ON EXTENSIONS OF σ-ADDITIVE SET FUNCTIONS WITH VALUES IN A TOPOLOGICAL GROUP

P. K. PAUL

Department of Mathematics, Uluberia College, Uluberia, Howrah 711315

AND

S. K. KUNDU

Department of Mathematics, Jadavpur University, Calcutta 700032

(Received 23 February 1985; after revision 17 March 1986)

Two types of extensions of a topological group (G)-valued σ-additive set functions defined on a σ-algebra \mathcal{M} of subsets of a set X have been discussed. Firstly, extension of a σ-quasi-measure $\mu : \mathcal{M} \to G$ to a σ-quasi-measure $\nu : \mathcal{M}^\tau \to G$ has been considered. Next, a σ-quasi-measure $\mu : \mathcal{M} \to G$ has been extended to a σ-quasi-measure $\nu : [\mathcal{M}, Z] \to G$, where $Z \subset X$ and $Z \in \mathcal{M}$.

1. INTRODUCTION

This paper discusses the extensions of some results of Lipecki3. He has studied two types of extensions of an additive set function $\mu : \mathcal{M} \to G$, where \mathcal{M} is an algebra of sets and G is an Abelian group. With discrete topology δ on G he has obtained an extension of μ to an algebra \mathcal{M}^δ containing \mathcal{M} from which μ can not be extended further. In fact, this type of extension has been obtained in case G is a topological semi-group with zero. Also, taking G to be a complete Hausdorff topological group, he has extended a quasi-measure μ to an algebra \mathcal{M}^τ containing \mathcal{M}, τ being the topology on G which admits no further extension. Finally, he has proved that a quasi-measure $\mu : \mathcal{M} \to G$, where G is a complete Hausdorff topological group, can be extended to a quasi-measure ν on the power set 2^X so as to ensure denseness of \mathcal{M} in 2^X with respect to the topology generated by ν on 2^X.

We have proved in the first place that if we take μ to be σ-additive and \mathcal{M} to be a σ-algebra, then μ admits of an extension to a σ-additive set function ν on a σ-algebra \mathcal{M}^δ containing \mathcal{M}, where δ is the discrete topology on G. This set function ν admits no further extension. However, this type of extension has been obtained
even when G is a topological semi-group with zero. Further taking G to be a complete Hausdorff topological group, a σ-quasi-measure μ has been extended to a σ-quasi-measure ν on a σ-algebra \mathcal{M}'_μ containing \mathcal{M}, where τ is the topology on G, using net limits μ^* and μ_*. The process of extension of μ is complete in the sense that no further extension of ν to a σ-algebra containing \mathcal{M}'_μ is possible.

In the second place we have been able to obtain an extension of a σ-quasi-measure $\mu : \mathcal{M} \rightarrow G$, where G is a complete Hausdorff topological group, to a σ-quasi-measure ν on $[\mathcal{M}, Z]$, the σ-algebra generated by \mathcal{M} and an additional set $Z \subseteq X$ such that \mathcal{M} is dense in $[\mathcal{M}, Z]$ in the ν-topology. The question of its being extended to 2^X still remains open.

2. Extension to \mathcal{M}'_μ

Let \mathcal{M} be a σ-algebra of subsets of a set X and let $(G, +, 0, \tau)$ by an Abelian topological semi-group with zero. Throughout this paper the letters U, V and W sometimes accompanied by indices stand for neighbourhoods of O in the topology τ in G.

Let $\mu : \mathcal{M} \rightarrow G$ be a set function. We denote by \mathcal{M}'_μ (or briefly by \mathcal{M}_{μ} when τ is fixed) the family of all $E \subseteq X$ for which to every V there exist $M, N \in \mathcal{M}$ such that

$$M \subseteq E \subseteq N \text{ and } \mu (S) \in V \text{ is } N \setminus M \supset S \in \mathcal{M}. \quad \ldots (1)$$

Theorem 2.1 - If $\mu : \mathcal{M} \rightarrow G$ is a σ-additive set function with $\mu (\phi) = 0$ and τ is regular, then \mathcal{M}'_μ is a σ-algebra of subsets of X containing \mathcal{M}.

Proof: Suppose $E \in \mathcal{M}'_\mu$. Then to every V there exist $M, N \in \mathcal{M}$ such that $M \subseteq E \subseteq N$ and $\mu (S) \in V$ if $N \setminus M \supset S \in \mathcal{M}$. Clearly $N^c \subseteq E^c \subseteq M^c$ and $N \setminus M = M^c \setminus N^c$. Thus to every V and E^c there exist $M^c, N^c \in \mathcal{M}$ such that $N^c \subseteq E^c \subseteq M^c$ and $\mu (S) \in V$ if $M^c \setminus N^c \supset S \in \mathcal{M}$. Hence $E^c \in \mathcal{M}'_\mu$.

Next, let $E_i \in \mathcal{M}'_\mu$, $i = 1, 2, ...$

Let U be chosen arbitrarily. Then there exists V such that $\overline{V} \subseteq U$. Also, there exist $V_1, V_2, ... , V_i$ such that $V_1 + V_2 + ... + V_i \subseteq V$, $i = 1, 2, ...$. Corresponding to E_i and V_i there exist $M_i, N_i \in \mathcal{M}$ such that $M_i \subseteq E_i \subseteq N_i$ and $\mu (S) \in V_i$ if $N_i \setminus M_i \supset S \in \mathcal{M}$, $i = 1, 2, ...$.
Now,
\[\bigcup_{i=1}^{\infty} M_i \subset \bigcup_{i=1}^{\infty} E_i \subset \bigcup_{i=1}^{\infty} N_i. \]

Let
\[S \subset \bigcup_{i=1}^{\infty} N_i \setminus \bigcup_{i=1}^{\infty} M_i \subset \bigcup_{i=1}^{\infty} (N_i \setminus M_i), \text{ where } S \in \mathcal{H}. \]

We can now write
\[S = \bigcup_{i=1}^{\infty} S_i' \quad \text{where } S_i' = S \cap (N_i \setminus M_i), \quad S_i' \in \mathcal{H} \]
\[= \bigcup_{i=1}^{\infty} S_i'' \quad \text{where } \left\{ S_i'' \right\} \text{ is a mutually disjoint sequence} \]

and
\[S_i'' \subset S_i' \quad , \quad S_i'' \in \mathcal{H}. \]

Then
\[\mu(S) = \mu \left(\bigcup_{i=1}^{\infty} S_i'' \right) \]
\[= \sum_{i=1}^{\infty} \mu \left(S_i'' \right) = \text{since } \mu \text{ is } \sigma\text{-additive} \]
\[= \lim_n \left\{ \sum_{i=1}^{n} \mu \left(S_i'' \right) \right\} \]
\[= \lim_n \left\{ \mu \left(\bigcup_{i=1}^{n} S_i'' \right) \right\} \]
\[= \lim_n \left\{ \mu \left(P_n^{*} \right) \right\} \in V \subset U \]

where
\[P_n^{*} = S_1'' \cup S_2'' \cup \ldots \cup S_n^{*} \]
since
\[\mu \left(P_n^* \right) \in V_1 + V_2 + \ldots + V_n \subseteq V. \]

It follows that
\[\bigcup_{i=1}^{\infty} E_i \in M^{\tau}. \]

Also, since \(\mu (\phi) = 0 \), it follows that \(M \subseteq M^{\tau} \).

This completes the proof.

In the following discussion \(\delta \) will denote the discrete topology on \(G \).

It is easy to see that for \(E \in M^{\delta} \), there exist \(M, N \in M \) such that
\[\mu (S) = 0 \]
whenever \(M \subseteq E \subseteq N \) and \(N \setminus M \supset S \in M \) and that \(M^{\delta} \subseteq M^{\tau} \) for any topology \(\tau \) on \(G \).

Theorem 2.2—Let \(\mu : M \rightarrow G \) be \(\sigma \)-additive and \(\mu (\phi) = 0 \). Then the set function \(v : M^{\delta} \rightarrow G \), defined by \(v(E) = \mu (M) \), where \(M, N \in M \) and \(E \) satisfies (1'), is \(\sigma \)-additive.

Moreover,
\[v | M = \mu \quad \text{and} \quad \left(M^{\delta} \right)^{\delta} = M^{\delta}. \]

Proof: As in Theorem 1 of Lipecki\(\delta \) we can show that \(v \) is well-defined on \(M^{\delta} \).

Let \(E_i \in M^{\delta}, i = 1, 2, \ldots, \) and \(E_i \cap E_j = \phi, i \neq j \).

We take
\[M_i, N_i \in M \] as in (1').

We then have
Let

\[\bigcup_{i=1}^{\infty} M_i \subset \bigcup_{i=1}^{\infty} E_i \subset \bigcup_{i=1}^{\infty} N_i. \]

Since \(\mu \) is \(\sigma \)-additive, it can be shown that

\[\mu(S) = \mu\left(S \cap (N_i \setminus M_i)\right) + \mu\left(S \setminus (N_i \setminus M_i)\right) = 0. \]

Also,

\[\nu\left(\bigcup_{i=1}^{\infty} E_i\right) = \mu\left(\bigcup_{i=1}^{\infty} M_i\right) \]

\[= \sum_{i=1}^{\infty} \mu(M_i) \]

\[= \sum_{i=1}^{\infty} \nu(E_i). \]

Thus \(\nu \) is \(\sigma \)-additive.

It is easy to see that \(\nu \mid \mathcal{M} = \mu \).

Also, following the arguments of Lipecki (Theorem 1) we can easily show that

\[\left(\mathcal{M}^x_p\right)^* = \mathcal{M}^x_p. \]

Theorem 2.3—Let \(\tau \) be a topology on \(G \) such that there is a countable family \(\{V_i\} \) of neighbourhoods of zero with \(\bigcap_{i=1}^{\infty} 2V_i = \{0\} \). Then for any set function

\[\mu : \mathcal{M} \rightarrow G, \mathcal{M}^\tau = \mathcal{M}^x_p. \]

Proof is exactly same as that of Proposition 2 of Lipecki.

Definition 2.1—A \(\sigma \)-additive set function \(\mu : \mathcal{M} \rightarrow G \) is called a \(\sigma \)-quasi-measure if it is exhaustive. I.e., for any sequence \(\{M_i\} \) of pairwise disjoint sets in \(\mathcal{M} \), \(\mu(M_i) \rightarrow 0 \).
Lemma 2.1—Let $\mu : \mathcal{H} \to G$ be a σ-quasi-measure. To every V and $E \subset X$, there exist $M, N \in \mathcal{H}$ such that

\begin{align*}
M \subset E \text{ and } \mu (M \setminus M) \in V \text{ if } M \subset M' \subset E, M' \in \mathcal{H}, \\
N \supset E \text{ and } \mu (N \setminus N') \in V \text{ if } E \subset N' \subset N, N' \in \mathcal{H}.
\end{align*}

(2) ...(3)

Proof is exactly same as that of Lemma 1 of Lipecki\(^2\).

For the subsequent discussion we assume that $(G, +, \tau)$ is an Abelian, Hausdorff topological group. Since the topology τ is fixed, we shall write \mathcal{H}_τ in place of \mathcal{H}.

Lemma 2.2—Let $\mu : \mathcal{H} \to G$ be a σ-additive set function.

The family \mathcal{H}_τ consists of all sets $E \subset X$ for which to every V there exist $M, N \in \mathcal{H}$ such that

\begin{align*}
M \subset E \subset N \text{ and } \mu (S') = \mu (S'') \in V
\end{align*}

(1')

if

\begin{align*}
M \subset S', S'' \subset N
\end{align*}

and

\begin{align*}
S', S'' \in \mathcal{H}.
\end{align*}

Proof is exactly same as that of Remark 3 of Lipecki\(^2\).

Let us now assume in addition that G is complete. Let $\mu : \mathcal{H} \to G$ be a σ-quasi-measure.

For any $E \subset X$ we put

\begin{align*}
\mu_* (E) = \lim \{ \mu (M) : E \supset M \in \mathcal{H} \}
\end{align*}

(4)

and

\begin{align*}
\mu^* (E) = \lim \{ \mu (N) : E \subset N \in \mathcal{H} \},
\end{align*}

(5)

where the sets of indices are directed by inclusion and its converse respectively. Since G is complete and Hausdorff, it follows from Lemma 2.1 that both the limits exist and are unique.

Lemma 2.3—The set functions μ_* and μ^* defined by (4) and (5) respectively, have the following properties.
(i) \(\mu(M) = \mu_*(M) = \mu^*(M) \) for \(M \in \mathcal{M} \);

(ii) \(\mu_*(E) = \mu^*(E) \) for \(E \in \mathcal{M}_\mu \);

(iii) \(\mu_*(E_1 \cup E_2) = \mu_*(E_1) + \mu_*(E_2), \ E_1 \cap E_2 = \emptyset, \ E_1, E_2 \in \mathcal{M}_\mu \);

(iv) \(\mu_*(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} \mu_*(E_i) \), where \(\{E_i\} \) is a mutually disjoint sequence of \(\mathcal{M}_\mu \).

Proof: (i) It is obvious.

(ii) Let \(E \in \mathcal{M}_\mu \) and \(W \) be chosen arbitrarily. Then there exists \(V \) such that \(V + V - V \subset W \).

Using the definitions of \(\mu_*, \mu^* \) and Lemma 2.2 we can show that

\[\mu_*(E) - \mu^*(E) \in V + V - V \subset W. \]

Since \(W \) is arbitrary and \(\cap W = 0 \), it follows that \(\mu_*(E) = \mu^*(E) \).

(iii) The proof is exactly same as that of Lemma 2 (iii) of Lepecki.

(iv) Since \(\mu_* \) is additive by (iii), it suffices to show that \(\mu_*(F_i) \to 0 \), where \(\{F_i\} \subset X \) such that \(F_i \downarrow \emptyset \).

Let \(W \) be chosen arbitrarily. We take \(V \) such that \(V + V \subset W \). Corresponding to \(F_i \) and \(V \) there exists \(M_i \in \mathcal{M} \) such that \(M_i \subset F_i \)

and \(\mu_*(F_i) \in \mu(M) + V \) for all \(M \in \mathcal{M} \) satisfying \(M_i \subset M \subset F_i \).

Let

\[P_i = \bigcup_{i=1}^{\infty} M_i \subset F_i, \ \text{since} \ F_i \downarrow. \]

Clearly \(P_1 \supset P_2 \supset \ldots \) and \(\bigcap_{i=1}^{\infty} P_i = \emptyset \). Thus \(P_i \downarrow \emptyset \).

Since

\[P_i \in \mathcal{M} \ \text{and} \ M_i \subset P_i \subset F_i, \ \text{it follows that} \ \mu_*(F_i) \in \mu(P_i) + V. \]

Again, since \(\mu \) is \(\sigma \)-additive and exhaustive, and \(\{P_i\} \subset \mathcal{M}, \ P_i \downarrow \emptyset \), by Lemma 3, of Lepecki we can find a positive integer \(i_0 \) such that \(\mu(P_i) \in V \) for \(i \geq i_0 \).

Consequently, \(\mu_*(F_i) \in V + V \subset W \) for \(i \geq i_0 \).
Thus $\mu^*_\sigma(F_1) \to 0$. Hence μ^* is σ-additive on \mathcal{M}_μ.

Definition 2.2—A σ-additive set function $\mu : \mathcal{M} \to G$ is called \mathcal{K}-tight (\mathcal{K} being a sub-family of \mathcal{M}) if for every $M \in \mathcal{M}$ and V, there exists a $K \in \mathcal{K}$ such that $K \subset M$ and $\mu(K) - \mu(M) \in V$ whenever $K \subset M \subset M'$, $M' \in \mathcal{M}$.

Theorem 2.4—Let G be an Abelian, complete Hausdorff topological group. Every σ-quasi-measure $\mu : \mathcal{M} \to G$ has the unique extension to an \mathcal{M}-tight σ-quasi-measure $\nu : \mathcal{M}_\mu \to G$.

Moreover, $(\mathcal{M}_\mu)_\nu = \mathcal{M}_\mu$, $\nu^* = \mu^*$ and $\nu^* = \mu^*$.

Proof: We put $\nu(E) = \mu^*(E)$ for $E \in \mathcal{M}_\mu$.

Let $M \in \mathcal{M}$. Then $\nu(M) = \mu^*(M) = \mu(M)$, by Lemma 2.3 (i).

Thus ν is an extension of μ.

Let

\[\{E_i\} \subset \mathcal{M}_\mu \text{ and } E_i \cap E_j = \emptyset, i \neq j, \ i, j = 1, 2, \ldots \]

Suppose

\[E = \bigcup_{i=1}^{\infty} F_i. \text{ Then } E \in \mathcal{M}_\mu. \]

Now,

\[\nu(E) = \mu^* \left(\bigcup_{i=1}^{\infty} E_i \right) \]

\[= \sum_{i=1}^{\infty} \mu^*(E_i), \text{ by Lemma 2.3 (iv)} \]

\[= \sum_{i=1}^{\infty} \nu(E_i). \]

Thus ν is σ-additive.

Using the definitions of μ^* and ν we can show that ν is \mathcal{M}-tight. The exhaustivity of ν follows easily from \mathcal{M}-tightness of ν and exhaustivity of μ. The uniqueness of ν is also an easy consequence of its \mathcal{M}-tightness.

We shall now prove that $(\mathcal{M}_\mu)_\nu = \mathcal{M}_\mu$.

Let W be chosen arbitrarily. We take V such that $V + V + V \subset W$. Let $F \in (\mathcal{M}_\mu)_\nu$. Then by definition, there exist $E_1, E_2 \in \mathcal{M}_\mu$ such that $E_1 \subset F \subset E_2$ and $\nu(S) \in V$ if $E_2 \setminus E_1 \supset S \neq \mathcal{M}_\gamma$. In particular, $(R) \in V$ for $E_1 \setminus E_1 \supset R \in \mathcal{M}$. We take $M_i, N_i \in \mathcal{M}$ such that $M_i \subset E_i \subset N_i$, $i = 1, 2$ and $\mu(S) \in V$ if $N_i \setminus M_i \supset S \in \mathcal{M}$, $i = 1, 2$. We have $M_i \subset F \subset N_i$ and $N_i \setminus M_i \subset (N_i \setminus M_i) \cup (E_i \setminus E_1) \cup (N_i \setminus M_i)$. Let $S \in \mathcal{M}$ and $S \subset N_i \setminus M_i$. It now follows by the additivity of μ that $\mu(S) \in W$. Thus $F \in \mathcal{M}_\mu$.

Consequently, $(\mathcal{M}_\mu)_\nu \subset \mathcal{M}_\mu$.

Also, it is obvious that $\mathcal{M}_\mu \subset (\mathcal{M}_\mu)_\nu$.

Thus $(\mathcal{M}_\mu)_\nu = \mathcal{M}_\mu$.

Next, we shall show that $\nu^* = \mu^*$.

Let $E \subset X$. We have $\nu^*(E) = \lim \nu(M) : E \supset M \in \mathcal{M}_\mu$

$= \lim \mu^*(M) : E \supset M \in \mathcal{M}_\mu$.

Then there exists $M_0 \in \mathcal{M}_\mu$ such that $\nu^*(E) = \mu^*(M) \in V$ for all $M \in \mathcal{M}_\mu$ satisfying $M_0 \subset M \subset E$.

In particular, $\nu^*(E) = \mu(M) \in V$ for all $M \in \mathcal{M}$ satisfying $M_0 \subset M \subset E$.

Let $M_0 \subset N_0 \subset E$, where $N_0 \in \mathcal{M}$.

Then $\nu^*(E) = \mu(M) \in V$ for all $M \in \mathcal{M}$ satisfying $M_0 \subset M \subset E$.

Thus $\nu^*(E) = \lim \mu(M) : E \supset M \in \mathcal{M}$,

$= \mu^*(E)$.

Consequently, $\nu^* = \mu^*$.

Analogously we can prove that $\nu^* = \mu^*$.

This completes the proof.

Lemma 2.4—Let μ_μ and μ^* be the same as in Lemma 2.3. Then

(v) $\mu_\mu(A) + \mu^*(B) = \mu_\mu(A \cup B)$ for $A, B \subset X$ such that $A \cup B \in \mathcal{M}_\mu$ and $A \cap B = \emptyset$;

(vi) $\mu_\mu(A) + \mu_\mu(B) = \mu_\mu(A \cup B)$ for $A, B \subset X$ such that there exists an $E \in \mathcal{M}_\mu$ with $A \subset E$ and $B \cap E = \emptyset$;

(vii) $\mu^*(A) + \mu^*(B) = \mu^*(A \cup B)$ for $A, B \subset X$ such that there exists an $E \in \mathcal{M}_\mu$ with $A \subset E$ and $B \cap E = \emptyset$. **
PROOF: In view of Theorem 2.4, it is enough to prove all the above statements with \(\mathcal{M}_\ast \) replaced by \(\mathcal{M} \). Proofs of (v) and (vi) are exactly same as those of Lemma 3 (iv), (v) of Lipecki. For the proof of (vii) we choose arbitrarily and take \(V \) such that \(V - V - V \subseteq W \).

Using the definition of \(\mu^* \) and the given condition we can show that

\[
\mu^* (A \cup B) = \mu^* (A) + \mu^* (B) - \mu^* (A \cap B) \subseteq V - V - V \subseteq W.
\]

It follows that \(\mu^* (A \cup B) = \mu^* (A) + \mu^* (B) \).

Following the arguments of Lipecki, we can establish the following corollary:

Corollary—Let \(E \subseteq X \) be an arbitrary set. The following conditions are equivalent:

(a) \(E \in \mathcal{M}_\ast \);
(b) \(\mu^* (Z) = \mu^* (Z \cap E) + \mu^* (Z \setminus E) \) for all \(Z \subseteq X \);
(c) \(\mu^* (Z) = \mu^* (Z \cap E) + \mu^* (Z \setminus E) \) for all \(Z \subseteq X \);
(d) \(\mu (S) = \mu^* (S \cap E) + \mu^* (S \setminus E) \) for all \(S \in \mathcal{M} \);
(e) \(\mu (S) = \mu^* (S \cap E) + \mu^* (S \setminus E) \) for all \(S \in \mathcal{M} \).

3. **Extension to \([\mathcal{M}, E]\)**

Let \(\mathcal{M} \) be an algebra of subsets of \(X \).

Then it can be considered as a group with the symmetric difference of sets \(\Delta \) as group operation.

Let \(\mu : \mathcal{M} \to G \) be an additive set function.

Then \(\mu \) gives rise to a topology on \(\mathcal{M} \) called the \(\mu \)-topology whose neighbourhood base at \(\phi \) is given by \(\{ M \in \mathcal{M} : \mu (S) \subseteq V \text{ for all } M \supseteq S \in \mathcal{M}, \} \), where \(V \) runs through some neighbourhood base at zero in \(G \). (Proposition 1.9 of Drewnowski.)

Lemma 3.1—Let \(\mathcal{M} \) and \(\mathcal{N} \) be two \(\sigma \)-algebras of subsets of \(X \) and \(\mathcal{M} \subseteq \mathcal{N} \). Let \(\nu : \mathcal{N} \to G \) be \(\sigma \)-additive and \(\mathcal{M} \) be a dense sub-\(\sigma \)-algebra in the \(\nu \)-topology. If \(\nu \) restricted to \(\mathcal{M} \) is exhaustive, then it is also exhaustive on \(\mathcal{N} \).

Proof is similar to that of Lemma 4 of Lepecki.

Let \(\mathcal{M} \) and \(\mathcal{N} \) be \(\sigma \)-algebras of subsets of \(X \) and let \(\mu : \mathcal{M} \to G \) and \(\nu : \mathcal{N} \to G \) be \(\sigma \)-additive. We write \((\mathcal{M}, \mu) \leq (\mathcal{N}, \nu)\) if and only if \(\mathcal{M} \subseteq \mathcal{N} \), \(\nu | \mathcal{M} = \mu \).
and for any closed neighbourhood V of zero and $M \in \mathcal{M}$ such that $\mu(S) \in V$ whenever $M \supset S \in \mathcal{M}$, we have $v(N) \in V$ if $M \supset N \in \mathcal{M}$.

It is clear that the relation \ll is a partial order and that if $(\mathcal{M}, \mu) \ll (\mathcal{M}, v)$, then the μ-topology coincides with the topology induced on \mathcal{M} by the v-topology.

If \mathcal{M} be a family of subsets of X, $Z \subset X$, we denote by $[\mathcal{M}, Z]$ the family of all sets of the form $(M \cap Z) \cup (N \cap Z^c)$, where $M, N \in \mathcal{M}$.

Lemma 3.2—If \mathcal{M} is a σ-algebra, then $[\mathcal{M}, Z]$ is the smallest σ-algebra containing \mathcal{M} and Z.

Moreover, for any disjoint $E_1, E_2 \in [\mathcal{M}, Z]$, there exist disjoint M_1, M_2 and disjoint N_1, N_2 in \mathcal{M} such that $E_i = (M_i \cap Z) \cup (N_i \cap Z^c)$, $i = 1, 2$.

Proof: For the proof of the first part of the lemma we proceed as follows:

$[\mathcal{M}, Z]$ is an algebra (p. 268).

Let

$$\{E_n\} \subset [\mathcal{M}, Z].$$

Now,

$$E_n = (M_n \cap Z) \cup (N_n \cap Z^c), \text{ where } M_n, N_n \in \mathcal{M}.$$

$$\bigcup_{n=1}^{\infty} E_n \subset \bigcup_{n=1}^{\infty} [(M_n \cap Z) \cup (N_n \cap Z^c)]$$

$$= [\bigcup_{n=1}^{\infty} (M_n \cap Z)] \cup [\bigcup_{n=1}^{\infty} (N_n \cap Z^c)]$$

$$= [(\bigcup_{n=1}^{\infty} M_n) \cap Z] \cup [(\bigcup_{n=1}^{\infty} N_n) \cap Z^c].$$

Thus

$$\bigcup_{n=1}^{\infty} E_n \in [\mathcal{M}, Z].$$

It follows that $[\mathcal{M}, Z]$ is a σ-algebra.

It is easy to see that $[\mathcal{M}, Z]$ is the smallest σ-algebra containing \mathcal{M} and Z.
The second part of the lemma is an easy consequence of Remark 5 of Lepecki2.

Theorem 3.1—Let G be complete and $\mu : \mathcal{M} \rightarrow G$ be a σ-quasi-measure.

Let $Z \subset X$; for every $\{E_i\} \subset [\mathcal{M}, Z]$, $E_i \downarrow \phi$. and $\{Q_i\} \subset \mathcal{M}$, $Q_i \supset E_i \cap Z^c$, let there be $\{T_i\} \subset \mathcal{M}$, $T_i \downarrow \phi$ such that $Q_i \supset T_i \supset E_i \cap Z^c$.

Then there exists a σ-quasi-measure $\nu : [\mathcal{M}, Z] \rightarrow G$ such that $(\mathcal{M}, \mu) \leq [\mathcal{M}, Z], \nu$ and \mathcal{M} is dense in $[\mathcal{M}, Z]$ in the ν-topology.

Proof: We put $\nu(E) = \mu_\# (E \cap Z) + \mu^* (E \cap Z^c)$ for $E \in [\mathcal{M}, Z]$.

Then we shall show that ν has all the required properties.

Let

$$M \in \mathcal{M}.$$

Then

$$\nu(M) = \mu_\# (M \cap Z) + \mu^* (M \cap Z^c)$$

$$= \mu_\# \{(M \cap Z) \cup (M \cap Z^c)\}, \text{ by Lemma 2.4 (v)}$$

$$= \mu_\# (M)$$

$$= \mu(M), \text{ by Lemma 2.3 (i)}.$$

Thus ν extends μ.

Let

$$E_i \in [\mathcal{M}, Z], \ i = 1, 2, \ E_1 \cap E_2 = \phi.$$

By Lemma 3.2, $E_i = (M_i \cap Z) \cup (N_i \cap Z^c), \ i = 1, 2$, where M_i, M_2 are disjoint and N_1, N_2 are disjoint in \mathcal{M}.

Now,

$$\nu(E_i) = \mu_\# (E_i \cap Z) + \mu^* (E_i \cap Z^c)$$

$$= \mu_\# \left[\left\{(M_1 \cap Z) \cap Z \cup \{(N_1 \cap Z^c) \cap Z\}\right\}\right]$$

$$+ \mu^* \left[\left\{(M_1 \cap Z^c) \cap Z^c \cup \{(N_1 \cap Z^c) \cap Z^c\}\right\}\right]$$

$$= \mu_\# (M_1 \cap Z) + \mu^* (N_1 \cap Z^c).$$
Similarly

\[\nu(E_2) = \mu^\ast(M_2 \cap Z) + \mu^\ast(N_2 \cap Z^c). \]

Again

\[\nu(E_1 \cup E_2) = \nu[(M_1 \cup M_2) \cap Z] \cup [(N_1 \cup N_2) \cap Z^c] \]
\[= \mu^\ast((M_1 \cup M_2) \cap Z) + \mu^\ast(N_1 \cup N_2) \cap Z^c \]
\[= [\mu^\ast(M_1 \cap Z) + \mu^\ast(M_2 \cap Z)] + [\mu^\ast(N_1 \cap Z^c) \]
\[+ \mu^\ast(N_2 \cap Z^c)], \text{ by Lemma 2.4 (vi), (vii)} \]
\[= \nu(E_1) + \nu(E_2). \]

Thus \(\nu \) is additive.

Let \(\{E_i\} \subset [\mathcal{H}, Z] \) and \(E_i \downarrow \phi \). In order to show that \(\nu \) is \(\sigma \)-additive, it suffices to show that \(\nu(E_i) \to 0 \).

Let us take \(W \) arbitrarily. Then there exists \(V \) such that \(V + V + V + V \subset W \). Corresponding to \(E_i \cap Z \) and \(V \) there exists some \(P_i \in \mathcal{H} \) such that \(P_i \subset E_i \cap Z \) and \(\mu^\ast(E_i \cap Z) \in \mu(P) + V \) for all \(P \in \mathcal{H} \) satisfying \(P_i \subset P \subset E_i \cap Z \).

Let

\[R_i = \bigcup_{j=i}^{\infty} P_j \subset E_i \cap Z, \text{ since } E_i \cap Z \downarrow. \]

Clearly \(\{R_i\} \) is decreasing and \(\bigcap_{i=1}^{\infty} R_i = \phi \).

Since \(R_i \in \mathcal{H} \) and \(P_i \subset R_i \subset E_i \cap Z \), it follows that \(\mu^\ast(E_i \cap Z) \in \mu(R_i) + V \).

Again, since \(\mu \) is \(\sigma \)-additive and exhaustive, \(\{R_i\} \subset \mathcal{H}, R_i \downarrow \phi \), by Lemma 3 of Lepecki\(^3\), we can find a positive integer \(i_1 \) such that \(\mu(R_i) \in V \) for \(i \geq i_1 \).

Thus \(\mu^\ast(E_i \cap Z) \in V + V \) for \(i \geq i_1 \).

Again, corresponding to \(E_i \cap Z^c \) and \(V \) there exists some \(Q_i \in \mathcal{H} \) such that \(Q_i \supset E_i \cap Z^c \) and \(\mu^\ast(E_i \cap Z^c) \in \mu \subset Q) + V \) for all \(Q_i \in \mathcal{H} \) satisfying \(Q_i \supset Q \supset E_i \cap Z^c \).
By hypothesis, there exists a decreasing sequence $\{T_i\} \subseteq \mathcal{T}$ such that $Q \supseteq T_i \subseteq E_i \cap Z^c$ and $\bigcap_{i=1}^{\infty} T_i = \emptyset$.

It now follows that $\mu^*(E_i \cap Z^c) \subseteq \mu(T_i) + V$.

But, by Lemma 3 of Lepecki3 we can find a positive integer i_2 such that $\mu(T_i) \subseteq V$ for $i \geq i_2$.

Then $\mu^*(E_i \cap Z^c) \subseteq V + V$ for $i \geq i_2$.

Thus $\mu^*(E_i \cap Z) + \mu^*(E_i \cap Z^c) \subseteq V + V + V + V$.

Hence $\nu(E_i) \to 0$. Therefore ν is σ-additive.

The proof of the remaining portion of the theorem is same as that of Lemma 5 of Lepecki3.

This completes the proof.

References