ON FARTHEST POINT PROBLEM

B. B. PANDA

Department of Mathematics, Sambalpur University, Jyoti Vihar
Burla, Sambalpur, Orissa 768017

(Received 21 January 1987; after revision 30 April 1987)

In this paper, it is shown that every uniquely remotal set in spaces like \(L^1 \), \(l^1 \) and \(L^\infty [0, 1] \) is a singleton. The same result is also shown to be true in subalgebras of \(C(\Omega) \), where \(\Omega \) is compact, and in certain infinite dimensional subspaces of a Hilbert space with a modified norm. The problem has been also explored in a subspace \(Y \) of \(C[0, 1] \) which contains congruent images of all separable Banach spaces.

1. Introduction

The present paper considers the following farthest point problem:

'Let \(K \) be a uniquely remotal set in a normed linear space \(X \). Then is it necessarily a singleton?'

Recall that a nonempty bounded set \(K \) in a normed linear space \(X \) is called remotal (respectively uniquely remotal) if the map \(q : X \to 2^K \) defined by \(q(x) = \{ y \in K : \| x - y \| = \sup_{z \in K} \| x - z \| \} \) is nonempty (respectively singleton) for every \(x \) in \(X \). An element belonging to \(q(x) \) is called a farthest point from \(x \). The function \(F_K(x) = \sup_{y \in K} \| x - y \| \) is called the farthest distance function associated with \(K \).

Some partial and affirmative answers to the problem are known\(^1\)\(^-\)\(^9\). In the case of a Hilbert space, the problem reduces to answering another famous but unsolved problem, namely, the convexity problem of Chebyshev sets (see Klee\(^7\)). Some general infinite dimensional spaces admitting an affirmative answer to the problem are \(c_0 \), \(c \) and \(C(\Omega) \), where \(\Omega \) is compact and Hausdorff. A few more cases are given by Bosznay\(^8\) (preprint). In the present paper the problem has been solved in spaces like \(L^1 [0, 1] \), \(l^1 \) and \(L^\infty [0, 1] \). It has been also shown that the problem admits an affirmative answer in subalgebras of \(C(\Omega) \) and in certain subspaces of a Hilbert spaces with a modified norm thus improving some of the known results of Bosznay\(^8\) proved under more restricted conditions. The problem has been also explored in a certain subspace \(Y \) of \(C[0, 1] \) which contains the congruent images of all separable Banach spaces.

2. Main Results

To begin with, we consider the farthest point problem in the space \(L^1 [0, 1] \). Accordingly, we denote
\[A_{n,l} = \left(\frac{i}{n}, \frac{i+1}{n} \right), i = 0, 1, ..., n - 1 \]

\[Y_n = \text{span} \{ \chi_{A_{n,l}} : 0 \leq i \leq m - 1, 1 \leq m \leq n \} \]

and

\[Y = \text{span} \{ \chi_{A_{m,l}} : 0 \leq i \leq m - 1, \text{and for all } m \} \]

where \(\chi_A \) denotes the characteristic function of the set \(A \).

Theorem 1—Every uniquely remotal set in \(L^1 [0, 1] \) is a singleton.

Proof : Let \(K \) be a uniquely remotal set in \(L^1 [0, 1] \). Let \(x \in Y \); then \(x \in Y_n \) for some \(n \) and it can be written in the form \(x = \alpha_1 \chi_{B_1} + ... + \alpha_m \chi_{B_m} \), where \(B_m \)'s \(1 \leq m \leq n \left(\frac{n+1}{2} \right) \) are pairwise disjoint sets obtained in the usual way from \(A_{n,l} \)'s satisfying \(\bigcup_{m=1}^{n(n+1)/2} B_m = \bigcup \{ A_{n,l} : 0 \leq i \leq m - 1, 1 \leq m \leq n \} \). Let \(A \) and \(B \) be any two disjoint sets obtained by taking union of members of the collection \(B_m \). When \(n \) is fixed, there are only a finitely many pairs \((A, B) \) and therefore the total number of such pairs \((A, B) \) is countable when \(n \) ranges over \(N \). We shall now say that an \(x \in Y \) is in \(K (A, B) \) if

\[
\int_A (x - q(x)) \, d\mu \geq 0,
\]

\[
\int_B (x - q(x)) \, d\mu \leq 0
\]

and \(x(t) = 0 \) ae. on \((A \cup B)^c \). Note that one of \(A \) and \(B \) could be also empty. It will be first shown that \(q(x_1) = q(x_2) \) whenever \(x_1, x_2 \in K (A, B) \). Accordingly, define \(x_3 \in Y \) as follows:

\[
x_3(t) = \begin{cases}
\max \{ x_1(t), x_2(t) \} & \text{if } t \in A \\
\min x_1(t), x_2(t) & \text{if } t \in B \\
0 & \text{if } t \notin A \cup B.
\end{cases}
\]

Then, by definition,

\[
\| x_3 - q(x_1) \| = \int_A (x_3 - q(x_1)) \, d\mu + \int_B (q(x_1) - x_3) \, d\mu
\]

\[
+ \int_{[0,1]} |q(x_1)| \, d\mu
\]

\[
= \int_A (x_3 - x_1) \, d\mu + \int_A (x_1 - q(x_1)) \, d\mu + \int_B (q(x_1) - x_3) \, d\mu
\]

\[
+ \int_B (x_1 - x_3) \, d\mu + \int_{[0,1]} |q(x_1)| \, d\mu
\]

\[
= \| x_3 - x_1 \| + \| x_1 - q(x_1) \| \text{ for } i = 1, 2.
\]
But \(F_K (x_3) - F_K (x_i) \leq \|x_3 - x_i\| \) and this, coupled with the unique remotal property of \(K \), implies that \(q (x_i) = q (x_3) \) for \(i = 1, 2 \) and this is what it was claimed earlier.

Now, observing that the number of \(K (A, B) \) so constructed is countable and that any \(x \in Y \) belongs to at least one \(K (A, B) \), we conclude that the subspace \(Y \) admits only countably many farthest points in \(K \). But, as in Lemma 3 of Asplund\(^1\) any one dimensional subspace \(L \) of \(Y \) is then union of a countable collection \(\{L \cap q^{-1} (x)\} \) (empty sets being discarded) of disjoint closed sets in \(L \) which is an impossibility since the real line (a homeomorphic of \(L \)) cannot be covered by a countable collection of disjoint closed sets. Thus \(Y \) must admit a single farthest point, say, \(q (x_0) \) in \(K \).

Finally, we observe that \(Y \) is dense in \(L^1 [0, 1] \) and hence for any \(x \in L^1 [0, 1] \), there is a sequence \(x_n \in Y \) such that \(x_n \to x \). But \(F_K (x_n) = \|x_n - q (x_0)\| \), and by the continuity of \(F_K (x) \), we obtain \(F_K (x) = \|x - q (x_0)\| = \|x - q (x_0)\| \). As \(K \) is uniquely remotal, this leads to \(q (x) = q (x_0) \) for all \(x \in L^1 [0, 1] \). This implies that \(K \) must be a singleton.

In particular, when the Lebesgue measure is replaced by the counting measure, the sets \(A, B \) can be taken to be finite but disjoint subsets of \(N \) and the subspace \(Y \) is then taken to be the span of \(\{e_1, e_2, \ldots, e_n, \ldots\} \). We now set \(x \in K (A, B) \) if

\[
(x - q (x)) (n) \geq 0 \quad \text{for} \quad n \in A \\
< 0 \quad \text{for} \quad n \in B
\]

and

\[
x (n) = 0 \quad \text{for} \quad n \notin A \cup B.
\]

The following result, a partial answer to which has been given by Theorem 2 of Bosznay\(^2\), now follows immediately.

Theorem 2—Every uniquely remotal set in \(L^1 \) is a singleton.

Theorem 3—In \(L^\infty [0, 1] \), every uniquely remotal set is a singleton.

Proof: Let \(K \) be a uniquely remotal set in \(L^\infty [0, 1] \). For \(x, y \in L^\infty [0, 1] \), define

\[
A_n = \{ t \in [0, 1] : \| x (t) - q (x) (t) \| \geq F_K (x) - \frac{1}{n} \},
\]

and

\[
B_n = \{ t \in [0, 1] : \| y (t) - q (y) (t) \| \geq F_K (y) - \frac{1}{n} \}.
\]

There is no loss of generality in assuming that \(F_K (x) = F_K (y) \). For, if \(F_K (x) > F_K (y) \), then \(\lambda > 1 \) can be chosen such that

\[
\| \lambda y + (1 - \lambda) q (y) - q (y) \| = F_K (\lambda y + (1 - \lambda) q (y)) = \lambda F_K (y) = F_K (x).
\]
We have two cases to consider.

Case I—Suppose that \(\mu (A_n \cap B_n) = 0 \) for some \(n \). Then define a \(z \in L^\infty [0, 1] \) by setting

\[
 z(t) = \begin{cases}
 x(t) & \text{if } t \notin B_n \\
 y(t) & \text{if } t \in B_n.
 \end{cases}
\]

Clearly, \(z \) has both \(q(x) \) and \(q(y) \) as farthest points and, by the unique remotal property of \(K \), \(q(x) = q(y) \).

Case II—Suppose that \(\mu (A_n \cap B_n) > 0 \) for all \(n \). Denote \(C_n = A_n \cap B_n \). Then the ess. sup of both \(x - q(x) \) and \(y - q(y) \) need only be taken on \(C_n \) to obtain \(F_K(x) \) and \(F_K(y) \) respectively. If \(\mu (C_n) < 1 \), define an \(L^\infty \)-function \(u \) by putting

\[
 u(t) = \begin{cases}
 \alpha F_K(\theta) & \text{if } t \notin C_n \\
 0 & \text{if } t \in C_n
 \end{cases}
\]

where \(\alpha \) is so chosen that \((\alpha - 2) F_K(\theta) > F_K(x) \). Choosing a suitable \(\lambda > 1 \) in \(x_\lambda = \lambda x + (1 - \lambda) q(x) \) satisfying \(F_K(x_\lambda) = F_K(u) \), we now apply Case I to the pair \((C_n, C_n')\) and observing that \(u - q(u) \) assumes its ess. sup norm on the set \(C_n' \), we obtain \(q(u) = q(x) \). The same way, we also obtain \(q(u) = q(y) \) and, consequently, \(q(x) = q(y) \).

On the other hand, if \(\mu (C_n) = 1 \) for all \(n \), then with \(C = \cap C_n \), we have \(\mu (C) = 1 \) and \(|x(t) - q(x)(t)| = F_K(x) \) and \(|y(t) - q(y)(t)| = F_K(y) \) for all \(t \in C \). Choose an \(E \subset C \) with \(0 < \mu (E) < 1 \) and then define

\[
 u(t) = \begin{cases}
 \alpha F_K(\theta) & \text{if } t \notin E \\
 0 & \text{if } t \in E
 \end{cases}
\]

where \(\alpha \) is so chosen that \((\alpha - 2) F_K(\theta) > F_K(x) \). Again, an application of Case I to the pair \((E, E')\) leads to \(q(x) = q(y) \). Since \(x \) and \(y \) are arbitrary, \(K \) contains a single farthest point and, consequently, \(K \) must reduce to a single element.

The following is an analogue of Theorem 3 of Bosznay.

Theorem 4—Let \(H \) be a Hilbert space and let \(\{f_n \} \) be an orthonormal sequence in \(H \). Let \(Y = \{f_1, f_2, ..., f_n, ...\} \). Then, for all \(\epsilon > 0 \), there exists a \(\| \cdot \| \) norm in \(Y \) such that for all \(x \in Y \), \((1 - \epsilon) \|x\| \leq \|x\| \leq (1 + \epsilon) \|x\| \), and in \((Y, \| \cdot \|) \), every uniquely remotal set is a singleton.

Proof: The proof is similar to that of Theorem 3 of Bosznay and we give it just for completeness.

Denote

\[
Y_n = \{x \in \{f_1, f_2, ..., f_n\} : \|x\| = 1\},
\]

and

\[
G_1 = \{x \in \{f_1\} : \|x\| < 1\}.
\]
Suppose \(\{Y_1^1, Y_2^1, \ldots, Y_{k(1)}^1\} \) is an \(\epsilon/16 \)-net in \(G_1 \), and for \(n > 1 \), let \(G_n = \{x \in Y_n : d(x, \in Y_{n-1}) > \frac{\epsilon}{4} (1 - \frac{1}{2^n})\} \), and \(\{y_1^n, y_2^n, \ldots, y_{n(n)}^n\} \) be an \(\epsilon/4^{n+1} \)-net in \(G_n \). As \(Y_n \)'s are symmetric about the origin, so are the sets \(G_n \)'s and therefore, the set \(P = \bigcup_{n=1}^{\infty} \{y_i^n : 1 \leq i \leq k(n)\} \) can be assumed to be symmetric about the origin. Let \(\{x_n\}_{n \in \mathbb{N}} \) be an enumeration of \(P \).

Next, let \(x \in Y \) and \(\|x\| = 1 \). Then \(x \in Y_n \) for some \(n \) and \(d(y, G_{n+1}) = \frac{\epsilon}{4} (1 - \frac{1}{2^{n+1}}) \) for all \(y \in Y_n \). Considering the \(\epsilon/4^{n+1} \)-net of \(G_{n+1} \), an element \(y_i^{n+1} \in P \) can be chosen so that \(\|x - y_i^{n+1}\| \leq \frac{\epsilon}{4} + \frac{\epsilon}{4^{n+1}} < \epsilon \), and consequently

\[
\inf_n \|x - x_n\| < \epsilon. \tag{1}
\]

From the fact that \(Y_n \cap G_{n+1} = \emptyset \), and \(Y_n \cup G_{n+1} \subset Y_{n+1} \), it is easy to check that

\[
\min_{P \cap Y_{n+1}} \|x - P_{n+1}\| \leq \inf_{y \in P \cap Y'} \|x - y\|, \quad \forall m \geq n + 2.
\]

It now follows that \(\min_n \|x - x_n\| \) exists and, therefore, (1) reduces to

\[
\min_n \|x - x_n\| < \epsilon. \tag{2}
\]

In view of the identity

\[
< y, x_n > = \|y\| \left(1 - \frac{\|y\| - \|x_n\|^2}{2}\right) \tag{3}
\]

a norm \(\|\cdot\|_\epsilon \) can be defined on \(Y \) by the formula

\[
\|y\|_\epsilon = \max_n \max \{< y, x_n >, < y, - x_n >\}
\]

\[
= \max_n < y, x_n >, \text{ by the symmetry of } P.
\]

In view of (2) and (3) and the fact that \(\|x_n\| = 1 \), it is easy to check that \(\|\cdot\|_\epsilon \) is a norm with the desired property. The rest follows from Theorem 3 of Asplund⁴.

Now, we consider the farthest point problem in subalgebras of \(C(\Omega) \), where \(\Omega \) is a compact topological space. The same with \(\Omega \) compact and Hausdorff and the subalgebra separating and containing the constant functions has been considered by Bosznay⁵ in his Theorem 1.

Theorem 5—Every uniquely remotal set in a subalgebra \(\mathcal{A} \) of \(C(\Omega) \) is singleton.
Proof: Let K be a uniquely remotal set in \mathcal{A}. We shall now say that an evaluation functional $\delta_{t_{0}} (t_{0} \in \Omega)$ corresponds to a farthest point $q (x)$ in K if $\delta_{t_{0}} (x - q (x)) = \|x - q (x)\| = F_{K} (x)$ for some x in \mathcal{A}.

Assume that the evaluation functionals $\delta_{t_{1}}$ and $\delta_{t_{2}}$ correspond to farthest points $q (x)$ and $q (y)$ respectively. As usual, there is loss of generality in assuming that $F_{K} (x) = F_{K} (y)$. We then obtain

$$x (t_{2}) - q (y) (t_{2}) \leq y (t_{2}) - q (y) (t_{2}) = F_{K} (y)$$

and

$$y (t_{1}) - q (x) (t_{1}) \leq x (t_{1}) - q (x) (t_{1}) = F_{K} (x).$$

Therefore,

$$x (t_{2}) \leq y (t_{2}) \text{ and } y (t_{1}) \leq x (t_{1}).$$

Equality of any of these two will lead to $q (x) = q (y)$. So we shall assume that $x (t_{2}) < y (t_{2})$ and $y (t_{1}) < x (t_{1})$. Now define a function h by setting $h (t) = x (t) - y (t)$. Clearly, $h \in \mathcal{A}$, $h (t_{1}) > 0$ and $h (t_{2}) < 0$. Further define

$$\lambda (t) = \frac{h (t) - h (t_{2})}{h (t_{1}) - h (t_{2})} \cdot \frac{\delta_{t_{1}} (t)}{h (t_{1})}, \lambda \in \mathcal{A}$$

and

$$g (\lambda) = \frac{\lambda^{2} \left(m - \lambda^{2}\right)^{m-1}}{(m - 1)^{m-1}}, \|\lambda\| < \sqrt{m}$$

where m is any integer greater than 3. Clearly $g_{\min} (\lambda) = 0$, $g_{\max} (\lambda) = 1$ and $g (\lambda) \in \mathcal{A}$. The function $z (t) = g (\lambda (t)) x (t) + (1 - g (\lambda (t))) y (t)$ is in \mathcal{A} and has both $q (x)$ and $q (y)$ as farthest points. By the unique remotal property of K, it follows that $q (x) = q (y)$. Further, every evaluation functional corresponds to at the most one farthest point in K (for example, put $t_{1} = t_{0}$ in the above). Thus the collection of all δ_{t}’s ($t \in \Omega$) correspond to a single farthest point $q (x_{0})$ say, in K. Similar is the case for $- \delta_{t}$’s ($t \in \Omega$). If the latter farthest point is $q (y_{0})$ and if $q (x_{0}) \neq q (y_{0})$, then $(q (x_{0}) + q (y_{0}))/2$ will admit both $q (x_{0})$ and $q (y_{0})$ as farthest points which is a contradiction. This completes the proof.

We note that if Ω fails to be Hausdorff, then $C (\Omega)$, with Ω compact, may fail to contain any nonconstont continuous function. Nevertheless, we have the following:

Corollary—Every uniquely remotal set in $C (\Omega)$, where Ω is compact topological space, is a singleton.

In case $\Omega = [0, 1]$ the idea that whether or not the result of Theorem 5 could be extended to every subspace of $C (\Omega)$ is quite revealing. An affirmative answer would imply that every uniquely remotal set in a separable Banach space would be a singleton. This is due to the fact that every separable Banach space is congruent with a
subspace of $C [0, 1]$ (see Holmes[^4], p. 226) and, secondly, the solution to the farthest point problem remains unaffected in a congruent Banach space. This fact necessitates the study of the farthest point problem in certain special class of subspaces of $C [0, 1]$. To this end, we consider the following subspace of $C [0, 1]$. Let

$$Y = \{ x \in C [0, 1] : x^* (t) \text{ exists and is equal to zero }$$

for all $t \in [0, 1] \sim P$, where P is the Cantor set). Obviously, Lebesgue's singular function is a typical element of the space Y. It can be easily checked that Y is a complete normed linear space under the induced sup norm. The following theorem, now, generalizes the well-known result[^6] that any separable Banach space is congruent with a subspace of $C [0, 1]$.

Theorem 6—Any separable Banach space is congruent with a subspace of Y.

Proof: The proof is almost a reproduction of the same given in Holmes[^4] (p. 226). The continuous function has defined from $[0, 1]$ onto $U (X^*)$ can be seen to be linear on open intervals (s_n, t_n) and, therefore, the inclusion map $i : x \rightarrow C U (X^*)$ followed by the congruence $T : C (U (X^*)) \rightarrow C [0, 1]$ takes X into a subspace of Y via the formula $(Tx)(t) = \langle x, h (t) \rangle \forall t \in [0, 1]$.

Theorem 7—Every uniquely remotal set K in the space Y is a singleton.

Proof: The proof follows from the fact that Y is congruent to $C (P)$, where P is the cantor set.

Our interest lies now in congruent images in Y of separable Banach spaces. The solution to the farthest point problem in a separable Banach space would then reduce to that of an identical problem in a congruent subspace in Y. However, this remains an open problem.

References