ON RELATIVE TOPOLOGICAL DEGREE OF SET-VALUED
COMPACT VECTOR FIELDS

LJ. GAJIC

Prirodno-matematički fakultet, Institut za matematiku, 21000 Novi Sad, Dr Ilije
Djuricica 4, Jugoslavija

(Received 30 December 1986)

The object of this paper is to define a concept of relative topological degree for
a class of set-valued compact vector fields with respect to a closed convex
subset in a topological vector space. Some usuały properties of this concept
have been investigated too.

INTRODUCTION

The concept of relative topological degree of single-valued compact vector fields
with respect to a closed convex subset in a locally convex topological vector space was
introduced by Borisovich¹. Duc et al.² generalized this concept to the set-valued case.
In this paper, we propose to generalize this concept for a class of set-valued compact
vector fields in not necessarily locally convex linear topological spaces.

Using the concept of relatively topological degree we define a concept of topolog-
ical degree for related class of ultimately compact set-valued vector field without
retraction property of Petryshyn and Fitzpatrick³.

The paper consists of four sections. The first section sets the notations and con-
tains basic results for finite dimensional reductions. The second section is devoted to a
theory of relative topological degree in linear topological space of a class of set-valued
compact vector fields. In Section 3, we shall consider the topological degree for related
class of ultimately compact set-valued vector fields. The fourth and last section contains
two fixed point theorems.

1. PRELIMINARY RESULTS

Let X be a Hausdorff topological vector space (HTVS) over the real numbers
fields \mathbb{R}; $\mathcal{H}(X)$ the family of non-void closed convex subsets of X; $\mathcal{H}(0)$ the family
of balanced symmetric neighbourhoods of zero; L a finite-dimensional vector subspace
of X, $\mathcal{L}(0)$ the family of closed symmetric convex neighbourhoods of 0 in L; D a
nonvoid open subset of X.
Following are some basic definitions and properties of compact vector fields in topological linear spaces. Let T be a map from topological space Y into $\mathcal{H} (X)$, let A be a subset of Y, and define $T (A) = \bigcup_{x \in A} T (x)$. T is said to be upper semi continuous (u.s.c. for short) on Y iff for each $B \subset Y$ and each open $W \subset X$ with $T (B) \subset W$, there exists an open set V in Y such that $B \subset V$ and $T (V) \subset W$. A map T of Y into $\mathcal{H} (X)$ is said to be compact iff T is u.s.c. on Y and $T (Y)$ is relatively compact (i.e. $T (Y)$ is compact). A compact vector field on \mathcal{D} (to $\mathcal{H} (X)$) is a map of \mathcal{D} into $\mathcal{H} (X)$ of the form $I - T ((I - T) (x) = x - T (x))$ where T is a compact map of Y into $\mathcal{H} (X)$.

Definition 15—A subset $C \subset X$ is of Z-type iff for every $U \in \mathcal{H} (0)$ there exists a $V = V (U) \in \mathcal{H} (0)$ such that:

$$\text{conv} (V \cap (C - C)) \subset U.$$ \hfill ...(1)

(conv = convex hull).

Remark 1: Every subset in locally convex space is of Z-type. For another, non-trivial example, see Hadzic\(^2\).

Remark 2: It is easy to prove that for every $U \in \mathcal{H} (0)$ there exists $V = V (U) \in \mathcal{H} (0)$ such that:

$$\text{conv} ((A + V) \cap C) \subset A + U$$ \hfill ...(2)

for every convex subset A of Z-type subset C of X.

Hadzic\(^3\) proved the following generalization of Leray-Schauder-Nagumo lemma for Z-type subsets.

Lemma 15—Let C be a compact Z-type subset of X. Then for every $U \in \mathcal{H} (0)$ there exists a continuous map ρ of C into X and a finite set $B \subset C$ such that:

$$\rho (C) \subset \text{conv} B$$

and

$$\rho (x) - x \in U \text{ for every } x \in C.$$

Remark: The map ρ in this lemma is in fact, a so called Schauder projection\(^3\).

Proposition 1—Let Y be a Hausdorff space, X a HTVS and $T : Y \to 2^X$ compact u.s.c. mapping with $T (x)$ a closed convex non-empty subset, $T (Y) \subset C_0$, C_0 convex Z-type subset. For $U \in \mathcal{H} (0)$ let $\rho : \overline{T (Y)} \to I$ be a Schauder projection into a finite-dimensional linear subspace L such that:

$$\rho (y) - y \in V = V (U)$$

for each $y \in \overline{T (Y)}$ and for each $x \in Y$ let:

$$P \rho T (x) = \text{conv} \rho (T (x)).$$
Then:

(a) \(\text{conv } PT (x) \) and each \(PT (x) \) is compact and convex subset of \(C_0; \)

(b) \(PT : Y \to 2^X \) is u.s.c and finite-dimensional;

(c) \(PT (x) \subseteq T(x) + U \) for each \(x \in Y. \)

Proof: (a) As in Dugundji³, because \(p (T(x)) \subseteq L (\dim L < + \infty) \) is compact it's convex closure \(PT (x) \) is a compact and convex subset of \(L \) and \(C_0. \) For the same reason, the compactness of \(T(Y) \) implies that of \(\text{conv } PT (Y). \)

(b) Clearly, only that \(PT \) is u.s.c requires proof. Choose any \(x \in Y \) and let \(W \subseteq X \) be open with \(PT (x) \subseteq W. \) Since \(PT (x) \) is compact there is a \(U_1 \in \mathcal{U} (0) \) such that \(PT (x) + U_1 \subseteq W \) and let \(U \in \mathcal{U} (0) \) be so that \(U + U \subseteq U_1. \) Since \(C_0 \) is of Z-type there is a \(V \in \mathcal{U} (0) \) so that

\[
\text{conv } ((C + V) \cap C_0) \subseteq C + U
\]

for every convex subset \(C \) of \(C_0. \) Clearly \(p (T(x)) \subseteq PT (x) \subseteq PT (x) + V. \) Being the composition of two point-compact and u.s.c set functions, \(x \mapsto p T (x) \) is also point-compact and u.s.c, so there is a neighbourhood \(V(x) \in \mathcal{U} (x) \) with \(p T (x) \subseteq PT (x) + V \) for all \(y \in V(x). \) According to the choose of \(V \) we find:

\[
PT (y) = \text{conv } (p T (y) \cap C_0) \subseteq \text{conv } ((PT (x) + V) \cap C_0)
\]

\[
\subseteq PT (x) + U \subseteq PT (x) + U_1 \subseteq W
\]

for all \(y \in V(x), \) so \(PT (V) \subseteq W \) and because \(x \) is arbitrary \(PT \) is u.s.c.

(c) Let \(z \in PT (x). \) We have \(z = \sum_{i=1}^n \lambda_i z_i \) for suitable \(z_i \in p T(x) \) and real

\(0 \leq \lambda_i \leq 1 \) with \(\sum_{i=1}^n \lambda_i = 1. \) For each \(i \) choose \(y_i \in T(x) \) so that \(p(y_i) = z_i. \) Then

\[
p(y_i) - y_i = v_i \in V (i = 1, 2, \ldots, n)
\]

so we have \(y_i + v_i \in T(x) + V \) for each \(i \) and

\[
z = \sum_{i=1}^n \lambda_i p(y_i) = \sum_{i=1}^n \lambda_i (y_i + v_i)
\]

\(\in \text{conv } ((T(x) + V) \cap C_0) \subseteq T(x) + U. \)

2. A Degree Theory

Throughout this section, \(T \) is u.s.c map of \(D \) into \(\mathcal{K}(X) \) and \(K \) is a closed convex subset of \(X \) such that:

(i) \(H = \text{cl } T(K \cap D) \) is compact,
(ii) \(H \subseteq K \)

(iii) \(0 \in X \setminus (I - T) (K \cap \partial D) \),

(iv) \(H \) is contained in some convex Z-type subset \(C_0 \) of \(X \).

As in Ma's paper\(^8\) one can prove:

Proposition 2—Let \(Y \) be a closed subset of \(D \). Then \((I - T)(K \cap Y) \) is closed. In particular, there exists a \(V \in \mathcal{C}(0) \) such that :

\[
V \cap (I - T)(K \cap \partial D) = \emptyset.
\]

...(3)

Let \(V_1 \in \mathcal{C}(0) \) be such that :

\[
V_1 \subset V
\]

...(3')

where \(V \) is from Proposition 2.

Assume that \(D \cap K \neq \emptyset \). With \(PT \) as in Proposition 1 for \(U = V_1 \) (as in (3')) we have that :

\[
0 \notin (I - PT)(K \cap \partial D).
\]

Now, let \(L \) be a finite dimensional vector subspace of \(X \) such that \(p \circ (H) \subseteq L \) and \(L \cap K \cap D \neq \emptyset \). Then \(L \cap K \) is closed convex subset of finite dimensional vector space \(L \). Hence, by Tietze’s theorem there exists a continuous map \(f \) of \(L \) into \(K \cap L \) such that \(f(x) = x \) for each \(x \in L \cap K \). Let \(U \) be a relativity open subset of \(L \) such that :

\[
L \cap K \cap D \subseteq U \subseteq f^{-1}(L \cap K \cap D).
\]

As in Duc et al.\(^9\) one can prove that \(0 \notin (I - PTf)(\partial U) \) and that \(PT f \; |_U \) is a compact map on \(U \) to \(\mathcal{H}(L) \) so \(\deg (U, 0, I - PTf) \) is defined. Whence we have the following definition:

Definition 2—Let \(T \) be u.s.c map of \(\overline{D} \) into \(\mathcal{H}(X) \). Suppose \(K \) is a closed convex subset of \(X \) such that (i), (ii), (iii), (iv) are satisfied.

We pose :

\[
D_K (D, 0, I - T) = \begin{cases}
0 & \text{if } K \cap D = \emptyset, \\
\deg (U, 0, I - PTf) & \text{if } K \cap D \neq \emptyset,
\end{cases}
\]

where \(\deg (U, 0, I - PTf) \) is topological degree in finite dimensional vector space.

We shall say that \(D_K (D, 0, I - T) \) is the degree at \(0 \) of \(I - T \) on \(D \) relative to \(K \).

Similarly as in Duc et al.\(^9\) we can prove that \(D_K (D, 0, I - T) \) does not depend on the choice of \(PT, L, f \) and \(U \) so this concept is well defined.
Remark: For $K = E$ this definition is given in Gajic since (iv) imply that T is uniformly finite approachable map.

Now, we shall show that $D_K(D, 0, I - T)$ enjoys usually properties. At first

Theorem 1—Suppose $D_K(D, 0, I - T) \neq 0$. Then there exists an x in $D \cap K$ such that $x \in T(x)$.

Proof: As in Duc et al.².

To proceed with study of the properties of D_K, we shall need the following extension of the Leray-Schauder-Nagumo lemma.

Lemma 2—Let $H_1 \subset H_3$ be two nonvoid compact subsets of convex Z-type subset $H \subset X$ and let $U \in \mathcal{Y}(0)$. Then there exist two open sets $W_1 \subset W_2$ in X such that $H_1 \subset W_1$, $H_2 \subset W_2$ and a continuous map p of W_2 into $\text{conv} B$, B finite subset of H_2, such that

1. $x - p(x) \in U$ for each $x \in H \cap W_2$,
2. $p(W_i) \subset \text{conv} H_1$.

Proof: Let be $V = V(U) \in \mathcal{Y}(0)$ such that (1) (for $C = H$) is valid and $V_1 \in \mathcal{Y}(0)$, $V_1 \subset V$. Further, let $\{a_1, a_2, \ldots, a_m\} \subset H_1$ and $\{a_m, \ldots, a_n\} \subset H_2 \setminus \sum_{j=1} V_1$ be such that

$$H_1 \subset W_1 := \bigcup_{j=1}^m (a_j + V_1)$$

and

$$H_2 \setminus \bigcup_{j=1}^m (a_j + V_1) \subset \bigcup_{j=m+1}^n (a_j + V_1).$$

Let

$$W_2 := (\bigcup_{j=1}^m (a_j + V_1)) \cup (\bigcup_{j=m+1}^n (a_j + V_1)).$$

It seen that W_1, W_2 are open, $W_1 \subset W_2$, $H_1 \subset W_1$, $H_2 \subset W_2$. Let $\{q_j\}_{j=1}^n$ be a partition of unity for cover in (4) and

$$p(x) = \sum_{j=1}^n q_j(x) a_j, x \in W_2.$$

For $x \in W_2 \cap H$ we have:

$$x - p(x) = \sum_{i=1}^n q_i(x) (x - a_j)$$

(equation continued on p. 274)
As in (Duc et al.2 one can prove 2).

Definition 3—Let T, K be as in Definition 2. Put $K (T, D, K, 0) = K$

\[
K (T, D, K, j) = \underbrace{\text{conv} \ T (\bar{D} \cap K (T, D, K, j - 1))}_{i < j} \text{if } (j - 1) \text{ exists, } K (T, D, K, j)
\]

\[
\cap K (T, D, K, i) \text{ if } (j - 1) \text{ does not exists.}
\]

If T, K are as in Definition 2 it is not difficult to prove Lemma 4, Proposition 5, Proposition 6. Theorem 3 as in Duc et al.2.

Similarly as in Duc et al.2 one can prove:

Theorem 2—Let F be a u.s.c map of $[0, 1] \times \bar{D}$ into $\mathcal{K} (X)$ with following properties:

1. $0 \notin x - F (t, x)$ for every $(t, x) \in [0, 1] \times (K \cap \partial D)$;
2. $H = \text{cl} F (J \times (K \cap \bar{D}))$ is a compact subset of K, $J = [0, 1]$;
3. H is contained in some convex Z-type subset C_0 of X.

Put $F_t (x) = F (t, x)$ for all $(t, x) \in [0, 1] \times \bar{D}$.

Then $D_K (D, 0, I - F_t)$ is defined for each $t \in [0, 1]$ and

\[
D_K (D, 0, I - F_t) = D_K (D, 0, I - F_0).
\]

3. **Topological Degree of Ultimately Compact Vector Fields**

The concept of ultimately compact vector fields was introduced by Sadovski9. This concept has been generalized by Petryshyn and Fitzpatrick7 to set-valued vector fields in locally convex linear topological spaces in which closed convex sets are retracts. We shall rely on results in Section 2 on K-degree to define the concept of degree for one class of ultimately compact set-valued vector fields in general linear vector spaces without the retraction condition.

Definition 4—Let Y be a topological space and let F be an u.s.c map of $Y \times \bar{D}$ into $\mathcal{K} (X)$. Define, for every ordinal i

\[
K (F, Y \times \bar{D}, 0) = \text{conv} \ F (Y \times \bar{D}).
\]

\[
K (F, Y \times \bar{D}, i) = \text{conv} \ F (Y \times (\bar{D} \cap K (F, Y \times D, i - 1)))
\]

if $(i - 1)$ exists.
Set-Valued Compact Vector Fields

\[K(F, Y \times \overline{D}, i) = \bigcap_{j < i} K(F, Y \times \overline{D}, j) \text{ if } (i - 1) \text{ does not exists.} \]

If no confusion can arise, we shall write \(K_i \) for \(K(F, Y \times \overline{D}, i) \). If \(u \) is an ordinal strictly larger than the cardinal of \(\text{conv} \ F(Y \times \overline{D}) \), then as is easily seen \(K_i = K_u \) for every ordinal \(i > u \).

If \(u \) is such an ordinal we put
\[K(F, Y \times \overline{D}, u) = K_u. \]

We shall say \(F \) is \(Y \)-ultimately compact map of \(Y \times \overline{D} \) into \(\mathcal{H}(X) \) if \(\text{cl} \ F(Y \times (\overline{D} \times K(F, Y \times \overline{D}))) \) is compact.

If \(Y \) is a singleton, we identify \(F \) with a map of \(\overline{D} \) into \(\mathcal{H}(X) \), in this case if \(F \) is \(Y \)-ultimately compact, we shall say \(F \) is ultimately compact, for short.

Definition 5—Let \(T \) be an ultimately compact map of \(\overline{D} \) into \(\mathcal{H}(X) \) such that \(0 \not\in X \) \((I - T) \) \((\partial \overline{D}) \) and \(T(\overline{D}) \) is contained in some convex subset of \(Z \)-type. For \(K = K(T, \overline{D}) \), we see from Definition 4 that \(K \) has all the properties of the \(K \) in Definition 2. Hence that \(D_{K(T, \overline{D})}(D, 0, I - T) \) is defined. We say \(D_{K(T, \overline{D})}(D, 0, I - T) \) is the topological degree of the ultimately compact vector field \(I - T \).

Whit \(T, K \) as in above (Definition 5), Theorems 5 and 6 of Duc et al.\(^2\), Theorem 6\(^3\) are valid and the next theorem is valid too.

Theorem 3—Let \(F \) be a \(Y \)-ultimately compact map of \(Y \times \overline{D} \) into \(\mathcal{H}(X) \) such that \(0 \notin X - F(t, x) \) for \((t, x) \in Y \times \overline{D} \). If we suppose that \(F(Y \times \overline{D}) \) is contained in some convex \(Z \)-type subset then:

1. \(F \) is ultimately compact map into \(\mathcal{H}(X) \),
2. \(D_{K(F_0, \overline{D})}(N, 0, I - F_0) = D_{K(F_1, \overline{D})}(D, 0, I - F_1). \)

4. Some Fixed Point Theorems

We shall conclude this paper with fixed point theorems.

Theorem 4—Let \(A \) be a nonvoid convex not necessarily closed \(Z \)-type subset of \(X \) and let \(T \) be a compact map of \(A \) into \(\mathcal{H}(X) \) such that \(\text{cl} \ T(A) \subseteq A \). Then \(T \) has a fixed point in \(A \).

Proof: Similarly as in Duc et al.\(^2\) but using Proposition 1.

Theorem 5—Let \(B \) be a nonvoid convex (not necessarily closed) \(Z \)-type subset of \(X \), let \(T \) be an ultimately compact map of \(B \) into \(\mathcal{H}(X) \) such that \(\text{cl} \ T(B) \subseteq B \) and \(K(T, B) \neq \phi \). Then \(T \) has a fixed point.

Proof: As in Duc et al.\(^2\) but using Theorem 4.
REFERENCES

3. J. Dugundji, and A. Granas, Fixed Point Theory, Volume 1, Warszawa, 82.