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The uniqueness of meromorphic functions that share three values IM and a fourth value CM is investigated, and
the open question "if two nonconstant meromorphic functions share three values IM and a fourth value CM, then
do the functions share all four values CM?" is partly resolved.
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1. INTRODUCTION

It is assumed that the reader is familiar with Nevanlinna’s theory of meromorphic functions and its
basic notations, as well as its fundamental results (see Haymanl). Let f (z) be a meromorphic function
in the complex plane, we denote by S(r,f) any quantity satisfying S(r, f) = o(T(r, f)) for r — e except
possibly a set of r of finite linear measure. We say that two nonconstant meromorphic functions f
and g share the value c(c = is allowed) provided that f(z) =c if and only if g(z) =c. Usually, we
will state whether a shared value is by CM (counting multiplicities) or IM (ignoring multiplicities).
We denote by Np(r,f=c=g) or Ng(r,c) the counting function of those c-points where f(z) and

g(z) have same multiplicity (counting each point only once), while by Ny (r,f=c=g) or Np,(r,c)

the counting function of those c-points where f and g have different multiplicities (counting each
point only once).

Nevanlinna (see3) proved the following two theorems:

Theorem A — Let f and g be non-constant meromorphic functions. If they share five distinct
values a,, ...,as IM, then f=g.

Theorem B — If f and g are distrinct nonconstant meromorphic functions. that share four
distinct values aj, ay, as,a, CM, then f is a Mobius transformation of g; two of the values, say,
a, and a,, are Picard values, and the cross ratio (a,, a,, az, ay) = -1

In 1976, Rubel asked the following question: whether CM can be replaced by IM in

Theorem B with the same conclusion or not? Gundersen® gave a negative answer for this question
by the following counterexample.

*Project supported by the Education Bureau of Hunan, China (19971052).
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h(z) hz) | 142
ﬁ’ g2 __(e77+b)" . (LD
e —

f(z) = - 8b2 (eh(z) _ b)’

where h(z) is a non-constant entire function and b (#0) a finite value. It is easy to verify that f

and g share 0, W,L 1

AT IM but not CM. In fact, f and g share these four values with the property

that f and g have different multiplicities at any of their zeros, poles, %—points, and ——s%-points. And

f is not a Mobius transformation of g.

On the other hand, Gundrsen showed (sees) an improvement of Theorem B.

Theorem C — If two nonconstant meromorphic functions share two values IM, and share
two other values CM, then f and g share all four values CM.

However the so called "ICM + 3IM question" that "If two nonconstant meromorphic
functions share three values IM and share a fourth value CM, then do the functions necessarily
share all four values CM ?" remains open.

Let f and g be nonconstant meromorphic functions sharing the value a IM. Define

Ng(r, a) fN(ra) £ 0,
N(r,a)
1 if N(r,a)=0.

T(a) = l:ri 1::f

Mues proved the following partial result on this question.

Theorem D’ — Let f and g be nonconstant meromorphic functions that share four distinct

values ay, ay, a3, aq. If ay is shared CM and T (ay) > 2/3, then f and g share all four values CM.

Gundersen® obtained another partial result on this question as follows:
Theorem E — Let f and g be nonconstant meromorphic functions that share aj, an a; IM
and a, CM. Suppose that there exist some real constant A > 4/5 and some set I (0, ) that has

infinite linear measure such that

N(r,a,,
( 4f)>

W 2 . (1.2)

for all re 1. Then f and g share all four values CM.
Wang8 proved the following theorem, which is of the same nature as Theorem D:
Theorem F — Let f and g be nonconstant meromorphic functions that share four distinct

values ay, ay, a3, a4 IM. If T(ay) > 4/5, T(ay) > 4/5, then f and g share all four values CM.

Recently, Yi and Zhou® got a further result, which gives Theorems D and F as Corollaries:

Theorem G — Let f and g be nonconstant meromorphic functions that share four distinct

values ay, ay, a3, a4 IM. If

27(a))

T(ay)>2/3, 7(a,) >m,

. (1.3)
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then f and g share all four values CM.
In this paper, a new partial result on the "ICM + 3IM question” is obtained:

Theorem 1 — Let f and g be nonconstant meromorphic functions that share four distinct
values ay, a,, a3, ay. If a, is shared CM and

min{z(a),j = 1, 2, 3} > 172,

then f and g share all four values CM.

And an inequality is established to include the above theorems from Theorem D to G:

Theorem 2 — Let f and g be nonconstant meromorphic functions that share four distinct

values ay, ay, az,ay IM. Then either the functions share all four values CM or else for every

ie {1, 2, 3, 4}, the relation

NE (r, ai) < ZND (r, a,‘) + ZND (r, ak) + S(r’f)

holds for ke {1, 2, 3, 4]\{i}.
Moreover, by Theorem 2, we obtain the following results:

Theorem 3 — Let f and g be nonconstant meromorphic functions that share a,, a,, a3 IM
and a; CM. If

N(rap,N+N@ap NSUT (N +S(r 1)

holds for some [ < 2/3, then f and g share all four values CM.

Theorem 4 — Let f and g be nonconstant meromorphic functions that share three distinct

values ay,ay, a3 IM and a fourth value a; CM. Suppose that there exist some real constant

3
4 _ 1 L _ .
l>2+r’ i.e. where T= % _I—T(aj) (t=c0 if T(a) = I for some je {1, 2, 3]), and some set
J

I < (0,,0) which has infinite linear measure such that
N (r,a,f)
_—
Top 2 . (1.4)

for all re I. Then f and g share all four values CM.

Remark 1 : Theorem 4 is an improvement of Theorem E.

Remark 2 : Both Theorem E and G are implied in Theorem 2. In fact, if f and g satisfy

the assumption of Theorem E, then by Theorem 2, either a4, a,, a3, a4 are all shared CM, or else

for every ie {1, 2, 3, 4} the inequality
Ng (r,a)) + 2Ny, (r, a) + 2Ny, (r, ap) + S(r, f)

holds for ke {1, 2, 3, 4}\{i}. So we assume
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Np(ra)<2Np(ra)+Srnf), k=1,23,

since Np, (r,ay) = 0. It follows that

3
3Ng(ray) <2 Y, N(r,a)+5r.p.
j=1

Hence
3
SNg(ra) <2 ), N(r,a)+5(.f)
j=1

since by Lemma 1 below we have N(r,a,) = NE (r,ay) + S(r. ). Furthermore, by Lemma 1, we
have

S5N(r,ap) = 4T (r, N +S(r. /)

which contradicts (1.2). Thus f and g share all four values CM.

To show that Theorem G is also a consequence of Theorem 2, we are proceeding with the
assumption (1.3), from which it follows that, for any given positive numbers A and g such that

2/3 < A<1(a;) and %—2<u< 7(a,), .. (1.5)
the inequalities
Ng(r,a))>N(r,a;), and Ng(r,a))>uN(r,a))
hold for sufficiently large r, namely
ANp (r,a))<(1 =) Ng(r, ay), .. (1.6)
UNp (r,ay) <(1 = w) Ng (r, ay). . (1.7

On the other hand, by Theorem 2, we only need to consider the case that the following two
inequalities hold:

Ng (r,a,) S2Np (r, a)) + 2N (v, ay) + S(r, ), . (18)
Ng (. ay) S2Npy (1, ay) + 2Ny, (1, ay) + S(r, ). .. (1.9)
From (1.6)~(1.9), we have
ANp (r,a)) <2(1=2) Ny, (r, a;) + 2(1 = ) Np, (r, a,) + S(r, f),
UNp (r, ay) <2(1 = ) N, (1, a5) + 2(1 = ) N, (r, a,) + S(r, )
or

(3A=2) Np (r,a;) <2(1 = A) Np, (r, ap) + S(r. f), . (1.10)
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(Bu—2)Np (r,a5) <2(1 = ) Np (r, @) + S(r, /). .. (1.11)
Substituting (1.11) into (1.10) yields

(3A-2) Bp-2Np (r.a)) < (2~ 22) 2 - 21) Ny, (r, a)) + S(r. 1),
which implies

Np (r.ay) = S(r. 1),
since (1.5) holds. Similarly, by substituting (1.10) into (1.11), we can deduce

Np (r,ay) = S(r. /).

Thus both a; and a, are shared CM* (where the terminology "“two nonconstant meromorphic

functions share the value a CM*" means a is shared by f and g and furthermore,
N (r,a)=Ng (r,a) + S(r, f). This leads to that f and g share all four values CM by the following

result which is a slight generalization of Theorem C:

Theorem C*® — If two nonconstant meromorphic functions share two values IM, and share
two other values CM*, then f and g share all four values CM.

2. LEMMAS
For proving the theorems, we need the following lemmas.

Lemma 124310 Let f and g be distinct nonconstant meromorphic functions that share four
values ay, ay, az, a; IM. Then the following statements hold:

O TEHN=TrY+SrNT(r.g) =T(rH+Srg);

4
i Y N(r, f—_l—;- )= 2T (1) + SC )3
=1 i

(ii)) Ny (J% )= S(r.f), Ny (gl—, )= S(r, 8),

where N, ( fl;) and No(é;] are respectively the counting functions of the roots of f* = 0 and

g = 0 that refer only to those points z such that f(z) #a; and g(z)#a; for i = 1, 2, 3, 4.

4
@) Y, N*(ra)=Sr.p,

j=1

where N* (r, aj) is the counting function for common multiple zeros of f (z)=aj and g(z)=aj,
counting the smaller one of the two multiplicities at each of the points.

Lemma 2 — Let f be a nonconstant meromorphic function and let b, b,, ..., b q be g constants.
Then for any polynomial P(f) of degree p(p <q) in f with constant coefficients, the equality
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PO’ _
" ( =) b)) —G-b,) )‘ S

holds.
PROOF : It is easy to see

P(f) } i A
(f"bl)(f"bz)“‘(f‘bq) j=1 f‘bj,

where Aj(j =1, 2, ..., g) are constants. Thus

’ q . ’
SO Y T R Y
(F=by) (F~by - (f~b,) & Fp
S ml L~
<
< 2 m[r,f_b.)-!-O(l)
j=1 4
= S(r. /).
Lemma 3 — Let f and g be distinct nonconstant meromorphic functions that share four

values ay, ay, as, IM. Then the function

[ (-g)°
F- al) F- az) (f-a3) (g—ay) (g—ay) (g—a3)

y(2)=

is an entire function and satisfies

T(r, y(2))=S(r. .

PROOF : Let z; be a point such that f(zp) =a with multiplicity p and g(zg) =a with

multiplicity g, where a € {ay, aj, a3, «}. Then

. -2
Y(@)=(z-2)""" D),
Hence y(z) is an entire function, and so

N, y=0. - (2.1)

By Lemma 2 and Lemma 1 (i), we have

2 ’ ’
m(r, w(z»s(r, 18 )

f- a]) (f- az) f- a3) (8- al) (& _‘12) (g- a3)

+m( o[ g8’ J

P F-a) (f-ap) (F-ap) (g—a)) (5 -4y (- a3)
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r'es
o ( (=) G—ay) (- a9 (- ay) 6 - a7) (g — ) J* o

2 | [t
*’”(” (F~a;) (F-ay) (F-ay) ]*’"[” (F-ay) (F-ay) (F-ay) )

o [” (s—ap (gg—’fz) -y )* ’”(" €-ap (ggiiz) (= ay ]
+ S(r,H+S(r, 8
= (/) +S(r, 8) = (1. ).
By this and (2.1), we get
T ¥ @) =m0 )+ N0y = S, .

Lemma 4 — Let f and g be nonconstant meromorphic functions that share four distinct
values ay, a,, a3, a, IM. Then either the functions share all four values CM or else the inequality

]T/(r,ai)SND (r»ak)"‘ND(r’ am)+S(r,f),

holds for distinct i,j,k,me {1, 2, 3, 4}.
PROOF : Assume f# g and without loss of generality, a, =<o. Set

_ fG-a)  gG-a) .
M=) F-ay)  (@—ap) ('—ay) - &
_ fl(f—a2) g,(g"az)
M= F=a) F-ap ~ (e-ap (g-ay) - (23)
f’ (f-ay) g’(g—a:;) 2.4)

M=F=a) f-a) ~ @—ap) @—ay)

If n;=0, then qy, a5, a3, a, are shared CM by f and g. And we have the same conclusion

when 1), or 7); vanishes identically. Therefore, we assume 77y 17, 113 % 0.

From (2.2), Lemma 1 (i) and Lemma 2, we have
NG, al)SN(r,,ﬂs T(r, mp) +O(1)
1

SN(r,n)+Sr,H+S8(r, 8)
< Np (r, ay) + Ny (1, a3) + Np (1, f) + S(r, /). . (2.5)
Similarly, considering 77, and 7);, we have

N(r,ay) < Np (r,a)) + Np (r,a3) + Np (r, f) + S(r, f), .. (2.6)
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N(r,a3) < Np (r, a)) + Np (r, ay) + Np (1, f) + S(r, /). - 27
Set
1 1
F= ,G= :
f- a4y §-a4
1 1
Then F and g share by, by, by, by IM, where b| =, b, = P by = — by=0.
Put
F’'(F-by) G’ (G-by
U= F=b) (F-by ~ G-bp(F-by - 23)

If ny= 0, then by, by, by, by are shared CM by F and G. Thus ay, a,, a3, a, are shared CM
by f and g. Now we suppose 7y 0. Since T'(r, )=T (r,)+OQ), T(r,G) = T (r, g) + O(1), from
(2.8), Lemma 1(i) and Lemma 2 we deduce that

N(rap ) <N by F) SN(r,niJs T (r, 1)+ 0(1)
4

SN(}', 774)"'5(",17)*‘5(’, G)
< Np (r, by, F) + Np (1, b3, F) + Np, (r, F) + S(r, F) + S(r, G)
SND(r’ a2)S ND(rs a3)+ND (r5a1)+S(rvf)v (29)

By (2.5, (2.6), (2.7) and (2.9), we complete the proof of Lemma 4.

3. PROOF OF THEOREM 1
Let

_2(1-x) -1 _ 2-3x
Yy =350 ¥ = 2 —x) . (3.1)

We state their two behaviours below:

(A) both of the functions y(x) and W’I (x) are decreasing in the interval [0, 1);
(B) if xe [0,1), then the relation y(x) < v/_] (x) is equivalent to each of the four
1

inequalities: x < y(x), x < IV"] x),x< 2 and y(x) 2 %

Now assume that %‘-< T(a;) < 7(ay) S T(ay). Take

1
uj<1(aj) and 5<u1</42<;13. .. 32

For sufficiently large r, we have
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NE(R aj)>#j1-\7(", aj)’j = 17 2, 3- ) (3.3)

By Lemma 4, we may assume

N(r,a)) < Np(r,ap) + Np(r,ay) + S, /), . (34)
N(r,a)) £ Np(r,ap) + Np(r,a3) + S, f), .. (3.5)
N(r,a3) < Np(r,a)) + Np(r,a) + S(r.f), .. (3.6)

It follows from (3.4) and (3.5) that

Ng(r,a) + Ng(r,ay) < 2N (r,a3) + S(, ), .. 3.7
From (3.3), we deduce

Np(ray) < (1-w) N(r, ay). .. (3.8)
Combining (3.7) and (3.8) yields

Ng(ra) + Ng(ra) < 2(1-w) N(r,a3) + S, /). .. (3.9

Since N (r,a;) < (1-u,)N(r,a)), Ny (1, a,) < (1-f,) N(r,ay), by substituting (3.6) into
(3.9), we have

Ng(ra) + uN g(r,ay) <2(1 - )
{-p) N(roap+(1-p)N(r,a)} + S(r.p.
From this and (3.3) we get
Uy N(r,a)) + iy N p(r,ay) <2(1 - 1)
{-p) N(na)+A-p)N(rap} + S,
or
{m-20-pm) A -p) N ap)}
+ {1y =2(1-p) A=) N(r,ap} < S, .
That is
W - v () N(ra) + (- v() N(r,ap) < ST, 0. -~ (3.10)

which implies N (r, a;)=S(r,f), and N(, a,)=S(r,f) since from (3.2) and (A) or (B) we know
V(i) < 172. By Theorem C* we see a, ay, as, a, are all shared CM by f(z) and g(2).

4. PROOF OF THEOREM 2

Now we come to prove Theorem 2. The proof of Theorera 2 below has similarities to the proof of
Theorem E in ©
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If f=g, then there is nothing to prove. So we assume f¥ g. Picking an integer ie {1, 2,
3, 4}, say i = 4, we shall estimate N (r,a4) by considering two cases.

Case 1 : ay=co.

Put

_ ['g -8)° A
Ve ( =ap (- G-a) (g —ap) G- 5~ } - @D

n=£l—l_ fl _ f/ _ f/
f f‘al f-a, f—a3

_(L,_ g & __8 ) .. (4.2)

§ 8—a g—-a, g-—a

T (r, ) =S8(r,0. .. (4.3)
From the proof of Lemma 3, we know y is an entire function and satisfies

It is obvious that m(r, n) = S(r, /) from the fundamental estimate of the logarithmic derivative
and Lemma 1(i). By considering residues in (4.2), we deduce that 1 is analytic at any a-point

(ae {ay,ay a3}) as well as at those poles where f(z) and g(z) have the same multiplicities. And

it is obvious that 7 has a simple pole when f=a, and g=a, with different multiplicities. Thus from

(4.2) and Lemma 1(iii) we obtain that N (r, n) =Np (r, ay) + S(r, /). Hence
T(r,m=Np(r,a)+S(rf. .. (49

Now consider the following functions:

f g’
H. = _ 8 .. (45
1 f__al g__al ( )
f’ g’
H, = - .. (4.6
2 f—a2 g—a, (4.6)
f’ g’
H - .. (4.7
3 f-a3; g-a, @.7)

From the fundamental estimate of the logarithmic derivative and Lemma 1(i), we have
m(r, H)=8r.f),j = 1, 2, 3. ... (4.8)
From (4.5), (4.6), (4.7) and (4.2), we have
N(r3H;+m=Np(ra)+Np(ra)+Sr.f, j= 1,2, 3. .. (49)
and

m(r,3Hj+11)=S(r,j),j =1, 2, 3.
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Hence
T(r, 3Hj+ m=Np(, aj) +Np(ra)+S(rfH,j=1,2 3 ... (4.10)
Let z; be a common simple pole of f and g. Assume that

f@=(@z- 11)_1 (by+by (z—2)) +by(z~ 11)2 +.0)

g@= (z—zl)"1 (co+e; z-2)) +c2(z—zl)2+ )

An elementary calculation gives that

by ¢ 1 1
H, (z)) -—b—o—:o'—-al [b—o-——O'J .. (4.11)
77(z)=—3ﬁ—-ﬁ + (a,+a,+a,) 1_1 4.12)
. b Rl
2
1 1
V(z) = (b—o - g) .. (4.13)
From (4.11), (4.12) and (4.13) we obtain
GH, @)+ 1 @)* = Qay-ay-a)* v(z) - (4.19)

If
(BH, + 1‘[)2 = (2a, - a:,_—a3)2 v
then 3H,+n has no poles since ¥ is an entire function. Thus N (r, 3H/+m) = Np(r,a) +
N p(r,ay) +S(r,f) = 0, which implies a, and a, (=) must be shared CM by f and g. Thus f and
g share all four values CM by Theorem C. Now we suppose
GH+0) # (2a;-ay-a))* v.
Then from Lemma 1(iv), (4.14) and (4.3), we can deduce that

Ng(ra) < N, 0,GH, +M? - (2a,-a,— a3’ v) +5( )

A

2T (r,3H +m) + T(r,y) + S(r.f)

IA

2T (r,3H; + ) + S(r, .
It follows from (4.10), that
Ng(ra) <2Np(ra) +2 N p (r, ay) + 8(r, f). .. (4.15)

Similarly, considering H, and H,, we can obtain that either f and g share all four values
CM or else
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Ng(ria) < 2N p(r,ay) + 2N g(r,ay) + S(r, ). .. (4.16)
and
Ng(ray) < 2Np(r,a3) + 2N p(r,a,) + S, f). . @417

hold. It is shown from (4.15), (4.16) and (4.17) that in the case a,=<o the conclusion of Theorem
2 is valid.

Case 2 : ay # oo,

Set

_ 1 1
f-ay’ g§—a,

F

1
aj—a4

T(rnF)=T(rf) + O), Np(r,b)=Ng(r,a) and Np(r,b) = Np(r,a), j = 1, 2, 3, 4, treating
N g (r,by) in the same way as in Case 1, we still obtain that either f and g share all four values

CM or else (4.15), (4.16) and (4.17) hold. Thus Theorem 2 is proved.

Then F and G share by, by, by, by IM, where b;= ,J = 1, 2, 3; by=co. Since

5. THE PROOF OF THEOREM 3

Assume that each of the values a, a,,a; is not shared CM by f(z) and g(z), then the following
inequalities hold by Lemma 4 and Theorem 2.

FM(r,a3) S Np(r,a)) + Np(r,ay) + S(r.f),
N(r,a)) < 2N p(ra) + S(r.f)
N(r,ay) £ 2N (r,ay) + S(r,f).

It follows that

4

27(nf) = 3, N(ra) + Sr.p

j=1
< N(r,al) + N(r,az) + 2ND(r,a]) + ZND(raaz) + 8./
< 3(N(ra) + N(r,ay)) + S(r, /.

This is a contradiction since N(r,a;)+N(r,ay) < uT(r,f)+S(r.f), and u < 2/3. Thus
Theorem 3 is proved.

6. THE PROOF OF THEOREM 4

Assume that each of the values a;,a,,a; is not shared CM by f(z) and g(z). Notice that a, is
shared CM by f(z) and g(z), by Theorem 2, we have

N(.a) <2Np(ra), i=1,2 3. . (61)
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If 7(ap> 0 (i =1, 2, 3), then we take O<y;<7(a). The inequality

N(ra) < 1-w)N(ra), (=12 3) e (62)

holds for sufficiently large r.
If 7(a;) = 0, then we take y, = 0. The inequality (6.2), still holds.

So from (6.1) and (6.2), it follows that

N(r,as) <2(1-m)N(r,a), (=12, 3) . (6.3)
Hence,
{A-p) A=) + (1-p) ((1-p3)
3
+ (=) (=)} N(ra) <24 Y, N(ra),
j=1
where
A=(1-p) (1 -w) (A -w).
That is

{A=p) A=) + A=py) (11— p3)

4
+(1-p) (=) + 24} N(ra) <24 Y, N(ra).
j=1

From this and Lemma 1(ii), we derive that

l' I_V(ry a4) < 4

1m su = »

r-—)wp T(r’f) 3 1
re E 2 + z ——"1 py

where E is a set of r of finite linear measure. This leads to

l' N(r7a4) 4

1m sup s

r— oo T(r’f) 2 3 1

re E + Z T
j=1 J

which contradicts the condition (1.4). Thus at least one of aj, a,, ay must be shared CM by f )
and g(z). As a, is also shared CM, a, a,, ay are all shared CM by f(z) and g(z) according to

Theorem C. This completes the proof of Theorem 4.
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