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Continuous scalar homomorphisms for the spaces of entire functions of several
variables over a complete non-archimedian field K are characterised for
pointwise multiplication and Hadamard composition of entire functions. If
B is the class of bounded linear functionals on the space of entire functions
of several variables, B is proved to be a non-archimedian Banach space. It is
noted that Band K x K X K are isometrically isomorphic.

1. INTRODUCTION

Recently Jain and Jain (1977) have considered linear spaces of entire functions
of several variables over non-archimedian field K endowed with a complete locally
K-convex topology. The object of the present paper is to characterise the classes of
scalar homomorphisms and metrically bounded linear functionals on K { x,, x, ).

Let K be a non-archimedian field complete under the metric of valuation. Let
K { x,, x, » denote the set of all functions f: KX X K — K such that

<«

f(x, %) = z AmnXy X, 2.0)
m+n=0
where amn and x5, x, € K and lim | @me | YAmt9) = 0, ...(22)

m+n-> o

From (1977), it is known that X { x,, x, ) is a complete metric space, if the f~norm on
K { x;, x; ) is defined as

f=sup{laOOI9lam’llll(m+”)m:n>0,m+n> l}
The following theorem noted in (1977) characterises the continuous linear functionals

on K ( %1, X3 )

Theorem A — Any continuous linear functional F on K { x;, x,; ) is of the form

o0 @D

F = D aumcmn S0, 5) = > amxl 3] 23

m, n=0 m, n=0
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where { | cmn | 14=*m} is bounded. Conversely if { | cmn | 1Am+m)} is bounded, then
F defined by (2.3) is a continuous linear functional.

2. THE CLASs OF CONTINUOUS SCALAR HOMOMORPHISMS
Following Wilansky (1964) a scalar homomorphisms is defined as follows.
Definition | — Let f,g € K { x;,x, ; and « € K. A scalar homomorphism
Fon K ( x,, x, ) with respect to an operation is defined to be a linear functional on
K { x;, x, ; such that F(f o g) = F(f) F(g)forall f, g € K | x,,x, ) where cisa
multiplication defined in K. x,, x, » such that f og is again an entire function.
Multiplication in K ¢ x;, x, : can be defined in two ways as follows:

(i) Pointwise multiplication . If f, g € K { x;, x, ), then
(f - 8) (31, %) = f(x1, %) g(x1, %), %y, X, € K.
(ii) Hadamard composition : If f, g € K { x,, x, ), then

o

(f g) (xl’ xz) = z amnbmnx;n x: if  xy, X, € K.

m, n=0
In relation to the above two operations, we have the following two theorems.
Theorem 1 — Let F be a function from X { x,, x, ) to K with F £ 0. Then F
is a continuous scalar homomorphism on K { x,, x, ) with respect to pointwise

multiplication if and only if there exists a unique pair (b, ¢) € K X K such that
for all

w

Xy, Xp) = amnXy Xy € K { Xy, %, )
10 X2 1 X2

m, n=0

F(f) = f(b, o).

To prove the theorem, we need the following lemma :

Lemma — Given ¢ > 0 and (b, ¢) € K x K, then there exists a 3 > 0 such
thatif f, g € K { x,, x; ) and d(f, g) < ¢ implies | f(b, ¢c) — g(b, ¢} | < e.

PROOF OF THE LEMMA : Given ¢> 0, let R=max[{5]|,]c|]. Choosed>0
such that SR < 1. Let f, g € K { x;, x, ) where

® @

m _n

fonm) = D> ameAl g m = > bwal
m, n=0 m, n=0

If d(f, g) < 8 implies | Gmn — bmn | < 3mHm,
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Hence | f(b, ) — gb, o) | < sup ! @mn = bmn | R*R" < (SR)™* "= 0
asm + n — oo since 8R < 1.

Therefore d(f, g) < & implies | f(b, ¢) — g(b,¢) | < ¢

PrOOF OF THEOREM 1 : Let F be a continuous scalar homomorphism on

K { X, %, ). By Theorem A, there exists a unique sequence {ca} such that for all
[e o]

FEK ! x, % » F(fy = = Guntmn Where { | cun | YAm+™} is bounded. For each

m, n=0
m, n,

cun = F(x7 xy) = [FGep™ [Fx)]™

Hence cpm = (C10)™ (Cy)".  Using this we get
o«

F(f) = amnCly Cpy = S(Cios Cor)

m, n=
where we can take C,, = b and Cy, = c.

Conversely let (b, ¢) € K x K. Define a function F from K x;, %, : to K
as F(f) = f(b, ¢). Then F is clearly a scalar homomorphism. Given ¢ > 0,1let 8 >0
be such that if f, g € K { x;, x, », then d(f, g) < 8. Then by Lemma 1,

!f(b,C) -—g(b,c)l < e
so that F is continuous on X x K.

Theorem 2 — A function F:K x, x, -» K is a continuous scalar homo-
morphism with respect to Hadamard composition if and only if

Ay = L 0O

ey for some m and n.
. nl " n
o o,

Proor: Let F be a non-identically zero continuous linear functional on

o«
K { x,,x, . Then there exists {Cma} such that for all f(x;, x,) = Z  GmeX, Xy
m, n=0
we have
«©
F ( f ) = = amncmn.
m, n=0

Now consider f(x,, X;) = x" x;. Then we have C} = [F(f.f)] = F(f) = Cmn
for all m and n. Hence Cmn = 0 or Cun =1 for all m and n. If possible,
let Coun = Cpy =1 for p7=m and g 7% n forall m and n. Now let us consider

f(x1, x) = x7x; + x7 x;. Then 4 = (Cmn + C)* = Cmn + Cp = 2 which is



LINEAR FUNCTIONALS ON THE SPACES OF ENTIRE FUNCTIONS 725

absurd. Thus atmost one Cps is different from zero. Since F =4 0, there is exactly
one Cmn 7% 0 and Cye = 0 for all p = m and g 7% n. Hence we get

F(f) = aun = --—1— w.

! moan
3301 axn

o~

Conversely for fixed m and n, let us define

F(f) = b O,

'l omoam
0x, 0x,

Then F is obviously a continuous linear functional satisfving F(f. g) = F(f). F(g)
forall f,g € K. xy, x, .

3. THE CrLass OF BOUNDED LINEAR FUNCTIONALS ON K 7 X3, X, )

Definition 2 — Let F be a linear functional on K { x,, x, >. Then F is said to
be bounded if and only if there exists a M > Osuch thatforall f€ K« x;, x, ,
F(f) € Md(f, 0) where 0 denotes the identically zero functional on K x K.

It is easy to verify that a bounded linear functional on K { x,, x, is continuous.
The following counter example shows that the converse may not be true.

Example — Let Cpn = n™te where | = | > 1. Define a function from
K {x,x,  toKby

) )
n
F( E a:zm»\';n Xy ) = E Py S
m,n=0 m+n=1

By Theorem A, F is a continuous lincar functional. If F is bounded, there exists a
constant M such that

w
} E nm+llam"

m, n=0

< Msup[ I Ago i > ; Omn l ll(m-‘rn), m -+ n > 1]

for all ams such that | @ma | 14m*™ — Oasm + n— oo. Choose a £ > 1 such that
{ | *> max [M,2). Having chosen k as above, let au = = and ama = 0 if
(m, n) £ (0, k). Then we have

[o2]
, E 7t’"+”am,.

m, n=0

= | m |,

But M sup [agg, | @mn | M m+n21l=M|n | <in|¥|n|lg x|
which is a contradiction. Therefore F defined above is not bounded.
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However, the following theorem characterises bounded linear functionals on
K ( x;, x5 ).

Theorem 3 — Let B denote the class of bounded linear functionals on K { x,, %, ).
Let F be a function from K { x;, x, ) to K. Then F € B if and only if there exists a
unique (a, b, ¢) such that for all

[+e]

S, Xp) = E amnx;” x: € K ( x4, %, ),

m, n=0
F(f) = aws + ayb + ac and [ Fl=max{|a|,]{bf,]|c]|}

Proor: Let F &€ B. Then F is continuous so that there exists a unique
sequence {bmn} such that

[+ o] = o]

F( Z AmnX] x:) = z amnbmn
m, n=0 m, n=0
and
o]
[ Z amnbmnl< | Fllsup{|agg|,]| @mn]|mt® m 4 n> 1}
m, n=0

for all sequences {@mn} for which | ama | YAm+m — 0 as m -~ n - co. Suppose by £ 0
for some (k, j) with & + j > 2. Choose @ma = 0if (m, n) % (k, j) and choose au
such that [ay | < 1 so that | gy | #+#D/G+) < 1. Since | by | < || F ||, we have
[ @es | BH3-DUEED [ By | < | F|. Then | Gmn | 1™ > Qasm + n — oo,

[+ o]
l 2 Amubmn

m, n=0

= | aubes | S | F || | aus | LUED

so that | ax | %t~/ | by | € | F || which is a contradiction. Hence bis = 0 if
k + j> 2. So we bhave the following :

0
F( z AmaXy x;) = doobos + @1oP10 + @e1bor-

m,n

Therefore IF( Z

e}
m, n=0

<

amy 53 )| < max (1 8un | [ bio | | b |) U7 O).

Hence | f|| < max (| bgg !, | b, ]| b |) Toestablish the equality, it is
enough to establish the existence of a g € K ( x,, x, ) such that
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F(go) = max (| boy |, | byp |+ | bor | )
Let max [ | beg |, | bor |, bwe|]l=0buz5£0, i,j=01
Let us define a,, in the following manner
[lifp,q=i,j, i,j=0,1
Qpq =
0ifp,gsEi g
Let g(x;, x,) = ag,:;; ay0%; + aoyx;. Then g(x), x;) € K { x4, x, ) and
 f(@) | = | Goobos + @robor + @oibio | = max [ | boo |, | bor || 010 ]
Conversely, given a, b, ¢, define a function from K ( x,, x, ) to k by
F(f) = aga + ayb + agc.
Then F is a bounded linear functional on K { x,, x, ).
Since | F(f)|€<max{|a},[d],|c|}d(f,0), FE B.

The following theorem gives the nature and the structure of the space B of
bounded linear functionals on X | x;, x; ;. The proof of the theorem is omitted, as
it is obvious.

Theorem 4 — B is a non-archimedian Banach space with the non-archimedian
normof F€ Bas | F|=max{!a|,|bd]|,]|c]|} Itis isometrically isomorphic
to the non-archimedian Banach space K x K x K.
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