ON COMMON FIXED POINTS IN METRIC SPACES

BARADA K. RAY

Department of Mathematics, Regional Engineering College, Durgapur 713209
W. Bengal

(Received 25 August 1987)

Some fixed point theorems for certain contractive type mapping are presented in this note.

Throughout this paper \((X, d)\) will denote a complete metric space unless otherwise stated and \(R^+\), the set of non-negative reals. Recently Kiventidis\(^1\) proved the following:

Theorem TK1—Let \(T\) be a self-mapping of \(X\) such that

\[d(Tx, Ty) \leq d(x, y) - W(d(x, y)) \forall x, y \in X \] \(\text{...(1)}\)

where \(W : R^+ \to R^+\) is a continuous function such that \(0 < W(r) < r\) for all \(r \in R^+ - \{0\}\).

Then \(T\) has a unique fixed point:

In what follows first we prove a theorem which gives Theorem TK 1 as a special case.

Theorem 1—Let \(T\) be a continuos mapping and \(T_1, T_2\) be any other two mappings of \(X\) into itself such that

\[TT_i = T_i T (i = 1, 2) \] \(\text{...(2)}\)

\[\bigcup_{i=1}^{\infty} T_i (X) \subseteq T(X) \]

and

\[d(T_1 x, T_2 y) \leq d(Tx, Ty) - W(d(Tx, Ty)) \] \(\text{...(3)}\)

where \(W : R^+ \to R^+\) is a continuous function, with

\[0 < W(r) < r \text{ for all } r \in R^+ - \{0\}. \]

Then \(F_{T_1, T_2} = \{x \in X : x = Tx = T_1 x = T_2 x\}\) is non-empty. Furthermore \(F_{T_1} = F_{T_2} = F_{T_1, T_2} = \{u\}, \) for some \(u\) in \(X\).

Proof : Let \(x_0\) be an arbitrary point in \(X\).
Since $T_1(X)$ and $T_2(X)$ are subsets of $T(X)$, we let $T_1 x_{2n} = T x_{2n+1}$ and $T_2 x_{2n+1}$
$= T x_{2n+2}$, $n = 0, 1, 2, ...$

Then from (3) we have for all $n \geq 1$, $x \in X$,

$$\sum_{r=0}^{n} w(d(T x_r, T x_{r+1})) \leq d(T x_0, T x_1).$$

So the series of non-negative terms

$$\sum_{r=0}^{n} W(d(T x_r, T x_{r+1}))$$

is convergent.

From this it follows that $\lim_{r \to \infty} W(d(T x_r, T x_{r+1})) = 0$.

Since $W(0) = 0$, so from the continuity of W we get

$$\lim_{r \to \infty} W(d(T x_r, T x_{r+1})) = 0$$

$$\Rightarrow W(\lim_{r \to \infty} d(T x_r, T x_{r+1})) = 0$$

$$\Rightarrow \lim_{r \to \infty} d(T x_r, T x_{r+1}) = 0$$

which implies that $\{T x_n\}$ is Cauchy and so it converges to a point u in X, since X is complete.

Therefore $\{T x_{2n+1} = T_1 x_{2n}\}$, $\{T x_{2n+2} = T_2 x_{2n+1}\}$ and $\{T x_{2n} = T_2 x_{2n-1}\}$ being subsequences of $\{T x_n\}$ converge to u also. But $T T_i = T_i T$, $i = 1, 2$ and the continuity of T implies that $\lim_{n \to \infty} T(T x_{2n}) = T u$, $\lim_{n \to \infty} T(T x_{2n+1}) = T u$, $\lim_{n \to \infty} T(T x_{2n})$ = $\lim_{n \to \infty} T_1 x_{2n} = T u$ and $\lim_{n \to \infty} T_2 (T x_{2n+1}) = \lim_{n \to \infty} T_2 x_{2n+1} = T u$.

Now from (3)

$$d(T_1(T x_{2n}), T_2 u) \leq d(T(T x_{2n}), T u) - W(d(T(T x_{2n}), T u))$$

Proceeding to the limit $n \to \infty$, we obtain $Tu = T_2 u$.

In a similar manner we can show that $Tu = T_1 u$. Suppose $u \neq Tu$

Now

$$d(T_1(T x_{2n}), T_2 x_{2n+1})$$

$$\leq d(T(T x_{2n}), T x_{2n+1}) - W(d(T(T x_{2n}), T x_{2n+1})).$$

Proceeding to the limit $n \to \infty$, we obtain

$$d(T u, u) \leq d(T u, u) - W(d(T u, u)),$$

which is a contradiction. Thus $u = Tu$.
So \(u = Tu = T_1 u = T_2 u \). So \(F_{T,T_1,T_2} \) is nonempty. It follows easily from (3)

\[F_{T_1} = F_{T_2} = F_{T,T_1,T_2} = \{u\} \]

Remarks: Theorem TK 1 follows from Theorem 1 is one takes \(T_1 = T_2 \) and \(T = I_X \) where \(I_X \) is the identity mapping on \(X \).

In what follows we don’t take \(X \) as a complete metric space.

Theorem 2—Let \(T \) be continuous mapping of a metric space \(X \) into itself satisfying (1). If there exists a subset \(M \) of \(X \) and a point \(x_0 \) in \(M \) such that

\[d(x, x_0) - d(Tx, Tx_0) \geq 2d(x_0, Tx_0) \text{ for every } x \in x - M \] \(\ldots (4) \)

and if \(T \) maps \(M \) into a compact subset of \(X \) then there exists a unique fixed point of \(T \).

Proof: Since \(T \) maps \(M \) into a compact set, Theorem 2 will follow from Theorem TK 1 if it is shown that \(x_n \in M \) for every \(n \), where \(x_n = T^n x_0, n = 1,2,3,... \), Let us suppose that \(x_0 \neq Tx_0 \). Then it follows easily that the sequence \(\{C_n\} \), where \(C_n = d(x_n, x_{n+1}) \), is non-increasing and since \(x_0 \neq Tx_0 \), we get \(d(x_n, x_{n+1}) < d(x_0, Tx_0) \).

But

\[d(x_n, x_0) \leq d(x_n, x_{n+1}) + d(Tx_n, Tx_0). \]

So

\[d(x_n, x_0) - d(Tx_n, Tx_0) \leq d(x_n, x_{n+1}) + d(x_0, Tx_0) < 2d(x_0, Tx_0). \]

Hence it follows from (4) that \(x_n \in M \) for every \(n \).

This completes the proof of Theorem 2.

References