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We obtain necessary and sufficient conditions for a pair of continuous mappings to
possess a unique common fixed point.

1. INTRODUCTION

Several authors have obtained necessary and sufficient conditions for two or three
commuting, continuous maps to possess a unique common fixed point. We list four
of them.

Theorem A (Jungck?) — Let f be a continuous selfmap of a complete metric
space (X, d). Then f has a fixed point in X if and only if there exists an
a€(0,1) and a mapping g : X — X which commutes with f and satisfies g(X)
CAX) and d(gx, gy) sod(x,y) for all x, y €X. Indeed, f and g have a unique
common fixed point.

Theorem B (Fisher!) — Let S and T be continuous selfmaps of a complete metric
space (X, d). Then S and T have a common fixed point in X if and only if there

exists a continuous mapping A of X into SX () TX such that AS = SA, AT = TA

and d(Ax, Ay) =od (Sx,Ty) for all x, y € X and 0 < a < 1. Indeed, S, T and A
have a unique common fixed point.

Recently Koparde and Waghmode* established a similar result, for a different
contractive definition, in Hilbert spaces. But their theorem is also true in complete
metric spaces, and is listed below.

Theorem C — Let S and T be continuous selfmaps of a Hilbert space X. Then
S and T have a common fixed point in X if and only if there exists a continuous
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mapping A of X into SX () 7X which commutes with § and T and satisfies the
inequality

lAx-Ay = a||Ax-Sx||+ B | Ay~ Ty || + v | Sx - Ty |
for all x, y in X, where a,f,y 2 0 with 0 < o + B+y < 1. Indeed S, 7T and A
then have a unqiue common fixed point.

Let f be a continuous selfmap of a metric space X. A selfmap g of X is said
to be f-contractive if d(gx, gy) < d(fx, fy) for each x, y in X for which gx = gy.

Theorem D (Park®) — A continuous selfmap f of a metric space X has a fixed
point if and only if there exists an f-contractive map g, which commutes with f, a
subset M CX, and a point x, €M such that

d(fx’ fx()) - d(gx! gx()) z Zd(ﬁC(), gx())

for every x €EX\M, and g maps M into a compact subset of X. Indeed, f and g
have a unique common fixed point.

From Jungck?® let S and T be a pair of selfmaps of a complete metric space
(X, d). Then § and T are said to be compatible if lim d(S7x,, TSx,) = 0, whenever
{x,} is a sequence in X such that lim Sx, =lim Tx, =t for some € X,

Let IR* denote the set of nonnegative reals, and w : R* — IR* a continuous
function such that 0 < w(r) < r for all r > 0.

2. THEOREM AND COROLLARIES

Theorem — Let f and g be continuous selfmaps of a complete metric space (X,
d). Then f and g have a common fixed point in X if and only if there exists a

continuous map k : X — fiX) () g(X) which is compatible with f and g and which
satisfies

d(hx, hy) s max {d(hx, fx), d(hy, gy), d(fx, gy),
[d(hx, g9) + d(hy, f)2}
— w max {d(h, fx), d(hy, gy), d(f, gy), [d(he, gy)
+ dehy, fO)2D)... (2.1)

for all x, y €X. Indeed, f, g and h have a unique common fixed point.

PROOF : We shall first show that the condition is sufficient. Let x, be any point
of X. Since h(X) CAX), there exists a point x; €EX such that hxy=fr;,. Since
x; €EX and A(X) C g(X), there exists a point x, €X such that hx; = gx,. In this way
a sequence {x,} is constructed so that hx,, =fx,,,; and hx,,, =8x) .2 n = 0,
1, ... . Define d, = d(hx,, hx,, ). From (2.1),

dan = AWz, By 4 1) = dlhxzy o 1, hX2s)
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s max {d(hxpn .1, fons1) s dhxay, gX24), d(fXon . 1s 8%n),
[d(hxon 1 1, 8x24) + d(hxzy , fian 4 1)]/2}

= w(max {d(hxz, , 1, f2n 4 1), A2, gX2n), A(f2n s 15 EX2n)s
[d(x2, 4 1, 8X24) + (B2, f2n 4 1))/2})

max {d(hxy, . 1, hxa,), d(ixom, hxa, 1), d(hxy, o, 1),

d(hxy, , 1, hxy,_1)/2}
— w(max {d(hxy, , , hxz,) , d(hxo,, xy, 1), d(Axa, ¢ 1, Bxan_1)/2})
max {d,, ds,_1, [don 1 + d2,)/2}

—w (max {dy,, d,_1.do,, [dr,_1 + dp,)/2}).

If d,,>d,,_, for any n, then d,,<d, —w(d,)<d,, a contradiction. Therefore
d,, <d,,_,-w(d,,_,). Similarly, it can be shown that d,,,, s d,, - w(d,,), so that, for

each n, d,,, sd,—w(d,), which implies that Z) w(d) sdy-d,,, = d, Therefore the

series converges and lim w(d,) = 0.

Since {d,} is a decreasing sequence of nonnegative terms, it converges. Call the
limit p. Suppose that p > 0. Then, since w is continuous, lim w(d,) = w(p) = 0, a
contradiction. Therefore p = 0. ’

We now wish to show that {hx,} is Cauchy sequence. Assume that it is not

Cauchy. Then, for every positive number ¢ and for every positive integer k there
exist two positive integers 2m(k) and 2n(k) such that 2m(k) > 2n(k) > k and
d(hX (k) » HXon(y) > €. Further, let 2m(k) denote the smallest even integer for which

2m(k) > Zn(k) > k, d(hx2m(k)’ thn(l()) >¢ and d(hx2m(k)—2 N hxz,,(k)) < E.
Then
€ < d(hxX20) » Womy) S d(Roniiy » Womiiy—2) + dam(ay -2 + domiy -1

SE+ d2m(k)—2 + dZm(k)— 1

Taking the limit as n — « yields
lim d(hxz,,,(,‘),hxz,,(k)) = E. (22)

Using the triangular inequality,
| d(Poomey » HXongey + 1) = ArX2m@ey » MXoni)) | S iy
| dPomity + 1 5 HXon(ty +1) = AXomity » PXongiy 4 1) | S domgtys
and

Vd(Pomity 4 15 WX2n(hy + 2) — B PXomity 4 1> Woongy+ 1) | S dangey 4 1
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From (2.2) and the above inequalities
= limy d{(hxomgiy , MXoniiy+1)
= limy d(Axomipy s 15 MXony+ 1) = Yimy d(Pxomgy 1 > BXon) 4 2)-
From (2.1),
AWy + 15 PXon(iy+ 2)
< max {‘d(thnx(k) 1 omiy +1) > APXan(ky s 25 Eon(ry + 2)s
d(fompy + 15 8%niiy+2)> [APXomiiy+ 15 8(X2ny +2)
+ d(hxone) + 25 feamiy « DV 2} — w(max {d(iymey v 15 Foompy +1)s
APy + 2 » BX2m(h) + 2)> FPomy + 10 8X2n(hy + 2)
[AXom(ty + 1 > 8X2miiy + 2) » AMX2n(iy 2 fx2m(;c) 1721
= max {d(WComty s 1 > Womie) » A Cony 4 20 WXoniiy 4 1)»
d(Wxomy » Mooy 1) [d(WXomty 41 > AXon(hy + 1)
+ d(hXony + 2 Woamp)))/2} — w max {d(hX o)+ 1 5 Woomy) 5
d(hX ) + 2 Wn(ie) + 1) A2ty PWXoniiy 4 1) > [A(AX2miiy 4 15 P20ty +1)s
+ [d(hang) + 25 MXomiy)]/2})
= max {dog + 1> Dompy » Aoy s AX2a04) 4 1),
[d(Mx2miy 5 15 Wy 4 1) + d?)z(:) + oy + 1 + A2ty » MXoniiy + 1)1/ 2}
- w (max {dom)> oniy+ 1> HMXom(ky > WXon(hy +1)s
[A(MXomiry 4 1 s PXaniy + 1) + Dangiy + Boniy + 1 + AAX2mity » M2y« 1)1/ 2})-

Taking the limit as n — o we get ¢se-w(e), which gives w(e)=<0, a
contradiction, so {hx,} is Cauchy, hence convergent. Call the limit u. Thus lim
hxy, .1 = lim fxy, . =u. Since f and h are compatible,

lim d(fhxz, . 1 5 Afxon 1) = 0. - (2.3)

Since also lim.hx,,,,=limgx,,,, =y,

lim d(hgxsn .2, 8hx2042) = 0. - (24)

The continuity of f, g and 4 imply that fu = gu = hu.
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From the triangular inequality,
d(fon s 1, 8h%on v 2) s d(ffixzy o 1, Bfian 1) + d(Afkon 4 1 » h8X2n . 2)
+ d(hgxz,: +2> 8hxg,, 2).
Taking the limit as n — oo, using (2.3), (2.4), and the continuity of f and g, we have
d(fu, gu) = lim d(hfxy, , | , hgxz, , 2)-
From (2.1),
d(hfzn 11, hgX2n 1 2) s max {d(bfxzns 1 fPron 1), d(hg%on s s 88%an+2),
d(ffean 1, 88%an+2) » [dMfian . 1, 88%2n .+ 2)
+d(hgxy 4 2 5 fxzq 4 1)1/ 2}
= w (max {d(hfxy,, 1, firoms1)s
d(hgxyn .25 88%2m+2)
d(ffean 1, 88%am+2) > [dhfians 1, 88%2n42)
+ d(hgxy, , 2, ffX2q41)1/2}). - (25)
From (2.3) and the continuity of f,
Lm d(hfxzn s 1, fan, 1) < lim dlhfion o 1, fixon . 1)
+Him d(fhxy, , 1, ffeon 1) = 0.
From (2.4) and the continuity of g,
lim d(hgxy, , 2 88%n . 2) < lim d(hgxy, , 2, ghxay 1 2)
+ lim d(ghxz, + 5, 88%2n+2) = 0.

From the continuity of f and g, lim d(ffx, . 1, 88%2. +2) = d(fu, gu).
Using (2.3), (2.4), and the continuity of f and g,

lim[d(hfxz + 15 88%2n+2) + A(hgX2n 25 [Pi2n+1)])/2
s lim [d(hfxy, .1, xo, . 1) + (FXon 4 15 88%2n+2)
+ d(hgxon .2, 8MX2m+2) + (8hX2n 42, ff2n+1))/2
= d(fu, gu).
Taking the limit of (2.5) as n — x yields
d(fu, gu) s d(fu, gu) - w(d(fu, gu)),

which implies. that fu = gu.
In a similar manner it can be shown that fu = hu.
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Using (2.1) and the continuity of f and g,

d(fixyn o 1 s hoan o 2) S d(fhxon o 15 Rfxos 1) + (Bfkon 4 1, BX2q 4 2)-
d(hfxyy 4 1, Hxop . 2) < max {d(Afozn s 15 ffonr2), dXon .2, 8%2m+2),
d(ffxan 15 8%an+2)s [A(Bfx2n 41, 8%2042)
+d(hxzy 1 2 ffon+1)1/2} = w (max {d(hfxzn 1, ffX2n42),
d(hxzn + 2, 8X2n42)y AffX2n+ 1, BX2n+2),
[d(hfxon 1, 8Xons2) + dhxoy .o, fXon.1)]/2}).
Taking the limit as n — « yields
d(fu, u) s d(fu, u) - w(d(fu, u)),

which implies that fu = u and u is a common fixed point of f, g and &.
Let v be another common fixed point. Then, from (2.1),

d(u, v) = d(hu, hv) smax {d(hu, fu), d(hv, gv), d(fu, gv),
(d(hu, gv) + d(hv, fu))2}
= w (max {d(hu, fu), d(hv, gv), d(fu, gv),
[d(hu, gv) + d(hv, fu))/2})
d(u, v) ~ wd(u, v)),

V.

which implies that u

To prove the condition necessary, let fz = gz = z for some z& X, and define h
by hx = z for all x €X. Then k is continuous from X to fX) N g(X). Moreover,
for x€X, hfx =z, fhx=fz=2, and hgx = z, ghx = z, ghx = gz = z, so h commutes

with f and g, and therefore the maps are compatible.
Further, h satisfies (2.1).

We have the following Corollaries.

Corollary 1 — Let f and g be continuous selfmaps of a complete metric space

(X, d). Then f and g have a unique common fixed point if and only if
d(x, y) = max {d(x, fx), d(y, gy), d(fx, gy), ld(x, gy) + d(y, f))/2}

= w (max {d(x, fx), d(y, gy), d(fx, gy), [d(x, gy) + d(y, f)}2})

for all x, y EX.

PROOF : Set h = I, the identity map, in the Theorem.



A COMMON FIXED POINT THEOREM FOR COMPATIBE MAPPINGS 409

Corollary 2 — Let f be a continuous selfmap of a complete metric space

(X, d). Then f has a unique fixed point if and only if

for

T N

d(x, y) = max {d(x, fx), d@y, fy), d(x, y), [d(x, fy) + d(y, f))2}

- w (max {d(x, fx), dO, f), d(x, y), [dx, fy) + d0, f))2})

all x, y €X.
PROOF : Let f = g in Corollary 1.
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