COMPOSITION OPERATORS ON ORLICZ SPACES

B. S. KOMAL AND SHALLY GUPTA

Department of Mathematics, University of Jammu, Jammu 180 004, India

(Received 19 May 2000; accepted 1 September 2000)

The compact, Fredholm and Isometric composition operators on Orlicz spaces are studied in this paper.

Key Words: Composition Operator; Compact Operator; Fredholm Operator; Young Function

1. Introduction

Let $\phi: [0, \infty) \to [0, \infty)$ be a continuous convex function such that

i)
$$\phi(x) = 0$$
 iff $x = 0$

ii)
$$\lim_{x \to \infty} \phi(x) = \infty$$
.

Such a function ϕ is known as a young function. Let (X, S, μ) be a σ -finite measure space and let $L^{\phi}(\mu) = \{f: X \to C \text{ is measurable } | \int \phi(\varepsilon | f|) d\mu < \infty \text{ for some } \varepsilon > 0\}$. If we set $||f|| \phi = \inf\{\varepsilon > 0: \int \phi(|f|) d\mu \le 1\}$, then $L^{\phi}(\mu)$ is a Banach space under the norm $||\cdot|| \phi$. If $\phi(x) = x^p$, $1 \le p < \infty$, then $L^{\phi}(\mu) = L^p(\mu)$, the well-known Banach space of p-integrable functions on X.

A young function $\phi: I\!\!R \to I\!\!R^+$ is said to satisfy the Δ_2 -condition (globally) if $\phi(2x) < k \phi(x), x \ge x_0 \ge 0$ ($x_0 = 0$) for some absolute constant k > 0. If $\mu(X) = \infty$, then ϕ is called Δ_2 -regular. With each young function ϕ we can associate another convex function $\Psi: I\!\!R \to I\!\!R^+$ defined by $\Psi(y) = \sup\{x \mid y \mid -\phi(x) : x \ge 0\}, y \in I\!\!R$ which have similar properties.

The function Ψ is called the complementary function to ϕ . In general, simple functions are not dense in $L^{\phi}(\mu)$, but in case ϕ satisfy the Δ_2 condition, then the class of simple functions becomes

dense in $L^{\phi}(\mu)$. For more literature concerning orlicz spaces, we refer to Rao⁶ Kufner¹, and Hudzik³⁻⁴. Throughout our paper we assume that ϕ satisfy Δ_2 -condition.

Let X and Y be two non empty sets and let F(X) and F(Y) be two topological vector spaces of complex valued functions on X and Y respectively. Suppose $T: Y \to X$ is a mapping such that $f \circ T \in F(Y)$ whenever $f \in F(X)$. Then we can define a composition transformation $C_T: F(X) \to F(Y)$ by $C_T f = f \circ T$ for every $f \in F(X)$. If C_T is continuous, we call it a composition operator induced by T.

A bounded linear operator $A: E \to E$ (where E is a Banach space) is called compact if $A(B_1)$ has compact closure, where B_1 denotes the closed unit ball of E. A bounded linear operator $A: E \to E$ is called Fredholm if A has closed range, dim kerA and co dim ran A are finite. The support of a function $f \in L^{\phi}(\mu)$ is denoted by suppf and the Randon Nikodym derivative of the measure $d \mu T^{-1}$ with respect to μ is denoted by f_0 . In this paper we study composition operators on Orlicz spaces. It is proved that every composition linear transformation from an Orlicz space into an Orlicz space is bounded. The adjoint of a composition operator is obtained. The compact, Fredholm and isometric composition operators are also characterized.

2. BOUNDED COMPOSITION OPERATORS ON ORLICZ SPACES

Theorem 2.1 — If $C_T: L^{\phi}(\mu) \to L^{\phi}(\mu)$ is a linear transformation, then C_T is continuous.

PROOF: Let $\{f_n\}$ and $\{C_tf_n\}$ be sequences in $L^\phi(\mu)$ such that $f_n\to f$ and $C_Tf_n\to g$ for some $f,g\in L^\phi(\mu)$. Then we can find a subsequence $\{f_{n_k}\}$ of $\{f_n\}$ such that

$$\phi(|f_{n_k} - f|)(x) \rightarrow 0$$
 for μ -almost all $x \in X$.

From the non singularity of T,

$$\phi\left(|f_{n_k} - f\right)|T\left(x\right) \to 0 \text{ for } \mu\text{-almost all } x \in X.$$
 ... (2)

Thus from (1) and (2), we conclude that $C_T f = g$. This proves that graph of C_T is closed and hence by the closed graph theorem, C_T is continuous.

3. COMPACT COMPOSITION OPERATORS ON ORLICZ SPACES

Theorem 3.1 — Let $C_T \in B(L^{\phi}(\mu))$. Then C_T is compact if and only if $L^{\phi}(\chi_{\varepsilon}, \mu T^{-1})$ is finite dimensional for each $\varepsilon > 0$, where $\chi_{\varepsilon} = \left\{ x \in : \frac{d \mu T^{-1}}{d \mu}(x) \ge \varepsilon \right\}$.

PROOF: For $f \in L^{\phi}(\mu)$, we have

$$\begin{split} \parallel C_T f \parallel_{\phi, \, \mu} &= \inf \left\{ \, \varepsilon > 0 : \int \, \phi \bigg(\frac{|f \circ T|}{\varepsilon} \bigg) d \, \mu \le 1 \, \right\} \\ &= \inf \, \cdot \left\{ \, \varepsilon > 0 : \int \, \phi \bigg(\frac{f}{\varepsilon} \bigg) d \, \mu \, T^{-1} \, \right\} \\ &= \| \, If \, \|_{\phi, \, \mu \, T^{-1}}. \end{split}$$

Thus C_T is a compact operator if and only if $I: L^{\phi}(\chi_{\varepsilon}, \mu T^{-1}) \to L^{\phi}(\chi_{\varepsilon}, \mu T^{-1})$ is a compact operator if and only if $L^{\phi}(\chi_{\varepsilon}, \mu T^{-1})$ is finite dimensional, where I is the identity operator.

Corollary 3.2 — If (X, S, μ) is a non atomic measure space, then no non zero composition operator on $L^{\phi}(\mu)$ is compact.

Corollary 3.3 — If (X, S, μ) is a σ -finite atomic measure space, then C_T on $L^{\phi}(\mu)$ is compact if and only if the set $\left\{n: \sum_{m \in T^{-1}(a_n)} \mu(a_m) \ge \varepsilon \, \mu(a_n) \right\}$ is a finite set, where a_1, a_2, \ldots are the atoms of the space.

4. FREDHOLM AND ISOMETRIC COMPOSITION OPERATORS ON ORLICZ SPACES If we use the Holder's inequality for orlicz spaces, i.e., $\int fgd\,\mu \leq \|f\|_{\phi} \|g\|_{\psi}$ then by using Rao [6, prop. 1;. p. 100 & cor. 9; p. 111] we find that every $g \in L^{\psi}(\mu)$ gives rise to a bounded linear functional $F_g \in L^{\phi^*}(\mu)$ which is defined as

$$F_{\rho}(f) = \int f g d\mu$$
 for every $f \in L^{\phi}(\mu)$.

For each $f \in L^{\Psi}(X, S, \mu)$ there exists a unique $T^{-1}(S)$ measurable function E(f) such that $\int g f d\mu = \int g E(f) d\mu$ for $T^{-1}(S)$ measurable function g for which the left integral exists. The function E(f) is called the conditional expectation of f with respect to the sigma algebra $T^{-1}(S)$. The operator $P_T: L^{\Psi}(\mu) \to L^{\Psi}(\mu)$ defined by $P_T f = f_0 E(f) \circ T^{-1}$ is called the Frobenius Perron operator where $E(f) \circ T^{-1} = g$ if and only if $E(f) = g \circ T$.

Theorem 4.1 — Let $C_T \in B(L^{\phi}(\mu))$. Then $C_T^* = P_T$

PROOF: Take $A \in S$ to be a such that $0 < \mu(A) < \infty$. For $g \in L^{\Psi}(\mu)$,

$$(C_T^* F_g) (\chi_A) = F_g (C_T \chi_A) = \int C_T \chi_A \cdot g \, d \, \mu = \int \chi_A \circ Tg \, d \, \mu$$
$$= \int \chi_A E(g) \circ T^{-1} f_0 \, d \, \mu = F_{E(g)} \circ T^{-1} f_0 (\chi_A)$$

Hence, $C_T^* F_g = F_{E(g) \circ T^{-1} f_0}$. After indentifying $g \in L^{\psi}$ with $F_g \in (L^{\phi})^*$, we can write

$$C_T^* g = E(g) \circ T^{-1} \cdot f_0 = P_T g.$$
 ... (3)

Theorem 4.2 — Let $C_T \in B(L^{\phi}(\mu))$. Then C_T has closed range if and only if there exists $\delta > 0$ such that $f_0(x) \ge \delta$ for μ almost all $x \in supp f_0 = 5$..

PROOF: If $f_0(x) \ge \delta$ for μ almost all $x \in s$, then for $\eta = \min(\delta, 1/\delta) \le 1$

$$\begin{split} &1 \geq \int \phi \left(\frac{C_T f}{\parallel C_T f \parallel_{\phi}} \right) d \mu = \int f_0 \phi \left(\frac{f}{\parallel C_T f \parallel_{\phi}} \right) d \mu \\ &\geq \int \eta \phi \left(\frac{f}{\parallel C_T f \parallel_{\phi}} \right) d \mu \\ &\geq \int \phi \left(\frac{\eta f}{\parallel C_T f \parallel_{\phi}} \right) d \mu \end{split}$$

Hence, $\|C_T f\|_{\phi} \ge \eta \|f\|_{\phi} \ \forall f \in L^{\phi}(s)$ so that C_T has closed range.

Conversely suppose that C_T has closed range. Then there exists $\delta \ge 0$ such that

$$\parallel C_T f \parallel_{\phi} \ge \delta \parallel f \parallel_{\phi} \qquad \dots \tag{4}$$

for every $f \in L^{\phi}$ (supp f_0). Choose a positive integer n such that $1/n < \delta$.

If the set $E = \{x \in X : f_0(x) < 1/n\}$ has positive measure, then for a given measurable subset $F \subset \text{supp } f_0 \text{ such that } 0 < \mu(F) < \infty$, we have

$$\mu T^{-1}(E) = \int_{E} f_0 d\mu < 1/n \mu(E)$$

which implies that

$$\phi^{-1}\left(\frac{1}{\mu T^{-1}d(E)}\right) \ge \phi^{-1}\left(\frac{n}{\mu(E)}\right) \ge n \phi^{-1}\left(\frac{1}{\mu(E)}\right)$$

or equivalently

$$\|C_T \chi_E\|_{\phi} \le 1/n \|\chi_E\| \phi$$

This contradicts the inequality (1). Hence, f_0 is bounded away from zero on supp f_0 .

Theorem 4.3 — Let $C_T \in B(L^{\phi}(\mu))$. Then Ker C_T^* is either zero dimensional or infinite dimensional.

PROOF: Suppose $0 \neq g \in \text{Ker } C_T^*$. Then $E = \sup_{n \neq 0} g_n$ is a set of non zero measure. Now we can partition E into a sequence $\{E_n\}$ of disjoint measurable sets, $0 < \mu(E_n) < \infty$. We show that

 $g \chi_{E_{n,T}} \in \text{Ker } C_T^*$. Consider

$$C_T^*(g \chi_{E_{n \circ T}})(f) = \int (g \cdot \chi_{E_{n \circ T}})(C_T f) d\mu$$
$$= \int g \cdot C_T(\chi_{E_n} f) d\mu = 0$$

Hence, if Ker C_T^* is not zero dimensional, it is infinite dimensional.

Corollary 4.4 — Let $C_T \in B(L^{\phi}(\mu))$. Then C_T is injective if and only if T is surjective.

Corollary 4.5 — Let $C_T \in B(L^{\phi}(\mu))$. Then C_T has dense range if and only if $T^{-1}(S) = S$.

PROOF: Suppose C_T has dense range. Let $E \in S$ be such that $\chi_E \in L^{\phi}(\mu)$.

Then there exists $\{f_n\}\subset L^{\phi}(\mu)$ such that $C_tf_n\to\chi_E$. Now we can find a subsequence $\{f_{n_k}\}$ of $\{f_n\}$ such that $C_Tf_{n_k}\to\chi_E$ a.e.. Now each $C_Tf_{n_k}$ is measurable with respect to $T^{-1}(S)$. Therefore, χ_E is measurable with respect to $T^{-1}(S)$ so that $\chi_E=\chi_{T^{-1}(F)}$. Hence $T^{-1}(S)=S$ a.e. .

Conversely, suppose $T^{-1}(S) = S$ a.e. If $E \in S, 0 < \mu(E) < \infty$, then there exists $F \in S$ such that $\mu(T^{-1}(F) \Delta E) = 0$. Since X is σ -finite, we can find an increasing sequence $\{F_n\}$ of sets of finite measure $F_n \uparrow F$ or $T^{-1}(F) \backslash T^{-1}(F_n) \downarrow \phi$. Hence for given $\varepsilon > 0$ there exists a positive integer n_0 such that

$$\mu T^{-1}(F \setminus F_n) < \frac{1}{\phi (1/\varepsilon)} \text{ for every } n \ge n_0. \text{ Hence,}$$

$$\| C_T \chi_F - C_T \chi_{F_n} \|_{\phi} = \| C_t (\chi_{F \setminus F_n}) \|_{\phi}$$

$$= \| \chi_{T^{-1}(F \setminus F_n)} \|_{\phi}$$

$$= \frac{1}{\phi^{-1} \left(\frac{1}{\mu T^{-1}(F \setminus F_n)} \right)} < \varepsilon$$

for all $n \ge n_0$. Then $\chi_E = \chi_{T^{-1}(F)} \varepsilon$ ran C_T . This proved that C_T has dense range.

We are now ready to present a criterion for Fredholm composition operators.

Theorem 4.6 — Let $C_T \in B(L^{\phi}(\mu))$. Then C_T is fredholm if and only if C_T is invertible.

PROOF: Assume that C_T is fredholm. In view of theorem 4.3, ker C_T and ker C_T^* are zero dimensional so that C_T is injective and $T^{-1}(S) = S$ a.e. Therefore by corollary 4.5, C_T has dense range. Since ran C_T is closed, so C_T is surjective. This proves the invertibility of C_T . The proof of the converse is obvious.

Proposition 4.7 — Let $C_T \in B(L^{\psi}(\mu))$. Then

 $C_T^* C_T = M_{f_0}$, where $f_0 = \frac{d \mu T^{-1}}{d \mu}$, the Radon Nikodym derivative of the measure μT^{-1} with respect to the measure μ .

PROOF: Replacing g by $C_T g$ in condition (1) of theorem 4.1 we get

$$C_T^*(C_T g) = E(g \cdot \circ T) \circ T^{-1} \cdot f_0 = g \cdot f_0 = M_{f_0} g$$

for every $g \in L^{\psi}(\mu)$. Hence $C_T^* C_T = Mf_0$.

Corollary 4.8: Let $C_T \in B(L^{\phi}(\mu))$. Then C_T is an isometry if and only if T is measure preserving.

Example — Let $T: [0, 1] \rightarrow [0, 1]$ be defined by

$$T(x) = \begin{cases} 2x, & 0 \le x \le 1/2 \\ 2x - 1, & 1/2 \le x \le 1 \end{cases}$$

Then

$$C_T^* f(x) = 1/2 f(1/2 x) \chi_{[0, 1]} + 1/2 f(1 - 1/2 x) \chi_{[0, 1]}$$
$$= 1/2 f(1/2 x) + 1/2 f(1 - 1/2 x)$$

Then ker C_T is infinite dimensional. Hence, C_T is not Fredholm.

Example Let $T: [0, 1] \rightarrow [0, 1]$ be defined by

$$T(x) = \left\{ \begin{array}{c} x/1 - x \,, & 0 \le x \le 1/2 \\ 2(1 - x) \,, & 1/2 \le x \le 1 \end{array} \right\}$$

Then C_T^* the adjoint of C_T is given by

$$C_T^* f(x) = \frac{f(x/1+x)}{(1+x)^2} + \frac{f(1+x/2)}{2}$$

ACKNOWLEDGEMENT

The first author is thankful to the University of Jammu for funding the project "Application of composition operators in the theory of differential and integral equations.

REFERENCES

- 1. A. Kufner, O. John and S. Fuick, Function Spaces, Academia Prague, 1977.
- 2. H. Takagi, Int. Eq. Operator Theor., 16 (1993) 267-76.
- 3. H. Hudzik, Ar/italic chi/v Math. 44 (1985) 535-38.
- 4. H. Hudzik, A. Kamisziska and J. Musielak, *Colloquia Math. Soc. Janos Bolyai* 49, Alfred Haar Memorial Conference, Budapest, 1985 (Printed in 1986)
- 5. J. Ding and William E. Hornor, J. math. Anal. Appl. 187 (1994) No. 3.
- 6. M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Marcel Dekker, Inc. New York, Basel and Hong Kong, 1991.
- 7. P. R. Halmos, A Hilbert Space Problem book, Van Nostrand Princeton, N. J 1961.
- 8. R. G. Douglas, Banach Algebra Technique in Operator Theory, Academic Press, New York, 1972.