeet_2]\)]\).

But by Proposition 2.9 \([eQeet_2]\) = \(Q_2 \) is minimal quasi-ideal of \(T \). So

\[
[t_1Qt_2] = [t_1eQ_2]
= [t_1e[e_2Q_2e_2]]
\]

where \(e_2 \) is the identity of \(Q_2 \). Hence \([t_1Qt_2]\) is a minimal quasi-ideal of \(T \) by Proposition 2.9.

Proposition 2.19 — Let \(A \) be a right as well as a left ideal of \(T \). Then \(A \) is a lateral ideal of \(T \). The proof is trivial.

The lateral ideal may not be a right as well as a left ideal of \(T \). This is shown by the following example.

Example 2.20 — \(T = \{e, a, b, c\} \) is a ternary semigroup under the following table

\[
\begin{array}{c|cccc}
(\) & e & a & b & c \\
\hline
e & e & b & b & c \\
a & b & c & c & c \\
b & b & c & c & c \\
c & c & c & c & c \\
\end{array}
\]

For all \(a, b, c \) in \(T \), \([abc] = (a(bc)) = ((ab)c)\).

Then \(\{a, c\} \) is a lateral ideal but this is not a right as well as a left ideal of \(T \).

Proposition 2.21 — A minimal lateral ideal is a minimal quasi-ideal of \(T \).

Proof : By Sioson\(^3\) a minimal lateral ideal is an ideal of \(T \) implies that \([MMM] = M \). Hence by Proposition 2.6, \(M \) is a minimal quasi-ideal of \(T \).

Definition 2.22 — \(K \) is said to be a kernel of a ternary semigroup \(T \) if \(K \) is the intersection of all three sided ideals of \(T \).

If the intersection of all three-sided ideals of \(T \) is empty then \(T \) does not have a kernel.

Proposition 2.23 — If the ternary semigroup \(T \) has at least one minimal quasi-ideal, then the union of all minimal quasi-ideals of \(T \) is the kernel of \(T \); moreover it is a simple subsemigroup of \(T \).
PROOF: Let $K = \bigcup_{Y \in \Gamma} \{Q_Y \mid \forall Y \in \Gamma, Q_Y \text{ is a minimal quasi-ideal of } T\}$. By (2.18) for any t_1, t_2 in T and for any minimal quasi-ideal $Q_Y, Y \in \Gamma$ we have $[t_1 t_2 Q_Y], [t_1 Q_Y t_2], [Q_Y t_1 t_2], Y \in \Gamma$ are the minimal quasi-ideals of T and therefore,

$$[TTK], [TKT], [KTT] \subseteq K.$$

Thus K is an ideal of T. Clearly K is minimal. Hence K is the kernel of T. Moreover $[KAKA]K$ is an ideal of T where A is an ideal of K.

Thus minimality of K implies that $[KA KA K] = K$.

Now, $K = [KAKA] \subseteq [KAA] \subseteq A$

i.e., $K = A$.

Thus K is a simple sub-semigroup of T.

Definition 2.24 — A non-zero idempotent element e of a ternary semigroup T is called primitive if for any non-zero idempotent f of T, the relation

$$[eff] = [fe] = [ffe] = f \text{ implies } e = f.$$

Proposition 2.25 — The identity element e of a minimal quasi-ideal Q of a ternary semigroup T is a primitive idempotent of T.

The proof is trivial.

Definition 2.26 — A simple ternary semigroup is called a completely simple ternary semigroup if it contains at least one primitive idempotent.

Let T has at least one minimal quasi-ideal, so by Proposition 2.23 kernel K of T is simple ternary sub-semigroup of T. Hence we get the following result.

Proposition 2.27 — If the ternary semigroup T has a minimal quasi-ideal then its kernel is completely simple.

Remark 2.28: Since by Proposition 3.15 of Dixit and Sarita8 a subset Q of a regular ternary semigroup is a minimal quasi-ideal if and only if it is a minimal bi-ideal of it where a bi-ideal B is minimal if $B = [BTB]T$.

ACKNOWLEDGEMENT

The authors are thankful to the referee for his valuable suggestions.

REFERENCES