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In this paper, we deal with the uniqueness problems on meromorphic functions conceming differential polynomials
and improve some result given by Fang and Hong (Indian J. pure appl. Math., 32 (2001), 1343-1348).
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1. INTRODUCTION AND RESULTS

In this paper the term "meromorphic" will always mean meromorphic in the complex plane C. Let
a be a complex number, we say f and g share the value a CM, if f—a and g —a assume the same
zeros with the same multiplicities. It is assumed that the reader is familiar with the notations of the
Nevanlinna theory that can be found, for instance, in!. We denote by S(r,f) any function satisfying

S(r, f) = o{T(r, )},

as r — oo, possibly outside of finite measure.

It is well known that if f and g share four distinct values CM, the f is a Mdobius
transformation of g. In 1997, corresponding to one famous question of Hayman3, Yang and Hua®
showed that similar conclusions hold for certain types of differential polynomials when they share
only one value. They proved the following result.

Theorem A — Let f and g be two nonconstant meromorphic functions #» > 11 an integer and
ae C— {0). If f"f’ and g" g’ share the value a CM, then either f = dg for some (n + 1)th root

of unity d or g(z) = c1e” and fiz) = cpe ™, where c¢,c; and ¢, are constants and satisfy

(ClCz)n +1 C2 = _a2.

Recently, by using the same argument as did in* Fand and Hong5 obtained the following
result.

Theorem B — Let f and g be two transcendental entire functions, n>11 an integer. If
P (f-1)f and g'(g—1) g’ share the value 1 CM, then f(z)=g(2).

The purpose of this paper is to generalize and improve the above result by deriving the
following:
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Theorem 1 — Suppose that the condition "n211" is replaced by "n2>7" in Theorem B,
then the conclusion remains valid.

Theorem 2 — Suppose that the condition "f and g are two transcendental entire functions”

"

n+1

is replaced by "f and g are two nonconstant meromorphic functions satisfying © (eo, f) > in

Theorem B, then the conclusion remains valid.

Remark : The following example shows that Theorem 2 is sharp.

)=(n+1)h(h"+'-1)

n+ )@ -1 W —u
m+2) (W"t2-1) )=

, where h=

Example — Let f(z
P R n+2)(W"t2-1) &—1

and g(z

2ni
n+2

1 CM. However, f # g.

. It is easy to see that © (e, f) =%, moreover, f" (f~ 1)f’ and g" (g — 1)g’ share

and u=exp

Theorem 3 — Let f and g be two distinct nonconstant meromorphic functions, n> 12 an

integer. If f" (f— 1)f’ and g"(g—1)g’ share the value 1 CM, then

_(m+a-n"th f_(n+2)h(1—h"“)
m+1)(1-a"*2 n+1)Q-H"*Y’
where h is a nonconstant meromorphic function.

Theorem 4 — Let f and g be two nonconstant meromorphic functions, n 213 an integer. If
" (f-1)>f" and g"(g—1)%g’ share the value 1 CM, then D) =g(2).
On the other hand, we have the following results related to the above uniqueness theorems.

Theorem 5 — Let f be an entire function, n21 positive integer. If f"(f- 1)2 f'#1, then
flz) is a constant.

Theorem 6 — Let f be a meromorphic function, n2?2 positive integer. If f'(f- l)2 f #1,
then fiz) is a constant.

2. MAIN LEMMAS

For the proof of our theorems we need the following lemmas.
Lemma 15 — Let f be a nonconstant meromorphic function and let

RN= 3, af*7 3 bf
k=0 Jj=0

be an irreducible rational function in f with constant coefficients {a;} and {bj}, where a, #0 and
b, #0. Then

I(r, R(N)) =dT(r, /) + S(r, ),

where d = max{n, m}.
In order to state second lemma, we introduce the following notations.
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Let f be a meromorphic function. We denote by n,(r,f) the number of poles of f in

Izi<r, where a simple pole is counted once and a multiple pole is counted two times, N,(r,f) is

defined in terms of ny(r,f) in the usual way. In the same way, we can define N2(r,l) (sec7).

f

By using the method ots, we can prove the following result.

Lemma 2 — Let F and G be two nonconstant meromorphic functions such that F and G
share 1 CM, and let

FII FI GII Gl
H_(F' 2% )‘( ¢ 2c-1 J
If H# 0, then
I(r) S Ny(r. /) +N2(r,-11;)+ Ny(r, G) +N2(r,—é-)+ S(r),

where T(r) = max{1(r, F), T(r, G)}, S(r)=o(T(r)) (r > e, r¢ E), E is a set of finite linear measure.
The following result is due to Yi (seeg), which plays an important role for the proof of our

theorems.

Lemma 38 — Let H be defined as in Lemma 2. If H=0 and

N{r,%]+N(r,i]+N(r,F)+N(r, G)

lim G <1
r—> oo T(r) ’
rel

where I is a set with infinite linear measure, then FG=1 or F=G.

Lemma 4 — Let f and g be two nonconstant meromorphic functions, n > 6 a positive integer,
and let

F=f"(f-1)f’, G=g"@g-1¢"
If F and G share 1 CM, then S(r,f) =S(r, g).
PROOF : By Lemma 1, we have

(n+ DI, H=T(r, " (f- D)+ S(r, ) < T(r, ) + T(r, f* ) + S(r, ).

Therefore,

I(r, F) 2 (n - DT(r, f) + S(r, f).

By the second fundamental theorem, we have

T(r, F)SN(r,F')+N[r,"II;J+N(r,F—1"I—]+S(Rf)

SN(r,f)+N(r,%]+N[r,fjl J+1T/(r,f—l,)+ﬁ(r, = ]+S(r,j)
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<S5T(r, ) + T(r, G) + S(r, /).
Note that T(r, G) < T(r, g"(g — 1)) + T(r, &) < (n +3)T(r, g) + S(r, g), we deduce that
(n—6)T(r, ) < (n+3)T(r, g) + S(r, g) + S(r, ).

It follows that the conclusion of Lemma 4 holds.
Lemma 510 — Let

(@) =(n—- 12" - 1) (@ 2= 1) -n(n-2) (@' - 1),
then

(@) = (@~ 1)* (@~ B) (@=By) ... (@=Py, _¢)
where Bje C\{O, 1} G =1, 2, ..., 2n — 6), which are distinct respectively.

3. PROOF OF THOREMS
3.1. Proof of Theorem 3

Let
F=f"f-1)f", G=g"(g-1)g’; (D
and
* 1 n+2- 1 n+1 * _ 1 +~2_ 1 n+1
F —n+2f n+1f » G _n+2gn neld . (2

Thus we obtain that F and G share 1 CM. Moreover, by Lemma 1, we have
T(r, F) = (n+ 2T, f) + 5(r, ), )
T(r, Gy = (n+2)T(r, §) + S(r, g). )
Since (F'Y =F, we deduce
m[r,—l—*)Sm(r,l}&-S(r,f),
F F

and by the first fundamental theorem

T(r, F*)sT(r,F)+N(r,#)-1v(r,%)+5(r,f). . (5)
Note that N|r L =(n+1)N rl N|r L 6)
"F* f ’f_ﬂ ’
n+1

J:nN[r,%)+N(r,f_1] )+N(r,}1-;]. . (N
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It follows from (5), (6) and (7) that

T(r,F*)ST(r,mN(r,l]w .

f _n+2
f n+1
-N r-L- - N r—l- +8(r, ) (8
’f_l ’f' 2JJ-
Let H be defined as in Lemma 2. Suppose that H # 0, by Lemma 2, we have
I(r) SN,(r, F) +N, (r, -;4: )+ N,(r, G) +N2( r, -é— )+ S(r), .. 9
where () = max{T(r, F), T(r, G}}, S(r) = o(T(r)).
It follows from (1) that
NG +N, | nL l<omep+on] nd e[ == Jen(rn L (10)
PASR 2 ’F— 3 ;f ’f—l ,f,,
N,(r, G) + N. ri <2N(r,g)+2N rl +N|r 1 +N ri (1)
7, 2 G |© s ,g ’g—l ,g, .
By (8), (9), (10) and (11), we obtain
* 1
I(r, F )53N(r,f)+N r,f_n+2 +2N(r, f)
n+1
+ 2N(r, g) +2N rl +N|r I +N rl +8(r, (12)
’ ?g ,g_l ’gl ’ . hhad

Note that N ( r, é }S N@r,g)+N (r, é ]S 2T(r, g) + S(r, g), we have from (3) and (12) that

(n—4)T(r,) <TT(r, g) + S(r, ) + S(r, g). .. (13)
In the same manner as above, we have
(n—-4)I(r, g) <TT(r, f) + S(r, ) + S(r, g). .. (14)

By (13) and (14), we obtain that n <11, which contradicts n 2 12. Therefore, H=0.
That is

F ” F ’ _ G/f Gl
FF2F1- 6 %61 - (43
By integration, we have from (15)

_1 __4
G-1 F-1

+ B,

where A(#0) and B are constants. Thus,
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T(r, F) = T(r, G) + S(r, f).

By (1) and (16), we have

N(r,%]+ﬁ(né—]+ﬁ( r,F)+N(r,G)
1
f

and

1(r, F)+m[r,i,}=T(r,f" - 1)f')+m[r,—1-;).>_ T(r,f" (f-1)).

f f

By (17), (18) and (19), we apply Lemma 3 and get F=G or FG=1.

We discuss the following two cases.
Case 1 : Suppose that FG =1, that is

ffr-nrgg-ng=1.

. (16)

Y))

. (18)

. (19)

. (20)

Let z, be a zero of f of order p. From (20) we know that z, is a pole of g. Suppose that

zy is a pole of g of order gq. Again by (20) we obtain

np+p-1l=ng+2q+1,

that is, (n + 1) (p - ¢) = q + 2, which implies that p>g + 1 and ¢+22n+ 1. Hence, p2n.

Let z; be a zero of f — 1 of order p,, then we can also deduce that p, 2—;—+2.

Let z, be a zero of f’ of order p, that is not zero of fif — 1), we similarly have

p,2n + 3. Moreover, in the same manner as above, we have the similar results for the zeros of

g(g - 1)g". On the other hand, suppose that z; is a pole of f. From (20) we get that z3 is the zero

of g(g-1)g’, thus

— — 1 1 — 1
N(r,f)SN[r,:—g—)+N(r,g_l ]+N(r,:g—;]

1
o

IA

~

k]
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< % I(r, g) + S(r, 8). .. 21
By the second fundamental theorem, we have from (21) that

T(r,f)SN(r,%)+N(r,j%l)+ﬁ(r,f)+3(r,j)

< ESZ I(r.p) +% T(r, g) + S(r,.H + S(r, 8. .. (22)
Similarly, we have
T, ) <55 T 8+ 5 T f) + 5. ) + 05 ). . (23)

From (22) and (23) we deduce a contradiction.
Case 2 : If F=G, that is

F'=G"+q, .. (24)

where ¢ is constant.
It follows that

(r,)=1(r, g) + S(r, . .. (25)

Suppose that ¢ #0. By the second fundamental theorem, from (2), (3) and (25) we have

(n+2)T(r,g)=T(r,G)< N (ré)

+N|r, *l +N(r,G*)+S(r,g)
G +c

— 1 — 1 — 1
< - _ 1
_N(r,g)+N r, ) +N(r,g)+N(r, ]

~

< ST(r, ) + S(r. /),

which contradicts the assumption. Therefore F*=G", that is

nel p_n+2) as1 | n+2
s (F n+l)—g [g n+1)

Let h='§. Since f¥# g, we have h¥ 1, and hence we deduce that
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_(+2(-H"*h _(m+2(A-K*hh
(n+1) (1=K n+1)(1-H"*2

’

which proves Theorem 3.

3.2. PROOF OF THEOREM 1

Let F,G,F*,G* and H be given as above. Suppose that H= 0. Note tha.

N(r, é JS N(r, % )+ S(r,g) <T(r, g) + S(r, 8),

+2~(,1)+N(,, 1 )
g g-1

we have from (12) that

ot

T(r, F*) < 3N(r, 1 ]+N r,

R R
+ N(r, i, ]+ S, .
g
Thus, we have
(n=2) T(r, ) S 4T(r, &) + S(r. ) + S(r. 8), .. (26)
and
(n—2) T(r, g) <4T(r, /) + S(r, /) + S(r, &) - 27

By (26) and (27), we obtain that n <6, which contradicts n 2 7. Therefore, H=0. Using this
and proceeding as in the proof of Theorem 3, we obtain that FG=1 or F=G. Since f and g are
entire functions, we easily derive a contradiction when the case FG=1. Therefore, F=G. In the

same manner as in the proof of Theorem 3, we obtain f=g.
This completes the proof of Theorem 1.
3.3. PROOF OF THEOREM 2
Let F,G,F*,G" and H be given as above. Suppose that H£ 0.
Note that

N (r, ﬁ JS N (r, é )+ N(r, g) + S(r, g) < 2T(r, g) + S(r, g).

Similar to (13), we have for € (>0) arbitrary
(n—4+20 (o, /) - &) T(r, ) < TT(r, 8) + S(r, P + S(r, g).

From this and (14), by Lemma 4 we obtain that n < 11, which contradicts n>11.
Therefore, H=0.
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Suppose that f g. Proceeding as in the proof of Theorem 3, we have

_(+2-H"*h _m+2)(A-r"*Dh
n+D)A-1"*% n+1)Q-K"*2

’

where h is nonconstant meromorphic function.
It follows that

I(r,f) = (n+ 1) T(r, ) + S(r, ).

On the other hand, by the second fundamental theorem, we deduce

N(rnf)= N(r, ! )2(n—1)T(r,h)+S(r,f),

h-a,
j=1 J

where aj(vt DG =1,2, .., n+ 1) are distinct roots of the algebraic equation 2o,

Therefore, we have © (o, ) S;—i—l, which contradicts the assumption. Thus, f=g.

This completes the proof of Theorem 2.

3.4. PROOF OF THEOREM 4

Set

F=f"(f-1%f", G=g"(g-1)g" .. (28)
and

«__ 1 ne3 2 pe2, 1 p4

F —n+3f n+2f +n+1f ’

* 1 n+3 _ 2 n+2 1 n+l

G “h+3t nv28  thyid - (29)

Thus we obtain F and G share 1 CM. Moreover, by Lemma 1, we have
T(r, F*)Y=(n+3) T(r, H + S(r. f), ... (30)

T(r, G*) = (n + 3) T(r, g) + S(r, g). .. B1)

Let H be defined as in Lemma 2. Suppose that H & 0. Proceeding as in the proof of Theorem
3, we have

T(r, F*) < T(r, F) +N(r, % J- N(r, % )+ S(r, f). - (32)

Note that

1) 1 1 1
N(r,Fk)—(n+l)N(r,f)+N(r,f_al ]+N[r,f_a2), . (33)
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2 2 + 1
z n+2Z n+1

(b ol oo o) e

By Lemma 2, we have

where a,, a, are distinct roots of the algebraic equation =0,

n+3

and

T(r) SNy(r, F) +N, (r, % )+ Ny(r,G) +N, (r, é J+ S(r), ... (35)

where T(r) = max{T(r, F), T(r, G)}, S(r)=o(T(r)).
It follows from (28) that

Nz(r,F)+N2(r,-113]S2N(r,f)+2N( })+2N( f_l ) N(rfiJ ... (36)

Ny(r,G)+N, (r, é ]S 2N(r, g) + 2N[r, é )+2N(r, 7—1 )+N(r, é J .. 31

By (32), (33), (34), (35), (36) and (37), we obtain

1 1
I(r,F )<3N(r’f)+N(r’f—m }+N(r’f«a2 J+2N(r,f)

+2N(r, g) +2N (r, é ]+N(r, gi " J+N(r, é ]+ S(r, p. ... (38)

Note that N (r, é JS N(r,g)+N (r, i— )S 2T(r, g) + S(r, g), we have from (30) and (38) that

(n—4) T(r, ) < 8T(r, g) + S(r, /) + S(r, 8). .. (39)

Similarly, we have

(n—4) T(r, g) < 8T(r, /) + S(r, f) + S(r, 8). ... (40)
By (39) and (40), we obtain a contradiction. Therefore, H=0.
Note that

I(r, F)+m( ' f J T(r, f" (f- l)j)+m(r}1—]>T(rf - l)) .. (41)

By (17), (18) and (41), we apply Lemma 3 and get F=G or FG=1.
Suppose that FG=1. In the same manner in the proof of Theorem 3, we again deduce a
contradiction. Therefore F=G. Thus F*=G", that is

1 43 n+2 1 n+l
n+3f n+2f n+1f
_ 1 n+3 _ 2 n+2 1 n+1
“n+3é n+28 TS - (42)
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Set h='§, we substitute f=hg in (42), it follows that

n+2) (+ DZ HE -1 =20+3) (n+ 1) g 2= 1)
+ M+ (+3)H 1 -1)=0. . (43)
If h is not constant, using Lemma 5 and (43), we can conclude that
(r+ D)+ W3- g-(m+3) (n+ 1) B 2= 1))?

= —(n+3)(n+1) Qh)
where Q) =(h-1)* (h=B) (1B ... (h-B,,),
B,e C\{0, 1} G = 1,2, .., 2n),

which are pairwise distinct.

This implies that every zero of h—-Bj G =1, 2, .., 2n) has a multiplicity of at least 2. By
the second fundamental theorem we obtain that n <2, which is again a contradiction. Therefore, h
is a constant. We have from (43) that #**!1~1=0 and #"*%-1=0, which imply 4 = 1, and hence
f=g

This completes the proof of Theorem 4.

3.5. PROOF OF THEOREM 6

Set
F=f"(f-172f",
* 1 n+3 2 n+2 1 n+l
Fy= n+3f n+2f n+1f ’
and
*___1_n+3___g__n+2 _1__n+l 2_ 1 _ 1
F,= n+3f n+2f +n+1f +(n+2 n+3 n+1)'
Thus (FT)':F,(FS)':F and ( F, ): (f~1)° P,(f), where P, is a polynomial of degree
n.

By Lemma 1, similar to (5), we have

(n+3) T(r,f):T(rF’l‘)+S(r,f)

ST(r,F)+N(r,l,,}-—N[r,%)+S(r,f). .. (44)

Fy

Moreover, by the second fundamental theorem we have
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(r, F)sN(r,F)+N(r,%J+N(r, Fil )+S(r,f)

- —( 1Y = 1 1
SN(rf) +N(r,fJ+N[r,f_ 7 )+N(r,f, ]+S(r,f).
From (33), (34), (44) and (45), we obtain

(n+1) T(r,j)SN(r,f)+2N[r,%]—N(r,]%lJ+S(r,f).

Note that

N(r,%]S3N[r, 1 J+nT(r,f) + 8(r, p.
F, f-1

In the same manner as above, we have from (34) and (47) that

(n+3)T(r f) = T(r, F, )+ S,

<SN( r,f)+2N(r,f_l1 )—(n— 1)N(r,%)+nT(r,f)+S(r,f).

By (46) and (48), we obtain

(n+4)T(r,H<2N( r,f)+N(r, 1 )+(3—n)N(r,l]+S(r,f),

f-1 f

which implies T(r, f) < S(r, f). Therefore f is constant.

Proceeding as in the proof of Theorem 6, we shall obtain that Theorem 5 holds.

S
maoar=-z<»

—
—

¥ %N AW -

3.6. PROOF OF THEOREM 5
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