LINEAR FUNCTIONALS ON THE SPACES OF ENTIRE FUNCTIONS OF SEVERAL VARIABLES OVER NON-ARCHIMEDIAN FIELDS

D. SOMASUNDARAM

Department of Applied Mathematics, Madras University Post Graduate Centre, Coimbatore 641041, Tamil Nadu

(Received 14 April 1980; after revision 19 December 1980)

Continuous scalar homomorphisms for the spaces of entire functions of several variables over a complete non-archimedian field K are characterised for pointwise multiplication and Hadamard composition of entire functions. If B is the class of bounded linear functionals on the space of entire functions of several variables, B is proved to be a non-archimedian Banach space. It is noted that B and $K \times K \times K$ are isometrically isomorphic.

1. Introduction

Recently Jain and Jain (1977) have considered linear spaces of entire functions of several variables over non-archimedian field K endowed with a complete locally K-convex topology. The object of the present paper is to characterise the classes of scalar homomorphisms and metrically bounded linear functionals on $K \langle x_1, x_2 \rangle$.

Let K be a non-archimedian field complete under the metric of valuation. Let $K \langle x_1, x_2 \rangle$ denote the set of all functions $f: K \times K \to K$ such that

$$f(x_1, x_2) = \sum_{m+n=0}^{\infty} a_{mn} x_1^m x_2^n \qquad ...(2.1)$$

where

$$a_{mn}$$
 and $x_1, x_2 \in K$ and $\lim_{m+n\to\infty} |a_{mn}|^{1/(m+n)} = 0$(2.2)

From (1977), it is known that $K \langle x_1, x_2 \rangle$ is a complete metric space, if the f-norm on $K \langle x_1, x_2 \rangle$ is defined as

$$f = \sup \{ |a_{00}|, |a_{mn}|^{1/(m+n)} m, n \ge 0, m+n \ge 1 \}$$

The following theorem noted in (1977) characterises the continuous linear functionals on $K \langle x_1, x_2 \rangle$

Theorem A — Any continuous linear functional F on $K \langle x_1, x_2 \rangle$ is of the form

$$F(f) = \sum_{m, n=0}^{\infty} a_{mn}c_{mn}, f(x_1, x_2) = \sum_{m, n=0}^{\infty} a_{mn}x_1^m x_2^n \qquad \dots (2.3)$$

where $\{ |c_{mn}|^{1/(m+n)} \}$ is bounded. Conversely if $\{ |c_{mn}|^{1/(m+n)} \}$ is bounded, then F defined by (2.3) is a continuous linear functional.

2. THE CLASS OF CONTINUOUS SCALAR HOMOMORPHISMS

Following Wilansky (1964) a scalar homomorphisms is defined as follows.

Definition 1 — Let $f,g \in K \langle x_1, x_2 \rangle$ and $\alpha \in K$. A scalar homomorphism F on $K \langle x_1, x_2 \rangle$ with respect to an operation is defined to be a linear functional on $K \langle x_1, x_2 \rangle$ such that $F(f \circ g) = F(f) F(g)$ for all $f, g \in K \langle x_1, x_2 \rangle$ where \circ is a multiplication defined in $K \langle x_1, x_2 \rangle$ such that $f \circ g$ is again an entire function. Multiplication in $K \langle x_1, x_2 \rangle$ can be defined in two ways as follows:

- (i) Pointwise multiplication: If $f, g \in K \langle x_1, x_2 \rangle$, then $(f \cdot g)(x_1, x_2) = f(x_1, x_2)g(x_1, x_2), x_1, x_2 \in K$.
- (ii) Hadamard composition: If $f, g \in K \langle x_1, x_2 \rangle$, then

$$(f.g)(x_1, x_2) = \sum_{m, n=0}^{\infty} a_{mn} b_{mn} x_1^m x_2^n \text{ if } x_1, x_2 \in K.$$

In relation to the above two operations, we have the following two theorems.

Theorem 1 — Let F be a function from $K \langle x_1, x_2 \rangle$ to K with $F \neq 0$. Then F is a continuous scalar homomorphism on $K \langle x_1, x_2 \rangle$ with respect to pointwise multiplication if and only if there exists a unique pair $(b, c) \in K \times K$ such that for all

$$f(x_1, x_2) = \sum_{m, n=0}^{\infty} a_{mn} x_1^m x_2^n \in K \langle x_1, x_2 \rangle$$

$$F(f)=f(b,c).$$

To prove the theorem, we need the following lemma:

Lemma — Given $\epsilon > 0$ and $(b, c) \in K \times K$, then there exists a $\delta > 0$ such that if $f, g \in K \langle x_1, x_2 \rangle$ and $d(f, g) < \delta$ implies $|f(b, c) - g(b, c)| < \epsilon$.

PROOF OF THE LEMMA: Given $\epsilon > 0$, let $R = \max [\mid b \mid, \mid c \mid]$. Choose $\delta > 0$ such that $\delta R < 1$. Let $f, g \in K \langle x_1, x_2 \rangle$ where

$$f(x_1, x_2) = \sum_{m, n=0}^{\infty} a_{mn} x_1^m x_2^n, \quad g(x_1, x_2) = \sum_{m, n=0}^{\infty} b_{mn} x_1^m x_2^n.$$

If $d(f, g) < \delta$ implies $|a_{mn} - b_{mn}| < \delta^{m+n}$.

Hence $| f(b, c) - g(b, c) | \leq \sup | a_{mn} - b_{mn} | R^m R^n < (\delta R)^{m+n} \to 0$ as $m + n \to \infty$ since $\delta R < 1$.

Therefore $d(f, g) < \delta$ implies $| f(b, c) - g(b, c) | < \epsilon$

PROOF OF THEOREM 1: Let F be a continuous scalar homomorphism on $K \langle x_1, x_2 \rangle$. By Theorem A, there exists a unique sequence $\{c_{mn}\}$ such that for all $f \in K \langle x_1, x_2 \rangle$, $F(f) = \sum_{m, n=0}^{\infty} a_{mn}c_{mn}$ where $\{ | c_{mn}|^{1/(m+n)} \}$ is bounded. For each m, n,

$$c_{mn} = F(x_1^m x_2^n) = [F(x_1)]^m [F(x_2)]^n.$$

Hence $c_{mn} = (C_{10})^m (C_{01})^n$. Using this we get

$$F(f) = \sum_{m, n=0}^{\infty} a_{mn} C_{10}^{m} C_{01}^{n} = f(C_{10}, C_{01})$$

where we can take $C_{10} = b$ and $C_{01} = c$.

Conversely let $(b, c) \in K \times K$. Define a function F from $K (x_1, x_2)$ to K as F(f) = f(b, c). Then F is clearly a scalar homomorphism. Given $\epsilon > 0$, let $\delta > 0$ be such that if $f, g \in K (x_1, x_2)$, then $d(f, g) < \delta$. Then by Lemma 1,

$$|f(b,c)-g(b,c)|<\epsilon$$

so that F is continuous on $K \times K$.

Theorem 2 — A function $F: K (x_1, x_2) \to K$ is a continuous scalar homomorphism with respect to Hadamard composition if and only if

$$F(f) = \frac{1}{m! \ n!} \frac{\partial^{m+n} f(0)}{\partial x_n^m \partial x_n^n} \quad \text{for some } m \text{ and } n.$$

PROOF: Let F be a non-identically zero continuous linear functional on $K(x_1, x_2)$. Then there exists $\{C_{mn}\}$ such that for all $f(x_1, x_2) = \sum_{m, n=0}^{\infty} a_{mn} x_1^m x_2^n$ we have

$$F(f) = \sum_{m, n=0}^{\infty} a_{mn} C_{mn}.$$

Now consider $f(x_1, x_2) = x_1^m x_2^n$. Then we have $C_{mn}^2 = [F(f \cdot f)] = F(f) = C_{mn}$ for all m and n. Hence $C_{mn} = 0$ or $C_{mn} = 1$ for all m and n. If possible, let $C_{mn} = C_{pq} = 1$ for $p \neq m$ and $q \neq n$ for all m and n. Now let us consider $f(x_1, x_2) = x_1^m x_2^n + x_1^p x_2^q$. Then $4 = (C_{mn} + C_{pq})^2 = C_{mn} + C_{pq} = 2$ which is

absurd. Thus at most one C_{mn} is different from zero. Since $F \neq 0$, there is exactly one $C_{mn} \neq 0$ and $C_{pq} = 0$ for all $p \neq m$ and $q \neq n$. Hence we get

$$F(f) = a_{mn} = \frac{1}{m! \ n!} \frac{\partial^{m+n} f(0)}{\partial x_1^m \ \partial x_2^n}.$$

Conversely for fixed m and n, let us define

$$F(f) = \frac{1}{m! \, n!} \, \frac{\partial^{m+n} f(0)}{\partial x_1^m \, \partial x_2^n}.$$

Then F is obviously a continuous linear functional satisfying $F(f, g) = F(f) \cdot F(g)$ for all $f, g \in K \setminus x_1, x_2$.

3. The Class of Bounded Linear Functionals on $K \langle x_1, x_2 \rangle$

Definition 2 — Let F be a linear functional on $K \langle x_1, x_2 \rangle$. Then F is said to be bounded if and only if there exists a M > 0 such that for all $f \in K \langle x_1, x_2 \rangle$, $F(f) \leq Md(f, 0)$ where 0 denotes the identically zero functional on $K \times K$.

It is easy to verify that a bounded linear functional on $K \langle x_1, x_2 \rangle$ is continuous. The following counter example shows that the converse may not be true.

Example — Let $C_{mn} = \pi^{m+n}$ where $|\pi| > 1$. Define a function from $K \langle x_1, x_2 \rangle$ to K by

$$F\left(\sum_{m,n=0}^{\infty} a_{mn} x_1^m x_2^n\right) = \sum_{m+n=1}^{\infty} \pi^{m+n} a_{mn}.$$

By Theorem A, F is a continuous linear functional. If F is bounded, there exists a constant M such that

$$\left| \sum_{m,n=0}^{\infty} \pi^{m+n} a_{mn} \right| \leq M \sup \left[|a_{00}|, |a_{mn}|^{1/(m+n)}, m+n \geq 1 \right]$$

for all a_{mn} such that $|a_{mn}|^{1/(m+n)} \to 0$ as $m+n\to\infty$. Choose a k > 1 such that $|\pi|^k > \max[M, 2]$. Having chosen k as above, let $a_{0k} = \pi$ and $a_{mn} = 0$ if $(m, n) \neq (0, k)$. Then we have

$$\Big|\sum_{m=0}^{\infty} \pi^{m+n} a_{mn}\Big| = |\pi|^{k+1}.$$

But $M \sup [a_{00}, |a_{mn}|^{1/(m+n)}, m+n \ge 1] = M |\pi|^{1/k} < |\pi|^{k} |\pi|^{1/k} < |\pi|^{k+1}$ which is a contradiction. Therefore F defined above is not bounded.

However, the following theorem characterises bounded linear functionals on $K \langle x_1, x_2 \rangle$.

Theorem 3 — Let B denote the class of bounded linear functionals on $K \langle x_1, x_2 \rangle$. Let F be a function from $K \langle x_1, x_2 \rangle$ to K. Then $F \in B$ if and only if there exists a unique (a, b, c) such that for all

$$f(x_1, x_2) = \sum_{m, n=0}^{\infty} a_{mn} x_1^m x_2^n \in K \langle x_1, x_2 \rangle,$$

$$F(f) = a_{00}a + a_{10}b + a_{01}c$$
 and $||F|| = \max\{|a|, |b|, |c|\}$

PROOF: Let $F \in B$. Then F is continuous so that there exists a unique sequence $\{b_{mn}\}$ such that

$$F\left(\sum_{m,n=0}^{\infty} a_{mn}x_1^m x_2^n\right) = \sum_{m,n=0}^{\infty} a_{mn}b_{mn}$$

and

$$\left|\sum_{m, n=0}^{\infty} a_{mn}b_{mn}\right| \leq ||F|| \sup \{|a_{00}|, |a_{mn}||^{1/(m+n)}, m+n \geqslant 1\}$$

for all sequences $\{a_{mn}\}$ for which $|a_{mn}|^{1/(m+n)} \to 0$ as $m+n \to \infty$. Suppose $b_{kj} \neq 0$ for some (k, j) with $k+j \ge 2$. Choose $a_{mn} = 0$ if $(m, n) \ne (k, j)$ and choose a_{kj} such that $|a_{kj}| < 1$ so that $|a_{kj}| < (k+j-1)/(k+j) < 1$. Since $|b_{kj}| \le ||F||$, we have $|a_{kj}|^{(k+j-1)/(k+j)}|b_{kj}| < ||F||$. Then $|a_{mn}|^{1/(m+n)} \to 0$ as $m+n \to \infty$.

$$\Big|\sum_{m,n=0}^{\infty} a_{mn}b_{mn}\Big| = |a_{k}b_{k}| \leqslant ||F|| |a_{k}|^{1/(k+j)}$$

so that $|a_{kj}|^{(k+j-1)/(k+j)}|b_{kj}| \le ||F||$ which is a contradiction. Hence $b_{kj} = 0$ if k+j>2. So we have the following:

$$F\left(\sum_{m,n=0}^{\infty} a_{mn}x_1^m x_2^n\right) = a_{00}b_{00} + a_{10}b_{10} + a_{01}b_{01}.$$

Therefore
$$\left| F \left(\sum_{m, n=0}^{\infty} a_{mn} x_1^m x_2^n \right) \right| \le \max(|b_{00}|, |b_{10}|, |b_{01}|) d(f, 0).$$

Hence $||f|| \le \max(|b_{00}|, |b_{10}|, |b_{01}|)$. To establish the equality, it is enough to establish the existence of a $g \in K \langle x_1, x_2 \rangle$ such that

$$F(g_0) = \max (|b_{00}|, |b_{10}|, |b_{01}|).$$

Let

$$\max[|b_{00}|, |b_{01}|, |b_{10}|] = b_{ij} \neq 0, i, j = 0, 1.$$

Let us define a_{pq} in the following manner

$$a_{pq} = \begin{cases} 1 & \text{if } p, q = i, j, i, j = 0, 1 \\ 0 & \text{if } p, q \neq i, j. \end{cases}$$

Let $g(x_1, x_2) = a_{00} + a_{10}x_1 + a_{01}x_2$. Then $g(x_1, x_2) \in K \langle x_1, x_2 \rangle$ and

$$|f(g)| = |a_{00}b_{00} + a_{10}b_{01} + a_{01}b_{10}| = \max[|b_{00}|, |b_{01}|, |b_{10}|]$$

Conversely, given a, b, c, define a function from $K \langle x_1, x_2 \rangle$ to k by

$$F(f) = a_{00}a + a_{10}b + a_{01}c.$$

Then F is a bounded linear functional on $K \langle x_1, x_2 \rangle$.

Since
$$| F(f) | \leq \max \{ | a |, | b |, | c | \} d(f, 0), F \in B$$
.

The following theorem gives the nature and the structure of the space B of bounded linear functionals on $K \langle x_1, x_2 \rangle$. The proof of the theorem is omitted, as it is obvious.

Theorem 4 - B is a non-archimedian Banach space with the non-archimedian norm of $F \in B$ as $||F|| = \max\{ |a|, |b|, |c| \}$. It is isometrically isomorphic to the non-archimedian Banach space $K \times K \times K$.

ACKNOWLEDGEMENT

The author is thankful to the referee for many useful suggestions.

REFERENCES

Jain, D. R., and Jain, P. K. (1977). Topological structure of the spaces of entire functions of several variables over non-archimedian fields. *Glasnik Math.*, 12(32), 305-14.

Wilansky, A. (1964). Functional Analysis. Blaisdell Publishing Co., New York.