ON FEEBLY CLOSED MAPPINGS

SINA GREENWOOD AND IVAN L. REILLY*

Department of Mathematics and Statistics, University of Auckland
Auckland, New Zealand

(Received 22 August 1985)

Recently the notion of feebly closed mappings was introduced. In this paper this concept is shown to coincide with the notion of α-closed mappings. Furthermore it is shown that if the codomain is appropriately retopologised the concept of feebly closed mappings coincides with the usual notion of closed mappings. Some properties of α-closed mappings are investigated.

1. INTRODUCTION

Let S be a subset of topological space (X, \mathcal{F}). We denote the closure of S and the interior of S with respect to \mathcal{F} by $\mathcal{F} \text{ cl } S$ and $\mathcal{F} \text{ int } S$ respectively, although we may suppress the \mathcal{F} when there is no possibility of confusion. We denote the topology induced by \mathcal{F} on S, by \mathcal{F}_S. Njastad8 introduced the concept of an α-set in (X, \mathcal{F}). A subset S of (X, \mathcal{F}) is called an α-set if $S \subseteq \mathcal{F} \text{ cl } (\mathcal{F} \text{ int } S)$. The notions of semi-open set and preopen set were introduced by Levine3 and Mashhour et al.5 respectively. A subset S of (X, \mathcal{F}) is called a semi-open (respectively preopen) set if $S \subseteq \mathcal{F} \text{ cl } (\mathcal{F} \text{ int } S)$ (respectively $S \subseteq \mathcal{F} \text{ int } (\mathcal{F} \text{ cl } S)$). The complements of an α-set, a semi-open set and a preopen set are called α-closed, semi-closed and pre-closed respectively. Following Njastad8 we denote the family of all α-sets in (X, \mathcal{F}) by \mathcal{F}^α. Njastad proved that \mathcal{F}^α is a topology on X. As any open set in (X, \mathcal{F}) is an α-set, $\mathcal{F} \subseteq \mathcal{F}^\alpha$ in the lattice of topologies on the set X. If A is a subset of (X, \mathcal{F}), then the intersection of all semiclosed sets containing A is called the semi closure of A, and is denoted $s \text{ cl } A$. The largest semi-open set contained in A is denoted by $s \text{ int } A$. Maheshwari and Tapi7 defined A to be a feebly open set in (X, \mathcal{F}) if there is an open set U such that $U \subseteq A \subseteq s \text{ cl } U$. The complement of a feebly open set is called a feebly closed set.

2. FEEBLY CLOSED MAPS

The concepts of α-closed and feebly closed mappings have been introduced by Mashhour et al.5 and Maheshwari and Jain respectively.

*The second author wishes to acknowledge the support of the University of Auckland Research Fund.
Definition 1—A function \(f : (X, \mathcal{F}) \to (Y, \mathcal{G}) \) is called

(i) feebly closed if the image of each closed set in \(X \) is feebly closed in \(Y \);

(ii) \(\alpha \)-closed if the image of each closed set in \(X \) is \(\alpha \)-closed in \(Y \).

Lemma 1—Let \(A \) be a subset of \((X, \mathcal{F}) \). Then \(\text{s int} (\text{cl} A) = \text{cl} (\text{int} (\text{cl} A)) \).

Proof: Notice that \(\text{cl} (\text{int} (\text{cl} A)) \) is a semi-open set since \(\text{cl} (\text{int} (\text{cl} A)) = \text{cl} (\text{int} (\text{cl} (\text{int} (\text{cl} A)))) \), and \(\text{cl} (\text{int} (\text{cl} A)) \subset \text{cl} A \). Therefore \(\text{cl} (\text{int} \text{Cl} A) \subset \text{s int} \text{cl} A \).

Conversely, if \(U \) is any semi-open set contained in \(\text{cl} A \), then \(U \subset \text{cl} (\text{int} U) \subset \text{cl} (\text{int} (\text{cl} A)) \) and therefore \(\text{s int} (\text{cl} A) \subset \text{cl} (\text{int} (\text{cl} A)) \).

Maheshwari and Jain\(^6\) in Lemma 3 of their paper showed that a subset \(A \) of \((X, \mathcal{F}) \) is feebly closed if and only if \(\text{s int} (\text{cl} A) \subset A \).

Proposition 1—If \(A \) is a subset of \((X, \mathcal{F}) \), then \(A \) is feebly closed if and only if \(A \) is \(\alpha \)-closed.

Proof: It follows from the definitions of an \(\alpha \)-set and an \(\alpha \)-closed set that a subset \(A \) of \((X, \mathcal{F}) \) is \(\alpha \)-closed if and only if \(\text{cl} (\text{int} (\text{cl} A)) \subset A \).

Since \(\text{cl} (\text{int} (\text{cl} A)) \subset A \) if and only if \(\text{s int} (\text{cl} A) \subset A \), by Lemma 1, \(A \) is \(\alpha \)-closed if and only if \(A \) is feebly closed.

An alternative proof of this result has been given in Proposition 1 of Janković and Reilly\(^3\), who proved that if \(A \) is a subset of \((X, \mathcal{F}) \), then \(A \) is feebly open if and only if \(A \) is an \(\alpha \)-set.

Proposition 2 follows immediately from Proposition 1 and Definition 1.

Proposition 2—The following are equivalent:

1. \(f : (X, \mathcal{F}) \to (Y, \mathcal{G}) \) is feebly closed;
2. \(f : (X, \mathcal{F}) \to (Y, \mathcal{G}) \) is \(\alpha \)-closed;
3. \(f : (X, \mathcal{F}) \to (Y, \mathcal{G}^*) \) is closed.

If the codomain space of a feebly closed mapping \(f \) is retopologised in an obvious way, then \(f \) is simply a closed mapping. This observation puts the notion of feebly closed mappings into a more natural setting, and enables us to provide immediate proofs of some of the results in Maheshwari and Jain\(^6\). For example, Propositions 5 and 6 of Maheshwari and Jain\(^6\) are well-known results (Murdeswar\(^4\), Theorem 4.26, P. 96 and Theorem 4.28, p. 26) restated in this setting.

3. \(\alpha \)-Closed Mappings

The following classes of generalized closed mappings were introduced in Mashhour et al.\(^5\) and Noiri\(^9\).
Definition 2—A function \(f : (X, \mathcal{T}) \rightarrow (Y, \mathcal{U}) \) is called

(i) semi-closed if the image of each closed set in \(X \) is semi-closed in \(Y \);

(ii) preclosed if the image of each closed set in \(X \) is preclosed in \(Y \).

It is shown in Theorem 3 of Reilly and Vamanamurthy\(^{10}\) that a subset of \((X, \mathcal{I})\) is an \(\alpha \)-set if and only if it is semi-open and preopen. Thus we have the following result.

Proposition 3—A function \(f : (X, \mathcal{T}) \rightarrow (Y, \mathcal{U}) \) is \(\alpha \)-closed if and only if it is semi-closed and preclosed.

Examples 1 and 2 show that the separate converses are not in general true.

Example 1—Let \(X = \{a, b, c\} \) and define the topologies \(\mathcal{T} \) to be the discrete topology and \(\mathcal{U} = \{\phi, x, \{a\}, \{c\}, \{a, c\}\} \). We define \(f : (X, \mathcal{T}) \rightarrow (X, \mathcal{U}) \) by \(f(a) = f(b) = f(c) = a \). Then \(f \) is preclosed but not \(\alpha \)-closed since \(\{a\} \) is preclosed in \((X, \mathcal{U})\) but not \(\alpha \)-closed in \((X, \mathcal{U})\).

Example 2—If \(\mathcal{T} \) is the discrete topology and \(\mathcal{U} \) is the indiscrete topology then \(f : (X, \mathcal{T}) \rightarrow (Y, \mathcal{U}) \) is semi-closed but not \(\alpha \)-closed.

Andrijevic\(^1\) showed that if \(M \) is a subset of \((X, \mathcal{T})\) then \((\mathcal{T} M)^{\alpha} \subset (\mathcal{T}^{\alpha})_M\) (his Theorem 3.2) and if \(M \) is preopen then \((\mathcal{T} M)^{\alpha} = (\mathcal{T}^{\alpha})_M\) (his Theorem 3.6).

Proposition 4—Let \(f : (X, \mathcal{T}) \rightarrow (Y, \mathcal{U}) \) and \(f(X) \subseteq Y_1 \subseteq Y \).

1. If \(f : (X, \mathcal{T}) \rightarrow (Y_1, \mathcal{U}_1) \) is \(\alpha \)-closed, then so is \(f : (X, \mathcal{T}) \rightarrow (Y, \mathcal{U}) \).

2. If \(Y_1 \) is preopen and \(f : (X, \mathcal{T}) \rightarrow (Y, \mathcal{U}) \) is \(\alpha \)-closed, then \(f : (X, \mathcal{T}) \rightarrow (Y_1, \mathcal{U}_{Y_1}) \) is \(\alpha \)-closed.

Proof: (1) If \(f : (X, \mathcal{T}) \rightarrow (Y_1, \mathcal{U}_{Y_1}) \) is \(\alpha \)-closed then \(f : (X, \mathcal{T}) \rightarrow (Y_1, (\mathcal{U}_{Y_1})^{\alpha}) \) is closed. By Andrijevic’s result \(f : (X, \mathcal{T}) \rightarrow (Y_1, (\mathcal{U}^{\alpha})_{Y_1}) \) is closed and by Theorem 4.24 (2) of Murdeshwar\(^4\) \(f : (X, \mathcal{T}) \rightarrow (Y, \mathcal{U}^{\alpha}) \) is closed. Hence \(f : (X, \mathcal{T}) \rightarrow (Y, \mathcal{U}) \) is \(\alpha \)-closed.

(2) If \(f : (X, \mathcal{T}) \rightarrow (Y, \mathcal{U}) \) is \(\alpha \)-closed then \(f : (X, \mathcal{T}) \rightarrow (Y, \mathcal{U}^{\alpha}) \) is closed and by Theorem 4.24, of Murdeshwar, \(f : (X, \mathcal{T}) \rightarrow (Y_1, (\mathcal{U}^{\alpha})_{Y_1}) \) is closed.

If \(Y_1 \) is preopen then by Andrijevic’s result \(f : (X, \mathcal{T}) \rightarrow (Y_1, (\mathcal{U}_{Y_1})^{\alpha}) \) is closed, and so \(f : (X, \mathcal{T}) \rightarrow (Y_1, \mathcal{U}_{Y_1}) \) is \(\alpha \)-closed.

Proposition 5—If \(f \) is an \(\alpha \)-closed mapping \(f : (X, \mathcal{T}) \rightarrow (Y, \mathcal{U}) \), \(\mathcal{T} \subseteq \mathcal{I} \) and \(\mathcal{U}^{\alpha} \subseteq \mathcal{U}_{1}^{\alpha} \) then \(f : (X, \mathcal{T}) \rightarrow (Y, \mathcal{U}_{1}) \) is \(\alpha \)-closed.
Proof: If \(f : (X, \mathcal{F}) \to (Y, \mathcal{U}) \) is \(\alpha \)-closed then \(f : (X, \mathcal{F}) \to (Y, \mathcal{U}^*) \) is closed, and by Theorem 4.23 of Murdeshwar, \(f : (X, \mathcal{F}) \to (Y, \mathcal{U}^*) \) is closed. Hence \(f : (X, \mathcal{F}) \to (Y, \mathcal{U}_1) \) is \(\alpha \)-closed.

Proposition 6—If \(f : (X, \mathcal{F}) \to (Y, \mathcal{U}) \) is an \(\alpha \)-closed mapping and \(B, C \subset Y \), then if \(f^{-1}(B) \) and \(f^{-1}(C) \) have disjoint neighbourhoods, \(B \) and \(C \) have disjoint neighbourhoods in \((Y, \mathcal{U}_1)\).

Proof: If \(f : (X, \mathcal{F}) \to (Y, \mathcal{U}) \) is \(\alpha \)-closed then \(f : (X, \mathcal{F}) \to (Y, \mathcal{U}^*) \) is closed and the result follows from Murdeshwar Theorem 4.28 (2).

Proposition 7—Let \(f : X \to (Y, \mathcal{U}) \) and let \(X \) be given the preimage topology \(\mathcal{F} \). Then \(f \) is \(\alpha \)-closed if and only if \(f(X) \) is \(\alpha \)-closed in \((Y, \mathcal{U}_1)\).

Proof: One implication, namely if \(f \) is \(\alpha \)-closed then \(f(X) \) is \(\alpha \)-closed in \((Y, \mathcal{U}_1)\), is clear since \(X \) is closed in the preimage topology.

Conversely, if \(f(X) \) is \(\alpha \)-closed in \((Y, \mathcal{U}_1)\) then \(f(X) \) is closed in \((Y, \mathcal{U}^*)\). Let \(\mathcal{F}_\alpha \) be a preimage topology on \(X \) for \(f : X \to (Y, \mathcal{U}^*) \).

Then, by Theorem 4.30 of Murdeshwar \(f : (X, \mathcal{F}_\alpha) \to (Y, \mathcal{U}^*) \) is closed. Since \(\mathcal{U} \subset \mathcal{U}^* \) and therefore \(\mathcal{F} \subset \mathcal{F}_\alpha \), \(f : (X, \mathcal{F}) \to (Y, \mathcal{U}^*) \) is closed, and so \(f : (X, \mathcal{F}) \to (Y, \mathcal{U}) \) is \(\alpha \)-closed.

It is well known that the \(T_1 \) property is preserved under closed mappings. The following example shows that the \(T_1 \) property is not preserved under \(\alpha \)-closed mappings.

Example 3—Let \(X \) be an infinite set and \(p \) be a fixed point of \(X \). We define a topology \(\mathcal{F} \) on \(X \) as follows: for \(G \subset X \), \(G \in \mathcal{F} \) if \(G = \phi \) or \(G = X \) or \(X - G \) is finite. We define a topology \(\mathcal{U} \) on \(X \) as follows: for each \(G \subset X \), \(G \in \mathcal{U} \) if (i) \(G = \phi \) or \(G = X \), or (ii) \(G \subset X - \{p\} \) and \(X - G \) is finite. \((X, \mathcal{F})\) is \(T_1 \) but \((X, \mathcal{U})\) is not \(T_1 \) since for any point \(x \) distinct from \(p \) the only open set containing \(p \) namely \(X \), contains \(x \). Let \(f : (X, \mathcal{F}) \to (X, \mathcal{U}) \) be the identity function. Then \(f \) is \(\alpha \)-closed since if \(A \) is a closed subset of \((X, \mathcal{F})\) then either \(A \) is a closed subset of \((X, \mathcal{U})\) and therefore \(\alpha \)-closed in \((X, \mathcal{U})\), or \(A \) is finite, nonempty and \(p \notin A \). In this case \(\mathcal{U} \cl (\mathcal{U} \int (\mathcal{U} \cl A)) = \phi \subset A \) and therefore \(A \) is an \(\alpha \)-closed subset of \((X, \mathcal{U})\).

The following proposition is a generalization of the well known result that regularity is preserved under continuous, open and closed surjections (Murdeshwar Theorem 12.14, p. 206).

Lemma 2—If \(U \) and \(V \) are subsets of \((X, \mathcal{F})\), \(U \) is open and \(U \subset V \), then \(\cl U \subset \cl (\int (\cl V)) \).

Proof: If \(U \) is open and \(U \subset V \), then \(U \subset \cl V \) so that \(U \subset \int (\cl V) \). Therefore \(\cl U \subset \cl (\int (\cl V)) \).
Proposition 8—If \(f : (X, \mathcal{F}) \rightarrow (Y, \mathcal{U}) \) is an open, continuous, \(\alpha \)-closed surjection and \((X, \mathcal{F})\) is regular, then \((Y, \mathcal{U})\) is regular.

Proof: Let \(p \in Y \) and \(U \) be an open set in \((Y, \mathcal{U})\) containing \(p \). Let \(x \in X \) such that \(f(x) = p \). Since \((X, \mathcal{F})\) is regular there is an open set \(V \) in \((X, \mathcal{F})\) such that \(x \in V \subseteq \mathcal{F} \cap V \subseteq f^{-1}(U) \) so that \(p \in f(V) \subseteq f(\mathcal{F} \cap V) \subseteq U \). Since \(f \) is \(\alpha \)-closed, \(f(\mathcal{F} \cap V) \) is \(\alpha \)-closed and since \(f \) is open \(f(V) \) is open so that, by Lemma 2, \(\mathcal{U} \cap \text{cl} f(V) \subseteq \mathcal{U} \cap (\mathcal{U} \cap (\mathcal{U} \setminus \text{int} (\mathcal{U} \cap \text{cl} f(V)))) \subseteq U \) and therefore \(p \in f(V) \subseteq \mathcal{U} \cap \text{cl} f(V) \subseteq U \).

It is well known that normality is preserved under closed, continuous surjections Murdeshwar\(^4\) Theorem 15.3 (i). The following proposition is a generalization of this result.

Lemma 3—If \(U \) and \(V \) are subsets of \((X, \mathcal{F})\) and \(U \cap V = \emptyset \) then \(\text{int} (\text{cl} (\text{int} U)) \cap \text{int} (\text{cl} (\text{int} V)) = \emptyset \).

Proof: If \(U \cap V = \emptyset \) then \(\text{int} U \cap \text{int} V = \emptyset \), so that \(\text{int} U \cap \text{cl} (\text{int} V) = \emptyset \). Therefore \(\text{int} U \cap (\text{cl} (\text{int} V)) = \emptyset \) which implies that \(\text{cl} (\text{int} U) \cap \text{int} (\text{cl} (\text{int} V)) = \emptyset \), so that we have \(\text{int} (\text{cl} (\text{int} U)) \cap \text{int} (\text{cl} (\text{int} V)) = \emptyset \).

Proposition 9—If \(f : (X, \mathcal{F}) \rightarrow (Y, \mathcal{U}) \) is a continuous, \(\alpha \)-closed surjection and \((X, \mathcal{F})\) is normal, then \((Y, \mathcal{U})\) is normal.

Proof: Let \(A \) and \(B \) be closed sets of \((Y, \mathcal{U})\). Then there are open disjoint sets \(U \) and \(V \) in \((X, \mathcal{F})\) such that \(f^{-1}(A) \subseteq U \) and \(f^{-1}(B) \subseteq V \), by normality of \((X, \mathcal{F})\). By Proposition 6 there are disjoint \(\alpha \)-sets \(C \) and \(D \) in \((Y, \mathcal{U})\) such that \(A \subseteq C \) and \(B \subseteq D \) so that, by Lemma 3, \(\text{int} (\text{cl} (\text{int} C)) \) and \(\text{int} (\text{cl} (\text{int} D)) \) are disjoint open sets in \((X, \mathcal{F})\) containing \(A \) and \(B \) respectively.

References