O-DISTRIBUTIVE POSETS

Y. S. PAWAR AND V. B. DHAMKE

Department of Mathematics, Shivaji University, Kolhapur 416004

(Received 7 December 1989)

In this paper O-distributivity in a partially ordered set (poset) is defined. Some equivalent formulations for O-distributivity, in poset, are obtained. It is shown that o-distributive poset is a generalization of pseudocomplemented poset. Mainly, we prove the following:

Theorem – For a O-distributive poset P, the set of all annihilator ideals, A(P), is a Boolean algebra.

1. Introduction

Venkatanarasimban⁵ has defined pseudocomplemented partially ordered sets (posets). He proved that a poset P with O is pseudocomplemented if and only if $(a]^*$ is a principal ideal for every a in P. But it is observed that for $(a]^*$ to be an ideal (in the sense of Venkatanarasimban⁵, it is necessary and sufficient that, P is O-distributive. Also the purpose of this paper is to extend some of the results of Pawar³ to partially ordered sets. Note that the definition of O-distributive semilattices given by Pawar³ is different from that given by Varlet⁴.

In section 1 we collect some known results and definitions which are used in subsequent sections. Section 2 deals with the definition, examples and several properties of O-distributive poset. In the concluding section annihilator ideals in a O-distributive poset are studied in detail.

2. PRELIMINARIES

P denotes a partially ordered set with the ordering relation \triangleleft . For a finite set $A = \{a_1, a_2, \dots a_n\}$ the least upper bound (l.u.b.) and the greatest lower bound (g.e.b.) of A are denoted by $a_1 \vee a_2 \vee \dots \vee a_n$ and $a_1 \wedge a_2 \wedge \dots \wedge a_n$ respectively. The least and the greatest elements of a poset, when they exist, are denoted by O and 1 respectively. A non-null subset A of P is called as a semi-ideal if $a \in A$, $b \leq a \Rightarrow b \in A$. A semi-ideal A of A is called as an ideal if the least upper bound of any finite number of elements of A, whenever it exists, belongs to A. This definition of an ideal in a poset given by Venkatanarasimhan is different from that introduced by Frink. Set inclusion, set intersection and set-union will be denoted by $C \cap A$ and $C \cap A$ respectively.

An element a of a poset P with O is said to have the pseudocomplement a^* in P if there exists in P an element a^* such that (i) $(a] \subseteq (a^*] = (0]$ and (ii) if $(a] \cap (b] = (0]$ for b in P then $(b] \subseteq (a^*]$ A poset P is said to be pseudocomplemented if each of its element has a pseudocomplement. An element a of a poset P with 0 is said to be dense if $(a] \cap (b] = (0] \Rightarrow b = 0$ for $b \in P$. The set of all elements x of P such that $x \leq a$ for some fixed a in P forms an ideal of P. It is called the principal ideal generated by a and is denoted by (a].

We need the following lemmas in sequel.

Lemma 15—The set I of all ideals of a poset P with O is a complete lattice under set inclusion as ordering relation.

Lemma 2⁵—In a poset P a finite join $a_1 \lor a_2 \lor ... \lor a_n$ exists if and only if $(a] \lor (a_2] \lor ... \lor (a_n]$ is a principal ideal. Also whenever $a_1 \lor ... \lor a_n$ exists

$$(a_1 \lor ... \lor a_n] = (a_1] \lor (a_2] \lor ... \lor (a_n]$$

(\vee denotes the join in I_{μ}).

Lemma 35—In a poset P with O the pseudocomplement a^* of an element a exists if and only if $(a]^* = \{x \in P/(x] \cap (a] = (0]\}$ is a principal ideal. Further whenever a^* exists, $(a]^* = (a^*]$.

Lemma 4^3 —Every distributive lattice with O (semilattice with O) is a O-distributive lattice (semilattice).

Lemma 5—Every pseudocomplemented semilattice is O-distributive. Throughout this paper the symbol P denotes a poset P with O.

2. O-DISTRIBUTIVE POSETS

We begin with

Definition 1—A poset P is called as a O-distributive poset if for $a, x_1, ... x_n \in P$ (n finite)

$$(a] \cap (x_i] = (\theta) \forall i, 1 \leq i \leq n \text{ imply } (a] \cap (x_1 \vee ... \vee x_n] = (0]$$

whenever $x_1 \vee x_2 \vee ... \vee x_n$ exists in P .

Remark: It is clear that our definition concides with the definition of Pawar³ in a semilattice.

Examples of O-distributive posets are given in the following figures.

Fig. 1.

Fig. 2.

Examples—Note that every poset with O need not be O-distributive. The following is an example of a non-O-distributive poset.

Fig. 3.

Example—In a poset P define

$${a}^* = {b \in P/(a] \cap (b] = (0)}.$$

We characterize O-distributive poset as

Theorem 2—Poset P is O-distributive if and only if $\{a\}^*$ is an ideal for any a in P.

PROOF: Obviously in any poset $\{a\}^*$ is a semi-ideal. If for $x_1, ..., x_n$ (n finite) in $\{a\}^*, x_1 \lor ... \lor x_n$ exists then by O-distributivity $\{a\} \cap (x_1 \lor ... \lor x_n] = (0]$ proving that $x_1 \lor x_2 \lor ... \lor x_n \in \{a\}^*$ i.e. $\{a\}^*$ is an ideal. Conversely, if $\{a\}^*$ is an ideal then by the definition of an ideal, O-distributivity of P follows.

For any subset A of P If we denote $A^* = \{x \in P / (x) \cap (a) = (0)\}$ for all $a \in A$. Then obviously $A^* = \bigcap_{a \in A} \{a\}^*$. As arbitrary intersection of ideals is an ideal we get.

Corollary 3—P is O-distributive if and only if A^* is an ideal for any $A \subset P$.

By Lemma 3, it follows that P is pseudocomplemented if and only if $\{a\}^*$ is a principal ideal. Hence by Theorem 1 we get.

Corollary 4—Every pseudocomplemented poset is O-distributive.

The above corollary establishes that fact that O-distributive poset is a generalization of pseudocomplemented poset, as every O-distributive poset need not be pseudocomplemented. This is shown by a poset represented in the following figure.

Fig. 4.

While generalizing the concept of disjunctivity to posets Venkatanarasimhan⁶ defined disjunctive poset. Poset P is called disjunctive poset if $a \neq b$ in P implies the existence of c in P such that $(a] \cap (c] = (0]$ and $(b) \cap (c) \neq (0]$.

O-distributivity and disjunctivity are completely independent in a poset. This is cited by the following posets.

Example—Example of a poset which is O-distributive but not disjunctive.

Fig. 5.

Example—Example of a poset which is disjunctive but not O-distributive.

Fig. 6.

Example—Example of a poset which is neither O-distributive nor disjunctive.

Every distributive lattice with O (semilattice with O) is O-distributive (see Lemma 4). Hence to keep up such a linking for posets, we define.

Definition 5—A poset Q is called as a distributive poset if $(a] \cap (b] \subseteq (c]$ $(a_1 \ b_1 \ c \in Q)$ implies the existence of x, y in Q $x \ge a$, $y \ge b$ such that $(x] \cap (y] = (c]$.

Theorem 6—Every distributive poset with 'o' is O-distributive.

PROOF: Let P be a distributive poset with O. Let $a, x_1, x_2, ..., x_n$ (n finite) be in P such that $(a] \cap (x_i] = (0] \forall 1 \leq i \leq n$. Suppose that $x_1 \vee x_2 ... \vee x_n$ exists in P.

Now, $(x_1] \supseteq (x_2] \cap (a]$. Hence by distributivity there exist $y_2 \geqslant_1 x_2$ and $y_1 \geqslant a$ such that $(x_1] = (y_1] \cap (y_2]$. As $(y_1] \supseteq (y_1] \cap (y_2]$ we get

$$(y_1] \supseteq (x_1] \text{ i.e. } y_1 \geqslant x_1.$$

Further, $(x_1] \supseteq (x_r] \cap (a]$. Hence by distributivity there exist $y_r \ge x_r$ and $z_r > a$ such that

$$(x_1] = (y_r] \cap (z_r].$$

Thus we get, $y_1 \ge x_1$, $y_2 \ge x_2$,, $y_n \ge x_n$. Since the set of all ideals, I_{μ} , is a lattice (Lemma 1)

$$(y_1] \cap (y_2] \cap \dots (y_n) \subseteq (x_1] \vee (x_2] \vee \dots \vee (x_n]$$

= $(x_1 \vee \dots \vee x_n]$ (see Lemma 2).

Hence

$$(a] \cap \{(y_1] \cap (y_2] \cap ... (y_n]\} \supseteq (a] \cap \{(x_1] \vee (x_2] \vee ... \vee (x_n]\}$$

which in turn proves that

$$(a] \cap \{(x_1] \lor (x_2] \lor ... \lor (x_{\mu}]\} = (0].$$

Since $(a) \cap (y_2] = (0]$.

Hence (a) \cap $(x_1 \lor x_2 \lor ... \lor x_n] = (0]$ i.e. P is O-distributive.

Venkatanarasimhan⁵ proved that for any poset I_{μ} is a complete lattice. (See Lemma 1). For I_{μ} to be pseudocomplemented we prove.

Theorem 7-P is O-distributive if and only if $I_{\mathbb{P}}$ is pseudocomplemented.

PROOF: Let P be a O-distributive poset and $A \\\in I_{\mu}$. By Corollary 3 A^* is an ideal in P. We claim that A^* is the pseudocomplement of A in P. Clearly, $A \cap A^* = (0]$. If there exists B in I_{μ} such that $A \cap B = (0]$ then $B \subseteq A^*$. For $b \in B$ implies that $(a] \cap (b] = (0]$ for every a in A. This proves that I_{μ} is pseudocomplemented. Conversely, let I_{μ} be pseudocomplemented. For $a_1 x_1, x_2 \dots x_n$ (n finite) in P suppose that $(a] \cap (x_i] = (0]$ for $i \le i \le n$. Assume that $x_1 \lor x_2 \dots \lor x_n$ exists in P. By assumption, $(x_1] \subseteq (a]^* n$, and hence $(x_1] \lor (x_2] \lor \dots \lor (x_n] \subseteq (a]^*$ But, by Lemma 2, $(x_1] \lor (x_2] \lor \dots \lor (x_n] = (x_1 \lor x_2 \lor \dots x_n]$. Hence

 $(x_1 \lor x_2 \lor ... \lor x_n] \subseteq (a]^*$ proving that $(x_1 \lor ... \lor x_n] \cap (a] = (0]$. Therefore P is O-distributive.

Corollary 8—When P is a pseudocomplemented poset I_p is pseudocomplemented.

As we know that every pseudocomplemented lattice is O-distributive (Lemma 5) one more generalization of O-distributivity is obtained. This is given in the following.

Theorem 9—P is O-distributive if and only if $I_{\mathbf{p}}$ is O-distributive.

PROOF: Let I_{μ} be O-distributive. Let $x_1, x_2, ..., x_n$ be in P such that $(x_i] \cap (a] = (0]$ for every $i, 1 \le i \le n$. Assume that $x_1 \vee x_2 \vee ... \vee x_n$ exists in P. As $(x_1] \cap (a] = (0], ..., (x_n] \cap (a] = (0]$ in I_{μ} and I_{μ} is O-distributive we get

$$(x_1] \lor (x_2] \lor ... \lor (x_n] \cap (a] = (0]$$
. But by Lemma 2

$$(x_1] \lor (x_2] \lor ... \lor (x_n] = (x_1 \lor x_2 \lor ... \lor x_n]$$
. Hence

$$(x_1 \lor x_2 \lor ... \lor x_n] \cap (a] = (0]$$

which in turn proves O-distributivity of P. Conversely, let P be O-distributive. By Theorem 7, I_{μ} is pseudocomplemented. But every pseudocomplemented lattice being O-distributive (see Lemma 5) I_{μ} is O-distributive.

A poset Q is said to satisfy the ascending chain condition if any increasing chain terminates in Q i.e. if $x_1 \in P$, i = 0, 1, 2, ... and $x_0 \le x_1 \le ... \le x_n$... then for some on we have $x_m = x_{m+1} = ...$

Clearly, in a poset satisfying ascending chain condition every ideal is principal. Using this we prove.

Theorem 10—Every O-distributive poset satisfying ascending chain condition is pseudocomplemented.

PROOF: Let P be O-distributive poset satisfying ascending chain condition. For any a in P, $(a)^*$ is an ideal in P, by Theorem 1. As P satisfies ascending chain condition, $(a)^*$ is a principal ideal. Hence P is pseudocomplemented. (See Lemma 3).

A sufficient condition for $(a)^* = (b)^*$ in a O-distributive poset for $a \neq b$ is stated in the following.

Theorem 11—If a and b are the elements of a O-distributive poset such that $(a] \cap (d] = (b] \cap (d]$ for some dense element $dE \in P$ then $(a]^* = (b]^*$.

PROOF: $(a)^{**} = (a)^{**} \cap P = (a)^{**} \cap (d)^{**}$ (d any dense element in P) = $\{(a) \cap (d)\}^{**} = \{(b) \cap (d)\}^{**} = (b)^{**} \cap (d)^{**} = (b)^{**} \cap P = (b)^{**}$. Hence $(a)^{*} = (b)^{*}$.

A property of the set of dense elements in a O-distributive poset is investigated in the following.

Theorem 12—In a O-distributive poset P if $\{0\} \neq A$ is the intersection of all nonzero ideals of P then $A^* = P - D$ where D is set of all dense elements of P.

PROOF: $A \neq \{0\}$ implies that $\{x\}^* \neq \{0\}$ for any x in P. i.e. $x \in A^* \Rightarrow x \in P - D$. Hence $A^* \subseteq P - D$. On the other hand, P being O-distributive, $\{d\}^*$ is a non-zero ideal of P for every $d \notin D$. But $A \subseteq \{d\}^*$ implies $A^* \supseteq d^{**}$. But $d \in \{d\}^{**}$ implies $d \in A^*$. Thus $P - D \subseteq A^*$. This proves that $A^* = P - D$.

3. Annihilator Ideals

In this section we deal with annihilator ideals in a O-distributive poset.

Cornish¹ has defined annihilator ideal in a distributive lattice. On the same lines we define annihilator ideals in a O-distributive poset, as follows.

Definition—An ideal J of a O-distributive poset P is called an annihilator ideal if $J = J^{**}$ i.e. $J = S^*$ for some subset S of P.

The collection of all annihilator ideals in a O-distributive poset P is denoted by A(P).

Theorem 13—For a O-distributive poset P, the set of all annihilator ideals A(P) forms a Boolean algebra.

PROOF: For I and J in A(P) define

$$I \wedge J = I \cap J$$
 and $I \vee J = (I^* \cap J^*)^*$.

- (i) As $I = I^{**}$ and $J = J^{**}$ we get $I \cap J$ is the g.l.b. of I and J. Further $(I \cap J)^{**} \supseteq (I \cap J)$ and $I \subseteq I^{**}$, $J \subseteq J^{**}$ implies $(I \cap J) \subseteq I^{**} \cap J^{**}$ proving that $I \cap J = (I \cap J)^{**}$ i.e. $I \cap J$ is in A(P). Hence $I \cap J \in A(P)$ for I, J in A(P).
- (ii) Again $I, J \in A(P) \Rightarrow I \subseteq (I^* \cap J^*)^*$ and $J \subseteq (I^* \cap J^*)^*$. If $I \subseteq K$ and $J \subseteq K$ for some $K \in A(P)$ then $I^* \supseteq K^*$, $J^* \supseteq K^*$ will imply $I^* \cap J^* \supseteq K^*$ i.e. $(I^* \cap J^*)^* \subseteq K^{**} = K$. But then this shows that $(I^* \cap J^*)^*$ is the l.u b. of I and J in A(P). Hence $I \vee J \in A(P)$.

From (i) and (ii) we get $\langle A(P); \land, \lor \rangle$ is a lattice.

Since $(0] = P^*$ and $P = (0]^*$, (0] and P are the elements of A(P). Further (0] and P are the least and the greatest elements of A(P).

Thus A (P) is a bounded lattice.

Next we show that A (P) is complemented. Let $I \in A$ (P). Then obviously $I^* \in A$ (P). Further $I \vee I^* = (I^* \cap I^{**})^* = (I^* \cap I)^* = (0]^* = P$ and $I \cap I^* = (0]$ show that I^* is the complement of I in A (P).

It only remains to show A(P) is distributive that, for $I, J, K \in A(P)$ we have to show that

$$I \vee (J \wedge K) = (I \vee J) \wedge (I \vee K)$$

But $I \lor (J \land K) \leq (I \lor J) \land (I \lor K)$ is true always.

Hence we have to only prove that

$$(I^* \cap J^*)^* \cap (I^* \cap K^*)^* \subseteq [I^* \cap (J \cap K)^*]^*.$$

To prove this we need to prove the following set inclusion

$$(I^* \cap J^*)^* \cap K \subseteq [I^* \cap (J \cap K)^*]^*.$$

Let $I, J, K \in A$ (P). Now $I \cap K \subseteq I \subseteq [I^* \cap (I \cap K)^*]^*$.

Similarly $J \cap K \subseteq [I^* \cap (J \cap K)^*]^*$.

Now
$$I \cap K \subseteq [I^* \cap (J \cap K)^*]^* \Rightarrow I \cap K \cap [I^* \cap (J \cap K)^*]^{**} = (0]$$

that is $I \cap K \cap [I^* \cap (J \cap K)^*] = (0]$.

Silimarly
$$J \cap K \cap [I^* \cap (J \cap K)^*] = (0]$$

that is
$$J \cap [K \cap I^* \cap (J \cap K)^*] = (0]$$
.

But this imply

$$[K \cap I^* \cap (J \cap K)^*] \subseteq J^*$$
. Similarly

$$[K \cap I^* \cap (J \cap K)^* \subseteq I^*$$

$$\Rightarrow [K \cap I^* \cap (J \cap K)^*] \subseteq I^* \cap J^*$$

$$\Rightarrow [K \cap I^* \cap (J \cap K)^*] \cap (I^* \cap J^*)^* = (0]$$

that is
$$I^* \cap (J \cap K)^* \cap [K \cap (I^* \cap J^*)^*] = (0]$$

$$\Rightarrow K \cap (I^* \cap J^*)^* \subseteq [I^* \cap (J \cap K)^*]^*$$

i.e.
$$(I^* \cap J^*)^* \cap K \subseteq [I^* \cap (J \cap K)^*]^*$$

i.e.
$$(I \lor J) \land K \leqslant I \lor (J \land K)$$
 providing that $A(P)$ is distributive.

Thus A(P) is a complemented, distributive, lattice and hence a Boolean algebra.

REFERENCES

- 1. W. H. Cornish, J. Aust. Math. Soc., 15 (1973), 70-77.
- 2. O. Frink, Am. Math. Monthly 61 (1954), 223-34; MR 15, 848.
- 3. Y. S. Pawar, Doctoral thesis. Shivaji University, Kolhapur, 1978.
- 4. J. C. Varlet, Bull. Soc. Roy. Sci. Liege 41 (1972).
- P. V. Venkatnarasimhan, Proc. Am. Math Soc. 23 (1971), 9-17; MR 42, 7368.
- 6. P. V. Venkatnarasimhan, Collog. Math. 30 (1974), 203 13; MR 50, 128-38.