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In the present paper some new growth parameters have been introduced to
study precisely the growth of functions of infinite order which are represented
by Dirichlet series and are analytic in the half plane and the growth of such
functions has been studied with the help of these parameters.

1. INTRODUCTION
Consider the Dirichlet series

f(s) = glan exp (sAn) (LD

where 0 S A < Ay < oo <A < o, Ap = o0 @SN —> oo, § = ¢ | it(s, t being real

variables), {aa},., is a sequence of complex numbers and

lim sup (nfAs) = D < oo. -..(1.2)

n—-co

If the series given by (1.1) converges absolutely in the half plane Re s < a(—o0 < a < o0)
then it is known (Mandelbrojt 1944, p. 166) that the series (1.1) represents an analytic
function in Re s < «, and since (1.2) is satisfied we have

—u« = lim sup ((log | an | )/An)-

Let D, denote the class of all functions f(s) of the form (1.1), which are analytic
in the half plane Re s < o (—oo < & < oo) and satisfy (1.2). For f € Da, set

Mi)=M(, f)= max | fc+it)],
<1<

m(e) = m(e, ) = 1'1'1;1711 { [ an | exp (c2n)}

and N(c) = N(o, f) = max {n: m(s) = | an | exp (cAs)}.

M(s), m(s) and N(o) are called, respectively, the maximum modulus, the maximum
term and the rank of the maximum term of f(s) for Re s = 5. The elements in the
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range set of N(c) are called the principal indices of f(s). It is known (Doetsch 1920)
that log M(c) is an increasing convex function of ¢ for ¢ < a.

For a function f € Da, Krishna Nandan (1973) has defined the order p and
lower order M0 < A € p < o0) of f(s) as

lim sup log log M(o) _e
s>a inf — log (1 —exp (c —a)) A

The above growth parameters do not give any specific information about the
growth of f(s) if p is either zero or infinite. Recently Awasthi and Dixit (1979) have
studied the functions of zero order by comparing the growth of log log M(s) with
loglog (1 — exp (c — «))"*. In the present paper an attempt has been made to
study the growth of an analytic function for which p = oo.

Let A, be the class of all functions B satisfying the following two conditions:

(i) B(x) is defined on [a, o), a > 0, and is positive, strictly increasing, differen-
tiable and tends to co as x — co.

. dB(x)
(1) dlogx

= 0(1) as x - oo,

(In particular we can take p(x) = logs x, p > 2, where log; x = log x and
logy x = log (logp-; X)).
For a function /' € Dy and § € A,, set

e® ) _ [y SUP Blog M(s)
AB, f) o>« inf —log(l —exp(c —a)) °

Then p(B, f) and A(B, 1) will be called, respectively, g-order and lower g-order of f(s).
To avoid some trivial cases we shall assume throughout that M(g) — oo as o - a.
(Note that these growth parameters give precise information about the growth of the
function when its order p is infinite). A function f(s) € D is said to be of B-regular
growth if A(B, 1) = p(B, f), f(5) is said to be of B-irregular growth if o(8, 1) > A(B, f).

In section 2 coefficient characterization of (B, f) is obtained while coefficient
characterization of A(B,f) is obtained in section 3. A necessary condition for a
function f{s) to be of B-regular growth is also found in section 3. A decomposition
theorem for a function of p-irregular growth is obtained in section 4.

2. COEFFICIENT CHARACTERIZATION OF p(B, f)
Theorem 1 — If f(s) belongs to Dy and has g-order o, f), then,

. 8(Aa)
P(@: f) = llrlll;lbusaup log An — log* (log ‘ an | + d.»)\u) ...(2.1)
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where logt x = max (0, log x).

ProoOF :  Let the limit superior on the right-hand side of (2.1) be denoted by 0.
Clearly 0 < 6 < oo. First let 0 << 6 <« oo, Then, for 6§ > ¢ > 0 there exist a sequence
{n:} of natural numbers such that

10g | @n, | >Aw €xp (— (1/0) B(An)) — whaye k = 1,2, 3, ...

where § = 6 — . Using Cauchy’s inequality the above inequality gives for all
s(c <a)andallk =1,2,3, ...

log M(s) > log | an, | + odn, > An, exp (— (1/8) B(2n)) + (6 — &)y,
w(2.2)

Fork =1,2,3,...,set ocx =0a — () exp (— (1 /ﬁ) B(An,)). Putting, in particular,
6 = oz in (2.2) we get

log M(or) > % An, exp (— (1/6) B(An,)
or

B((1/(x — ox)) log M(ox)) > — @ log (2(z — ox))

or

B(log M(or)) + log (1/(x — ox)) j?g;)x 2t (@)

> —6log 2« — ox))

where log M(or) < x*(ox) < (1/(¢ — ox)) log M(sx). This easily gives, since § € A,,
that

e® f) > 6 ..(2.3)

(2.3) is obvious for 8 = 0. For 8 = oo, the above arguments with an arbitrarily large
number in plaee of 6 give p(B, f) = oo.

To prove the reverse inequality assume that 8 << oo, since there is nothing to
prove if 8 = oo. Then, given ¢ > 0 and for all n > n, = n, (¢) we have

log | an | < An exp (—(1/0") B(A)) — ahn, 6" = 6 + .
For every o(c < ) we define n(c) as

n() < (D + €) p* (—8' log (}) (= — o)) < n(s) + 1 = n(o)

here ¢ > 0 is a fixed constant. If ¢ is sufficiently close to «, using (1.2) we have
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o

exp (An exp (—(1/8") B(An)) + (6 — @) An)
n=n(c)+1

< z” exp (An(s — ®)/2) < i exp (%%)

n=n(s)+1 n=n(s)+1

_exp((s —o) (n(e) + D/QD + €N) _ 0
T 1—exp((c — /2D + €)) A(n(c)) (say).

Now,
log A((e)) = & ;{3 LD t10g 2S5+ 00
< — —— BH0' log x(5)) + log x(c) + O (1)

()

where x(c) = 2/(a — o). Clearly x(c) = oo as ¢ - a. Since p € A, it follows that
8710’ log x(a)) > (x(s))? for all ¢ sufficiently close to . This shows that

log A(n(6)) > —ecasoc—» a
ie., A(n(c)) > 0as 6 - a.
Consider the function F(x) = exp {x exp (—B(x)/0’) — (@« — o)x}. Taking the
logarithmic derivative of F(x) and setting it equal to zero we get

) — exp (— @) {1 — 1) 72 ]~ @~ ) 0.

Since dB(x)/d log x = o(1) as x — oo it follows that

1 dp(x)

dlogx<2forx>x.

p<1—

Let An be a fixed An greater than x” and An,. Then F'(A)/F(Ax) >0 for o > a,.
Also F'(X;0,)/F(X;,,) < Oforall ¢ > s, Now, for ¢ > max (o,, 6?) we denote by

x4(c) the point where F(x,(c)) = max F(x), then
)\“’<x<l;(‘)

A < X4(8) < Az (g, a0d Xy(0) = @-1( —0'log (x — o0)/(1 — d(c))) )

_ 1 dpx)
where d(c) R dlog X |zmzy (o)
and so max _ | an | exp (cAn) < max F(x)
n’ <nn(e) <x<)\"(c)

(equation continued on p. 1228)
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<ep {@— o) (2067 (0 tog (@ — o)1 - do)) )}
< exp (@@ — o) 61 (=8 log (@ — o)D) 29)

Now, for ¢ > max (s, &°) we have

M(G) < jgi l an I eXp (O'An)
1l
<PHE)+( I+ E ) exp (An €xp (—B(As)/0") + (o — @)An)

n=n'+1 n=n(c)

where P(n’), the sum of first n’ terms, is bounded. Using (2.4), (2.5) and the definition
of n(s) the above inequality gives

M(o) < P(n') + (D + €) B (—0' log ((« — 0)/2))

X exp {(a — o) {3—1(—— 8’ log (“%(ﬂ)} + o(1)
or
log M(o) < {(@ — o) 7 (—0"log (= — o)/2)} (1 + o(1)).
Since B € A,, this easily gives
e@® f) <. ...(2.6)
The theorem now follows from (2.3) and (2.6).

3. CoEFFICIENT CHARACTERIZATION OF A(B, /)

We need the following Lemmas. Lemmas 1 and 2 are due to Krishna Nandan
(1973).

(o0}
Lemma 1 — If f(5) = X aa exp (sA») belongs to Dy, then
n=|

C
log m(c) = log m(cy) + § Ay 3% —o0 < 6y < 6 < a.
To

Lemma 2 — If f(s) € Dy satisfies
liminf (As — 2ny)) =8 >0 ..(3.1)

n—>w

then for every 8’ < 8§ and for all ¢ sufficiently close to «,

M(s) < m(s )[1+1+3'N( + =g lo—a))

X (1 — exp (6 — a))L
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Note: InLemmas 1and 2 we assume that m(s) and N(s) are unbounded
functions of o.

Lemma 3 — Let f(s) € Ds. Assume that (3.1) holds and that g-order p(B, f) of
f(s) is non-zero. Then

B f) _ iy SUP p(log m(s))
AB, f)  o—a inf —log(l —exp (6 — ) °

..(3.2)

ProOF : Let ¢ > 0 be a fixed number. Since(1.2) is satisfied we have, by Lemma
1, for all s sufficiently close to «,

N@ (@ —0) <D+ € Ay, (@ — o)
o-+i(x—o)
2D & o) cj Ay 4
< 2D + €) logm(s - % (@ — o). .(3.3)
Using (3.3), for ¢ sufficiently close to «, we have
N(o 4 3(1 —exp (6 — ) S 2D + ¢)

log m(c + } (@ — o) + 3(1 — exp (s — a)))
(‘l-— c) —+ (1l —exp (o — «))
log m(c -+ & (a — c))

(a—G)

< 4D + ¢ .(3.9)

Now, using Lemma 2 and (3.4) we get
log M(s) < log m(s) + log log m(¢ + %(x — ©)) — log (@ — o)
+ log (I —exp (¢ — &)™ + O(1)
< Klog m(s + §(¢ — o)) log (1 — exp (¢ — a))~! -..(3.3)
for all & sufficiently close to «. Here K is a constant. Now, (3.5) gives
B(log M(s)) < Blog m(s + &(e — o))

-« 4B(x) .(3.6)

+- log log (I — exp (¢ — a)) dlog x |z—2*()

where log m(c -- $(« — o)) < x*(s) < Klog m(c - 3(x — o)) log (1 — exp (6 — «))™*
This easily gives

. log m(c))
, lim su B . .37
o f) < c_wp —log (1 — exp (6 — ) G
Next, let the limit inferior on the right-hand side of (3.2) be denoted by ¢. To
prove AB, ) < ¢ it is sufficient to consider the case when ¢ < oo. Put
¢ + #(x — o) = on in (3.6) where {4} is such that
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. B(log m(ss)) _
"l_l,n; —log (1 — exp (6n — a))

@.

Then (3.6) gives
AB, f) < o ---(3.8)

The lemma now follows from (3.7), (3.8) and the fact that m(s) < M(o) for
all 0 < «.

Theorem 2 — Let f(s) € Da. If f(s) is lower B-order A(B, f) then

L B(Anx—r)
AB, ) 2 /lclin O;nf log An, —log* (log | any, | + oAs,) (3.9

for any increasing sequence {nz} of natural numbers.

Proor : Let the limit inferior on the right-hand side of (3.9) be denoted by S.
First, let 0 << S <t oo. Then given € > 0, S > ¢, there exists k, = k,(¢) such that
for allk > k, we have

10g | @n, | > An, €xp (— B(An,_)/S) — ahny, S = S — e.
Choose ox = a — } exp (— BAs,_)/S), k =k + 1, ky + 2,.... Let 0x € 6 € orpas
then, using Cauchy’s inequality, the above inequality gives

log M(c) >1log | an, | + oA, 2> log | an, | -+ ordn,
> A €xp (— B(An,_)/S) — (@ — k) An, = Au, (& — ox)

> (@ — o) B(~S log 2 — 9)))-
Since B € A,, the above inequality easily gives
AB, NH =S ...(3.10)
(3.10) is obvious for § = 0. For S = oo, the above analysis, with an arbitrarily large
number in place of S, gives that A(B, f) = oo. This proves the theorem.
Corollary — Let f(s) € D.. Assume that B-order p(B, f) of f(s) is finite. Further,
let (i) B(An) ~ B(Anyy) as n — oo and

o 80) _
@ Bm g% — Tog* log [an [ T ad) — >

exists, then f(s) is of B-regular growth and A, f) = o(®, f) = So-

Theorem 3 — Let f(s) € Dw«. Assume that g-order o(8, f) of f(s) is non-zero.
Further, let (3.1) be satisfied and let {(n) = (log | an/ansy | )/(Ansy — An) be a non-
decreasing function of n for n > n,. Then
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.o Aasq)
A ’ - 1 f B( 1 i B
¢ /) ;Ea:n log As — logt(log | an | + ada) 3.11)

ProoOF : As §(n) forms a nondecreasing function for n > n,, it follows that
P(n) > 4(n — 1) for infinitely many values of n, since otherwise p(B, f) = 0. Clearly
Y(n) > a asn— co. When $(n) > {(n — 1), the term an exp (sA») becomes the
maximum term and we have

m(c) = | an | exp (cAn) for ¢(n — 1) < o < Y(n).

Now, since (3.1) is satisfied we have by Lemma 3,

.. B(log m(a))
AB, f) = hﬁ?f —log(1 —exp(c — ) °

Suppose first that 0 << A(B, /) << co. Then given ¢ > 0, there exists o, = a,(e) such
that for ¢ > o, we have :

B(log m(s)) > Alog (1 — exp (s — )
here A = AB, f) — €. Let an, exp (sAn;) and an, €xp (sAny) (1 > #g, (1, — 1) > oy)
be two consecutive maximum terms so that n, { n, — 1. Then

B(log | a@ny | +Myo) > Alog (1 — exp (6 — a))

for all o satisfying ¢(n, — 1) < o < Y(ny), Let n, < n < ny — 1. It is easily seen that
ym) =Y + 1) = ... = Y@ = ... = J(n, — 1) and that

| @n | exp (cAs) = | @n, | €xp (6Any) for ¢ = Y(n)
Hence,

Blog | an | + Asd(n)) 3> Alog (I — exp (P(n) — ) ...(3.12)
Since ¢(n) is nondecreasing, (3.12) gives

B(An) 3> Alog (1 — exp (¢(n) — a))™ ..(3.13)
for all sufficiently large values of n.

Again, as $(n) forms a nondecreasing function of n for n > n,, we have
n »
log | anya | =1log | any | + Z (A — A1) 4())
J=n,
2 log | any | + (g — An) $(n)

therefore

log Aasx — logt(log | @ni1 | + ades1) . log(a — ()
BOW) < gom T oW
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Using (3.13), this easily gives that

AB L : ...(3.14)

where L is the limit inferior on the right-hand side of (3.11). (3.14) is obvious for
MB, f) = 0. When A@B, f) = oo, the above arguments with an arbitrarily large

number in place of A give that L = oo.

The theorem now follows in view of (3.14) and Theorem 2.

Theorem 4 — Let f(s) € Duy. Let lower g-order of f(s) be A8, /). Assume that
(3.1) holds. Then

AB, f) = max { lim inf B(Ank_r) }

(g k>0 108 An, — logt (log | an, | -+ aAs))
...(3.15)

where maximum in (3.15) is taken over all increasing sequences {n:} of positive
integers.

Proor :  First, let p-order p(B, /) of f(s) be zero. Then A, f) is also zero.
In view of Theorem 2, the maximum given by (3.15) is also zero and so the theorem
holds in this case.

0
Next, let p(B, /) > 0. Now, consider the function g(s) = 'Zlanj exp (5As ),
]=

where {nj}:‘;l is the sequence of the principal indices of f(s). It is easily seen that
8(s) € Dy and that g(s) also satisfies (3.1). Further, for any s, f(s) and g(s) have
the same maximum term and so, by Lemma 3, g-order and lower B-order of g(s) are
the same as those of f(s). Thus g(s) is of lower p-order A(B, f). Also,

q)(ni) = (log l a"j/a",'+1 l )/(A”H—]_ - ’\",)

is a strictly increasing function of j. Since g(s) satisfies the hypothesis of Theorem 3,
we have by (3.11)

A(B, = lim inf Bldny,) : (.16
8, /) }‘2;}“ log X, — log*(log | au, | + adn,) (16

But, from Theorem 2, we have

A . . ‘3()\");—1) .
6.0 > max ftim inf o e s

...(3.17)
From (3.16) and (3.17) we get (3.15). This proves the theorem.
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[+ o)
Theorem 5 — If f(s) = X

n=

lan exp (sAs) belongs to De and (3.1) is satisfied, then

AB, ) < o8 f) lf,ﬂ qi)nf ﬂé?;;)‘) . ...(3.18)

ProOOF : From (3.15) we get

{m} k—>w0 log /\"k - 10g+ (lOg | Qn,, 1 -+ a/\nk)

AB, /) < max { lim sup BlAny) }

s B(f\nk-l)}
X max { lim inf —F%
{nx} { k—>o0 B(Any)

n>co 108 An — logt (log | an | - adn)
..o B(An)
X {ll'rllllcl:f B(An+1)} .

Theorem now follows from Theorem 1.

= { lim sup B(n) }

We now give a corollary of the above theorem which shows how the exponents
M’s influence the growth of a function.

[+ o)
Corollary — If f(s) = T an exp (sAn) belongs to Dy and (3.1) is satisfied, then
n=1

@) if f(s)is of B-regular growth (0 < p(B, f) < oo), then B(An) ~ B(An41) as

n —» oo

@) if Liminf 20" — 0 and (@, /) < oo, then A@, f) = O;
n—>on ﬁ(A”-\‘-l)

) if limiaf a‘%@—))“ — 0 and A, £) > 0, then p(B, f) = oo;

(iv) if liminf {3(2/(\)‘")1) < land 0 < p(B, f) < oo, then f(s) is of B-irregular
>0 74

growth,

4. A DECOMPOSITION THEOREM

w . -
Theorem 6 — Let f(s) = Z an exp (sAn) be in Ds. Assume that f(s) is of
n=1
p-irregular growth and A, f) < u < o(8, /). Then f(s) = gu(s) + hu(s), where

[2 o]
B-order of gu(s) is less than or equal to u and Au(s) ———p}__l_l an, €Xp (s/\np) satisfies
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: B(’\"p—-l)
AG, f) > u lim inf ~gere

PrROOF : Let gu(s) = I’ an exp (sAn), where T’ denotes the summation overn
for which
log | an | < A exp (— B(M)/u) — oda.
Then gu(s) is in Dy and, by Theorem 1, is of B-order less than or equal to u. Set

[ o]
hu(s) = f(s) — guls) = Zl an,, €Xp (sAs ), then
p=
log | @n, | > A exp (— B(An )/u) — adn,.

Let op = a — (}) exp (— B(As))/u). Then, for oy < 6 < op4y, usINg Cauchy’s
inequality we get

log M(O') log I anp i + GAnp > log , anp l + O'pAnp

>
> )\np CXP (— B(Anp)/u) — (ot. _ Gp) A"p = )tnj ((x —_ Gp)
>

(@ - 0) An,
or
B(log M(c)) — log (& — o) jﬂ?x . B0
“Tog (0 = exp (o — w)) “Tog (1 — exp (opr; — )

where log M(c) < x*(s) < (log M(3))/(x — 5). Now, since
— log (1 — exp (6p41 — ) ~ B(An,,)/u as p — oo,

the theorem follows from the above inequality.

Added in the Proof : The author has recently come to know that for the

particular case B(x) = logy x, p 2> 2, Dr Krishna Nandan has obtained characteri-
zation of (B, /) and A(B, /) under more restrictive conditions on the exponents An’s.
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