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In the present paper, a theorem on| ¥, | ; summability factors of Fourier
series has been proved which generalizes the well-known results of Pati (1963)
and Singh (1967) on the absolute Cesaro summability factors.

§l. Let Zu, be a given series with the sequence of partial sums {s.} and let
A= {As} be a monotonic non-decreasing sequence of natural numbers with
Any; — An << 1 and A, = 1. The sequence-to-sequence transformation

R
= > s
v=n—2i,+1

defines the generalized dela Vallée Poussin means of the sequence {sn} generated
by A.

The series Zun is said to be summable | ¥, A | , if the sequence {Vn(A)} is of
bounded variation, i.e. to say

e e}
21| VaaQ) — Vad) | < oo (Leindler 1967).

n=

We say that the series T u, is summable | V, A | x, k > 1, if
2 k
S M| Van) — Vel | ¥ < oo,
n=

On taking A, = n, this summability reduces to | C, 1]z and for k =1 this is
the same as summability | ¥, A | .

§2. Let f(r) be a 2x-periodic and L-integrable function over (— =, ©). We
assume, as we may without any loss of generality that

0 oo
Z An(t) = Z (an cos nt + by sin nt)
n=1 n=1

is the Fourier series of f(¢).
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We write

PO =1/ + 1)+ f(x — 1) = 2f(x)};

and
n
Su(x) = B AX).
§3. In this paper, we prove the following :
Theorem — If {uun} is a convex sequence such that
A1 (1-25) /2
z 1pin( Og,\';:) <oo(]5] <) (31
(1-25) /2
2 llog MEPNE A pn o .(.2)
and
! B
I | $(u) | * du = O{t(log %} } 8>0 and 1<k <25 ..(3.3)
0
; pnAn(t) — xi ,
then the series z {I08 (7 & I)jCRssED " at ¢ = x is summable | V, A | &

On taking A, = nf, k = 1, and & = 0 in our theorem, we obtain the theorem
of Singh (1967) which is an extension of a well-known result of Pati (1963).

§4. We require the following lemmas :
Lemma 1 — If (3.3) holds, then

n

E |S4x) = /() | * = Ofnllog mXer#), 6> 0 and 1 <k <2
. (41

PrROOF : Since the case k = 1 of the lemma is due to Cheng (1947), we prove
itforl <k < 2 only.

If (3.3) holds, then by Hélder’s inequality, we have

j | j PRI 5 )" = o fu(1oe L)),

...(4.2)

*For k > 2, we get another theorem which is not included in the present paper.
$When 3, = n, (3.2) immediately follows from (3.1) by virtue of a lemma due to Pati (1954).
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Now, taking B/k in place of B in Cheng’s lemma (1947), it can be easily proved
that if (4.2) holds, then
n
Z {Sy(x) — f(x)}* = O{n(log n)t*+(2e/0}, ...(4.3)
v=0

Further, applying Holder’s inequality, we have
n

| Su®) — f) |2 < § §"O | Su(x) — £(x) | #e. ¢ §01}1—<kl2>,

y=

1l<k<?2
= O {n(log n)(x/>)+B} ...(4.9)

and for k = 2, (4.3) and (4.4) are the same.

This completes the proof of the lemma.

Lemma 2 — If (3.3) holds and Tw(x) = -
then
n
T | Tux) | ¥ = O{n(log n)(x/2+8},

=

n
PROOF : Let oa(x) = n—_{l_—l z Sy(x). Then, using lemma 1, we have
v=0

| ou®) — f0) | * < {n—% Z |5 — 16 |}

v=0
<ol D 1503}
= O {(log n)(x/2)r+B}

n
so that 2 | oy(x) — f(x) | ¥ = O{n(log n)(k/2)+8},
v=1
Since Tn(x) = Sa(x) — oa(x), by Minkowski’s inequality we have

2 T |#<H E | S — £ |9 + (E | o) —f) | B

= O {n(log n)(¥/2)}+8},
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g

5~ << oo, then
A

Lemma 3 — 1If {un} is a convex sequence such that
m

(i) = log@+1). A pn=0(), m—> oo
n=1
m

(ii) % onlog(n+ 1). A2 pn = O(1), m - oo.
n=1

Proor : The convergence of 2 2z implies the convergence of z 22, The

remainder of the proof at once follows from the lemmas given by Pati (1954, 1962).

§5. Proof of the Theorem — For k = 1, the theorem directly follows on taking

. [.LnAn(t) . . s

the series flog (n + L)pre in place of z wnAda(t) and applying the condi

tions (3.1), (3.2) and (3.3) (with k& = 1) instead of the set of conditions used by

Sharma and Jain (1970) in the proof of their theorem. Therefore, we prove our
theorem for 1 < k < 2 only.

Let Cn = Vay(3; X) — Va(d; x), where Va(A; x) is the nth de la Vallée Poussin
mean of the series

IJ'nAn(x) .
{log (n + 1)}(284—2“(’16‘1)/2

By an easy computation, we have

1 n+1
Co = 75— {Anyy — A) (v — 7 — 1) + Aa}
Anhny
v=n—ip,+2

pvdu(x)
{log (v + Deerzstenr

Therefore, in order to prove the theorem, it is sufficient to show that

[e0]
zl,\,’:‘1|c,.1k<w.
n=

@) )
Let ¥ be the summation over all n satisfying Any, = Xs and & be the summa-
n n
tion over all # where Ay > An.

When Any, = A, Abel’s transformation gives that

Co = ":1 [ z {z rAr(X)} A v(os & F {‘);(za+2s+k—~1)/2} -

v=n—=ip+2 r=1

(equation continued on p. 286)
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n—ip+1
Fn— Xt
Ny T s ey S (D W)
r=1
n+1
Hony

T E T D (g + 2)EEEETE { z ’Ar(x)}]

r=1

= L} + L+ L%, say.

By Minkowski’s inequality, it is therefore, sufficient to prove that

(i)k T
EXTIL | <o for r=1,2,3.
n

(i)
Now, z AL L]

n
) n

—om). > T by ‘

- ( . An vl V(x) I A v(log(v+1))(2a+28+k—l)/2 ]
n v=n—2A,+2
(i) n

~ o L Ty(x) | * 2

=0(l). An vITVx) | ¥ A v(log(v -+ I))2B+2s+k-1)/2
n v=n—2%,+2

ntay—1

o) v 1
= 0(l). E v | Ty(x) | ®. A{v(log o+ 1’;)(2a+28+k‘1)l2}. z An
— n=y

o0
= 0(1). z viTyx) | *. A (log (v + 1,;;(23+2s+k—1)/2}'
v=1

Using Abel’s transformation again, by Lemma 2, we easily have

@)
)\"—1 ‘ Ll l k

e @)

= E Fn

= 0(). n*(log n)(k/2t8 A2 {n(log T 1))(23+28‘+k"l)/2}
n=1
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[« o] [2¢]
= 0(). 2 n(log n)(1728)/2 . A2u, 4+ O(1). z (log n)(128)/2 A

v 0]
+ o). z &n"— (log n)(1-28)/2

n=1
= 0(1) (5.1
by Lemma 3(i), 3(ii) and hypothesis (3.1).

Further, applying Abel’s transformation and Lemma 2, it is easy to see that
(@) @)

S X ea
n n

= 0(1) . z ‘ Tn(X) [ E, ’\"(log (n ¥ llll;)(23+2g+k-1)lz

0
! —28)/
—o(). Z nA p.n(log n)1-28) /2 Ty z nun(log :,)(1 82

n=1

+oQ). z Ee(log ry-a-torr
n=1

= 0(1), ...(5.2)
by hypotheses (3.1) and (3.2).
(ii) .
Now, in order to estimate & we have, with the aid of Abel’s transformation,
n

that

n

Gl<me] D vt

v=n—hp+2

X ‘ A {(f\n +v—n-—-1 viog & + 1#);(23+28‘+k—1)/2}

__An
+ (@ —2a+1) I Tﬂ—)-n+1(x) I "(n— A +2)(10g(,’:“__ ,\:i. 3))(2ﬂ+2s+k—1)/2

Anfin
+ (n + 1) | Topqy(x) | " F 1) (og ("#++12}(2p+2s+k—1)/2

= M+ M!+ M}, say.
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By Minkowski’s inequality, it is therefore sufficient to prove that
()
)\:_lle,lk<oo for r=1,2,3. .

Now,
(ii)

LN

(i)

S al 3 oo ()

v=n—2An,+2

By k
+ v(log o -+ 1))(2B+28+k—1)/2}]

([Z )\'“fl{ 2 vIT) [A- 4 (v(log(v + 1;3:23+2s+k—1)/2)}k]”k

v=n—2ip+2
(i)
A T My k1 /N
+ [ z >\,.+1{ Z I T - Av(log (v -+ 1))eB+2ste-1) 2 } ] )
v=n—2%,+2

= (N1’ + N3/®)k, say.

We observe that
(i) n

N1=0(l).z,_l_ 2 VlTv(x)]kA’:
pLaz!
A { Hv }
v(log (v + 1)y2B+28+%k-1)/2

0
=0 > v I T 12 A o 1,;;(29+2s+k—1)/2}
v=1

(ii)

2w
% k

= AE+1

= 0(l). Z v|Tyx) | *. A {v(log o+ ];;;(23+28+k—1)12}

v=1

= 0(1), by (5.1).
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And similarly,

(i) . n | Ty() | k)gsﬂ oy
N, = 0(1). z @ Z (log (v + D)@erzerE 2
n

n v=n—%r,+2

o0
| Tw(x) | * py
=om. 2 Ay(log (v -I‘-‘ 1))eeresti-i iz
v=1

= 0(l), by 5.2).

Therefore,
(i)
z N ML= 0(1).
n
Finally,
(i) (ii)
S e >
n n

= N I T"(x) ' k M
B 0[ z As(log (n + l))(23+2f+k-1)/2]
n=1

= 0(1), by (5.2).
This completes the proof of the theorem.
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