A REMARK ON PAPERS OF G. PÓLYA AND P. K. KAMTHAN

H. S. Kasana*

Mathematics Department, University of Roorkee, Roorkee 247667 (U.P.)

(Received 24 October 1983; after revision 24 October 1985)

A short and simple proof in the context of \((p, q)\)-order and \((p, q)\)-type etc. is given of a well known theorem by Pólya (Math. Z., 29 (1929), 549-640) for entire power series and later on extended to entire Dirichlet series by Kamthan (Indian J. pure appl. Math., 1 (1970), 325-29).

1. Let \(f(s) = \sum_{n=1}^{\infty} a_n \exp(s\lambda_n)\), \((s = \sigma + it, 0 \leq \lambda_1 < \lambda_2 < \cdots \rightarrow \infty\) as \(n \rightarrow \infty\)) be an entire Dirichlet series. Set \(M(\sigma, f) = \max_{t \in R} |f(\sigma + it)|\). Recently Juneja et al. have introduced the concept of index-pair \((p, q)\), \((p, q)\)-order and \((p, q)\)-type of an entire Dirichlet series, for nonnegative integers \(p \geq q + 1\).

Define a constant \(L(p, q) : (0 < L(p, q) < \infty)\) as

\[
L(p, q) = \lim_{n \to \infty} \sup \frac{\log^{(p-1)} \lambda_n}{\log^{(q+1)} \mid a_n \mid^{-1/\lambda_n}} \quad \ldots (1.1)
\]

and \(\delta(p, q) such that

\[
\delta(p, q) = \lim_{n \to \infty} \sup \frac{\log n}{\lambda_n \exp^{(p-1)} (\log^{(q+1)} \lambda_n)^{1/L(p, q)}} \quad \ldots (1.2)
\]

where \(\log_k x \) stands for the \(k\)th iterate of \(\log x\).

Let \(f(s)\) be such that \(\delta(p, q) = 0\). Then \(f(s)\) is of \((p, q)\)-order \(p\) if and only if \(L(p, q) < \infty\) and

\[
p \equiv p(p, q) = P_1(L(p, q)) \quad \ldots (1.3)
\]

where,

\[
P_1(L(p, q)) = \begin{cases}
L(p, q) & \text{if } q + 1 < p < \infty \\
1 + L(p, q) & \text{if } p = q + 1 = 2 \\
\max \{1, L(p, q) \} & \text{if } 3 < q + 1 = p < \infty \\
\infty & \text{if } p = q = \infty.
\end{cases}
\]

*Research supported under a project by U.G.C. New Delhi.
For a given entire Dirichlet series \(f(s) \) of \((p, q)\)-order \(\rho \) \((b < \rho < \infty)\), set

\[
V \equiv V(p, q) = \limsup_{n \to \infty} \frac{\log^{(p-1)/2} \lambda_n}{\log(a_n) \log^{-1/2} n} \quad \text{...(1.4)}
\]

where \(b = 0 \) if \(p > q + 1 \) and \(b = 1 \) if \(p = q + 1 \), and \(A = 1 \) for \((p, q) = (2, 1)\) and zero otherwise.

Let \(f(s) \) be an entire Dirichlet series with index-pair \((p, q)\). If \(0 < V < \infty \), the function \(f(s) \) is of \((p, q)\)-order \(\rho \) \((b < \rho < \infty)\) and \((p, q)\)-type \(\tau \) if and only if \(\tau = MV \), where \(V \) is given by (1.4) and

\[
M \equiv M(p, q) = \begin{cases}
\frac{(p - 1)^{p-1}}{\rho^p} & \text{if } (p, q) = (2, 1) \\
\frac{1}{\rho} & \text{if } (p, q) = (2, 0) \\
1 & \text{for all other index-pairs.}
\end{cases} \quad \text{...(1.5)}
\]

The concept of proximate order for an entire function represented by Dirichlet series was introduced by Balaguer\(^1\) and later on, extensively studied by Kamthan\(^4,5\). We define this function for entire Dirichlet series with index-pair \((p, q)\) as follows.

Definition — By a proximate order of an entire Dirichlet series of \((p, q)\)-order \(\rho \) \((b < \rho < \infty)\), we mean a real valued continuous function \(\rho(\sigma) \) if it satisfies:

(i) \(\rho(\sigma) \to \rho \) as \(\sigma \to \infty \) and \(\frac{\rho'}{\rho} \)

(ii) \(\Delta_{\{q\}}(\sigma) \rho'(\sigma) \to 0 \) as \(\sigma \to \infty \), where \(\rho'(\sigma) \) can be interpreted as either \(\rho(\sigma-) \) or \(\rho(\sigma+) \) when these are unequal, and for convenience.

\[
\Delta_{\{q\}}(\sigma) = \prod_{i=0}^{q} \log^{(i)} x.
\]

Further, if

\[
\limsup_{\sigma \to \infty} \frac{\log^{(p-1)} M(\sigma, f)}{\log^{(q-1)} \rho(s)} = \tau^*(p, q) \equiv \tau^*, \quad (0 \ll \tau^* \ll \infty). \quad \text{...(1.6)}
\]

The function \(\rho(\sigma) \) is called a proximate order of a given entire function \(f(s) \) with index-pair \((p, q)\) if the quantity \(\tau^* \) is non zero finite. We shall term \(\tau^* \) as generalized \((p, q)\)-type of \(f(s) \).

§ 2. The following result whose power series analogue was considered by Pólya\(^8\) is due essentially to Kamthan\(^8\).
Remark on Papers of G. Pólya and P. K. Kamthan

Theorem A—If $f(s)$ is an entire function satisfying

$$\lim_{n \to \infty} \sup_{n} \frac{\lambda_n}{\inf_{n}} = \frac{d}{D}, \quad d < \infty \quad \ldots \text{(2.1)}$$

$$\lim_{n \to \infty} (\lambda_{n+1} - \lambda_n) = h > 0 \quad \ldots \text{(2.2)}$$

$$h d \leq 1 \quad \ldots \text{(2.3)}$$

and having finite Ritt-order ρ and $\{b_n\}$ is a complex sequence with the condition

$$\lim_{n \to \infty} \frac{\log |b_n|}{\lambda_n} = 0 \quad \ldots \text{(2.4)}$$

then, the function $g(s) = \sum_{n=1}^{\infty} a_n b_n \exp(s\lambda_n)$ is an entire Dirichlet series of order ρ, same type and has the same proximate order and proximate type as that of $f(s)$.

In the present note, we give an elementary proof of Kamthan's Theorem and extend it to entire Dirichlet series with (p, q)-growth. It is significant to mention that the conditions (2.2) and (2.3) have been dropped and we replace the condition (2.1) by a less restrictive condition (1.2). It is also obvious that (2.1) implies (1.2) for $\delta(p,q)=0$ which we shall need and proof, being trivial, is left to the reader. Now, we prove

Theorem B—Let $f(s) = \sum_{n=1}^{\infty} a_n \exp(s\lambda_n)$ be an entire Dirichlet series with index-pair $(p, q), (p, q)$-order $\rho (b < \rho < \infty)$, $\delta (p, q) = 0$ and $\{b_n\}$ be a complex sequence satisfying (2.4). Then the Hadamard composition $g(s) = \sum_{n=1}^{\infty} a_n b_n \exp(s\lambda_n)$ is an entire Dirichlet series with the same (p, q)-order, (p, q)-type, proximate order and generalized (p, q)-type as that of $f(s)$.

Proof: Since $\log |b_n| = o(\lambda_n)$, it follows that

$$\frac{\log |a_n b_n|}{\lambda_n} \rightarrow -\infty \quad \text{as} \quad n \to \infty.$$

Thus $g(s)$ is an entire Dirichlet series.

The (p, q)-order of $f(s)$ is given by (1.3). To claim that $f(s)$ and $g(s)$ have some $g(p, q)$-order, it is sufficient to show that $L(b, q)$ is same for both entire functions. From (2.4), we have for any $\epsilon > 0$ and $n > n_0(\epsilon)$

$$-\epsilon \lambda_n < \log |b_n| < \epsilon \lambda_n. \quad \ldots \text{(2.5)}$$
Also,
\[\frac{1}{\lambda_n} \log |a_n b_n|^{-1} = \frac{\log |a_n|^{-1}}{\lambda_n} \left\{ 1 + \frac{\log |b_n|^{-1}}{\log |a_n|^{-1}} \right\}. \] ... (2.6)

On using (2.5) in (2.6), we get for sufficiently large \(n \)
\[\frac{\log^{(q+1)} |a_n|^{-1/\lambda_n}}{\log^{(p-1)} \lambda_n} - o(1) < \frac{\log^{(q+1)} |a_n b_n|^{-1/\lambda_n}}{\log^{(p-1)} \lambda_n} < \frac{\log^{(q+1)} |a_n|^{-1/\lambda_n}}{\log^{(p-1)} \lambda_n} + o(1). \]

On taking limits in above we find that \(L(p, q) \) is same for both the entire Dirichlet series \(f(s) \) and \(g(s) \).

Let \(\tau^*_1 (p, q) \equiv \tau^*_1 \) be the generalized \((p, q) \)-type of \(g(s) \). Kasana\(^7\) has proved that
\[\limsup_{n \to \infty} \frac{F(\log^{(p-2)} \lambda_n)}{\log^{(q)} |a_n|^{-1/\lambda_n}} = \left(\frac{\tau^*}{M} \right)^{1/\rho^\lambda} \] ... (2.7)
where \(A \) and \(M \) have the same meaning as in (1.4) and (1.5) respectively and \(F(t) \) is a real valued function assumed to have unique solution for \(t > t_0 \) such that
\[t = (\log^{(q-1)} \sigma)^{(p-1)} \iff F(t) = \log^{(q-1)} \sigma. \]

Since \(F(t) \) is increasing, taking (2.5) and (2.6) into consideration we again have
\[\frac{\log^{(q)} |a_n|^{-1/\lambda_n}}{F(\log^{(p-2)} \lambda_n)} - o(1) < \frac{\log^{(q)} |a_n b_n|^{-1/\lambda_n}}{F(\log^{(p-2)} \lambda_n)} < \frac{\log^{(q)} |a_n|^{-1/\lambda_n}}{F(\log^{(p-2)} \lambda_n)} + o(1) \]
Hence, (in view of (2.7)),
\[\left(\frac{M}{\tau^*} \right)^{1/\rho^\lambda} = \left(\frac{M}{\tau^*_1} \right)^{1/\rho^\lambda} \]
which implies \(\tau = \tau^*_1 \)

Finally, if we define \(\rho (\sigma) = \rho \) and \(F(t) = t^{1/\rho^\lambda} \) then \(\tau^* \) and \(\tau^*_1 \) are nothing but simply \((p, q) \)-types of \(f(s) \) and \(g(s) \) respectively. This completes the proof of the theorem.
ACKNOWLEDGEMENT

The author is thankful to the referee for making the paper more complete and intelligible.

REFERENCES